材料力学习题第12章资料

合集下载

材料力学课件(哈工大)第12章杆件的强度与刚度计算

材料力学课件(哈工大)第12章杆件的强度与刚度计算

12-1 强度计算与刚度计算1)构件的失效模式若载荷过大,超出了构件的承载能力,构件将失去某些功能而不能正常工作,称为构件失效。

工程中,构件的失效模式主要有:•强度失效——构件的材料断裂或屈服。

•刚度失效——构件的弹性变形过大,超出规定范围。

•疲劳失效——构件在交变应力作用下的强度失效。

•稳定失效——构件丧失了原有的平衡形态。

本章只研究杆件强度失效与刚度失效的计算问题。

12-1 强度计算与刚度计算首先根据内力分析方法,对受力杆件进行内力分析(画出内力图),确定可能最先发生强度失效的横截面(危险截面)。

[]()4 , 3 , 2 , 1 之一=≤i ri σσ根据强度条件,即上面不等式,强度计算可解决三类问题:•校核强度•设计截面•计算许可载荷1)构件的失效模式2)杆件的强度计算其次根据杆件横截面上应力分析方法,确定危险截面上可能最先发生强度失效的点(危险点),并确定出危险点的应力状态。

最后根据材料性能(脆性或塑性)和应力状态,判断危险点的强度失效形式(断裂或屈服),选择相应的强度理论,建立强度条件:12-1 强度计算与刚度计算3)杆件的刚度计算除了要求满足强度条件之外,对其刚度也要有一定要求。

即要求工作时杆件的变形或某一截面的位移(最大位移或指定截面处的位移)不能超过规定的数值,即∆为计算得到的变形或位移;[∆]为许用(即人为规定的)变形或位移。

对轴向拉压杆,∆是指轴向变形或位移u ;对受扭的杆件,∆是指两指定截面的相对扭转角φ或单位长度扭转角ϕ;对于梁,∆是指挠度v 或转角θ。

根据刚度条件,即上面不等式,刚度计算可解决三类问题:•校核刚度•设计截面•计算许可载荷][ΔΔ≤刚度条件1)构件的失效模式2)杆件的强度计算12-2 轴向拉压杆件的强度计算轴向拉压杆横截面上正应力是均匀分布的,各点均处于单向应力状态。

因此,无论选用哪个强度理论,强度条件表达式均演化为][m axσσ≤例1螺旋压力机的立柱如图所示。

材料力学第十二章

材料力学第十二章

A
i
写成
r Ai Ai
i
(12-10)
例 12-1 设曲杆的截面为梯形(见图 12-6),尺寸 b1 40 mm ,b2 60 mm , h 140 mm , R1 260 mm , R2 120 mm 。试确定曲杆中性层的曲率半径 r , 并计算截面对中性轴的静矩 S 。若截面上的弯矩 M 18.53 kN m ,试求最大
与 M 对应的弯曲正应力已于例 12-1 中算出。将弯曲正应力与均布的正应
力 FN 叠加,得出截面内侧边缘处的最大拉应力为 A
l
M (R2 r) SR2
FN A
143.5
100 103 7 000 106
MPa
158 MPa
截面外侧边缘处的最大压应力为
y
M (R1 r) SR1
FN A
第四节 曲杆的强度计算
图 12-12(a)所示曲杆的纵向对称面内作用载荷时,将在其横截面上引起内 力,这些内力包括弯矩、轴力和剪力。用截面 m m 将曲杆截开,取出右半部分来
研究,如图 12-12(b)所示,把截 面 m m 上的内力和曲杆右半部 分上的外力分别向 m m 截面的 法线方向和切线方向投影。再对截 面的形心取矩,由平衡条件不难求 得
设 R0 为轴线的曲率半径,e 为截面形心到中性轴的距离,由图 12-2 可 知
e R0 r 将式(12-1)代入式(d),得
M y
E (d) d
yz dA 0
A
由于 y 轴是横截面的对称轴,有
(12-3)
yz
A dA 0
所以式(d)便自动满足了。
将式(12-1)代入式(e),得
M
A
图12-9

浙江工业大学材料力学第12章答案

浙江工业大学材料力学第12章答案

12.1 图示重物以匀加速度下降,在2.0秒内速度由s m 5.1降至s m 5.0。

设绳的横截面面积为A=10mm 2,求绳内应力。

解:(1)252.05.15.0s m a -=-=,故5.01=+=g a K dMPa A Q K K d st d d 2001040005.0=⋅=⋅=⋅=σσ12.2 图示重物kN Q 40=,用绳索以等加速度25s m a =向上吊起,绳索绕在一重为kN W 0.4=,直径为m D 2.1=的鼓轮上,鼓轮的惯性半径为cm r 45=。

轴的许用应力[]MPa 100=σ,鼓轮轴两端A 、B解:(1)kN Q g a W Q K W F d d 6440105141=⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=+= m N D a r g W D Q g a I D Q K T d d ⋅=+⋅⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=+=366752.11045.01040006.0400001051221222ε m N l F M d d ⋅=⋅⋅==1600016400025.041max , []σπσ≤+=+=32366750001600000032222max ,3d WT M d d rmm d 7.159≥,取[]mm d 160=12.3 如图所示,重N 300法兰从高度为h 处自由下落,冲击到杆ABC 的下端C 平台,杆能承受的最大应力为MPa 200,求h 的最大允许高度。

假定杆的弹性模量为E 200=解:mm EA Ql EA Ql l 00663.030440410200200030022321=⎪⎭⎫ ⎝⎛⨯+⨯⨯⋅=+=∆ππ MPa K st d d 200==σσ24.4713043002002112112=⋅⋅==∆++=∆++=πσσst d st d l h h K mm h 2.733=12.4 如图所示,重N 100物体从mm h 500=位置自由下落到铝制梁AB 上的C 点,求截面C 的位移和梁上的最大应力。

材料力学第十二章

材料力学第十二章
寸系数。 1.弯曲时的有效应力集中系数和尺寸系数
D 50 1.25 d 40
f50
f40
r 5 0.125 d 40
由图表查有效应力集中系数 r=5
当 : b 1000 MPa 时 ,K 1.55
当 : b 900MPa 时 ,K 1.55
当 : b 920MPa 时 ,K 1.55
的有效应力集中系数和尺寸系数。
10、简述影响构件持久极限的主要因素
11、交变应力的平均应力为σm=20MPa,应力 幅为σa=50MPa,其循环特性中的 最大应力 σmax = ,最小应力σmin= ,循环特性r = 。
12、最大弯曲正应力相等的三根材料相同的梁,承受交变应力。 (A)是对称循环;
(B)是脉动循环;
(C)是∣σmin∣<∣σmax∣的不对称循环。 则以 种循环的梁的疲劳强度最低。
α B
18、 火车轮轴受力情况如图所示。a=500mm,
l=1435mm,轮轴中段直径d=15cm。若P=50kN, 试求轮轴中段截面边缘上任一点的最大应力,最 小应力,循环特征,并作出曲线。
19、阶梯轴如图所示。材料为铬镍合 b 920MPa 金, 1 420MPa , 1 250MPa 。轴的尺寸是: d=40mm,D=50mm,r=5mm。求弯曲和扭转时
③ 强度校核
0 1 1
max 1
安全
1、构件在临近疲劳断裂时,其内部: A:无应力集中;

B:无明显的塑性变形;
C:不存在裂纹; D:不存在应力;
2、塑性较好的材料在交变应力的作用下,当危险点的最 大应力低于屈服极限时: A:既不可能有明显的塑性变形,也不可能发生断裂; B:虽可能有明显的塑性变形,但不可能发生断裂; C:不仅可能有明显的塑性变形,而且可能发生断裂;

工程力学-材料力学-第12章动量矩定理

工程力学-材料力学-第12章动量矩定理
•注意:内力不能改变质点系的动量矩。

例12-3 •已知:m1,r,k ,m2 ,R,
•求:弹簧被拉长s时,重物m2的加速度a2 。 •解 •选系统为研究对象,受力分析如图 •设:塔轮该瞬时的角速度为ω,则
•解得:

3.动量矩守恒定律
•若
,则 常矢量;
•若
,则 常量。

§12-3 刚体绕定轴转动的微分方程 •主动力: •约束力:

例12-8 •已知:l,m,θ=60°。求:1. αAB;2. FA • 解:绳子刚被剪断,杆AB作平面运
动,受力如图,根据平面运动微分 方程
• 补充运动学方 程
• 在y轴方向 投影

例12-9 •已知:如图r,m, m1。求:1. aA;2. FAB ;3. FS2 • 解:分别以A、B、C为研究对象
•其中: • (O为定点)

质点的动量矩定理
•因此 •称为质点的动量矩定理:质点对某定点的动量矩 对时间的一阶导数,等于作用力对同一点的矩。
•投影式:

2. 质点系的动量矩定理 •对第i个质点有 : •对n个质点有:
• 由于
•得

2. 质点系的动量矩定理
•称为质点系的动量矩定理:质点系对某定点O的动量 矩对时间的一阶导数,等于作用于质点系的外力对于 同一点之矩的矢量和。 •投影式:
•2. 选轮2为研究对象
•积分

§12-4 质点系相对于质心的动量矩定理 •1.对质心的动量矩 •如图,以质心C为原点,取平移坐标系Cx’y’z’。 •质点系相对质心C为的动量矩为:
•由于 •得 • 质点系相对质心的动量矩,无论是以相对速度计算还是
以绝对速度计算,其结果都相同。

材料力学12

材料力学12

max m min

r
min 0 max
max
2
a m
a
t
3)静循环
m max min
min r 1 max
t
a 0
m max min
§12-2 循环特性、平均应力和应力幅度 二、几种特殊循环应力 1)对称循环应力

max1 max 2
r
N0—循环基数
S-N曲线
r—材料持久限
r—循环特性 1 —对称循环持久极限应力
N
N0 107
—钢材的循环基数
N1 N2
N0
钢材达到 N0 107 而未疲劳的 最大应力值为钢材的疲劳极限
§12-3 疲劳极限
二、疲劳极限(材料持久极限) 3)“条件”持久极限 有色金属没有明显趋于水平直线部分,通常规定循 环基数为 N0 108 对应且不引起疲劳的最大应力。
1)对称循环应力
max
min
M y Iz
max
M Wz
§12-2 循环特性、平均应力和应力幅度 二、几种特殊循环应力
1)对称循环应力
min r 1 max
max m min
a max
m 0
t
a
T
§12-2 循环特性、平均应力和应力幅度 二、几种特殊循环应力 2)脉动循环应力
max2 b 60%
. . . .
N1
N2
. . . .
. .
. .
max n
. .
Nn
第n根试件
§12-3 疲劳极限
一、疲劳试验 光滑小试件的弯曲疲劳试验 max1 max 2 2)疲劳试件 3)疲劳试验 一组光滑小试件(6~10根) 第一根试件 第二根试件

材料力学第2版 课后习题答案 第12章 变形能法

材料力学第2版 课后习题答案 第12章 变形能法

3 d1 ; 2
(b) 梁的抗弯刚度EI,略去剪切变形的影响。 解: (a) M n1 = m
M n2 = m U2 = J P2 =
9.6m 2 l Gπd14
U1 = J P1 =
m 2l 4GJ P1 π 4 d1 32
m 2l 4GJ P2 π 4 5.06π 4 d2 = d1 32 32

U a 16 = Ub 7
11-3 图示桁架各杆材料相同,截面面积相等,试求在 P 力作用下,桁架的变形能。 解:
支反力
R Ax = P R Ay = R B =
各杆的轴力和变形能如表所示 杆号 1 内力 Ni 杆长 各杆的变形能 Ui
P 2
2P 2
2l
2 P 2 l (4 EA)
2
− 2P 2
求 θA
M 0 ( x1 ) = −1 M 0 ( x 2 ) = −1
θA =
1 EJ
⎡ ⎛L ⎤ 1 ⎞ − P⎜ + x2 ⎟(− 1)⎥ dx 2 ∫0 (− Px1 )(− 1)dx1 + 2EJ ∫0 2 ⎢ ⎠ ⎣ ⎝2 ⎦
2
L
L
1 L2 1 = ⋅P⋅ + EJ 8 2 EJ =
求 δB
0
2l
l l l
2 P 2 l (4 EA)
0
3 4 5ຫໍສະໝຸດ P 2 P 2P 2 l (8EA) P 2l (8 EA)
故珩架的变形能为
5
U = ∑ Ui =
i =1
2 2 + 1 P 2l P 2l = 0.957 4 EA EA
11-4 试计算图示各杆的变形能。 (a) 轴材料的剪切弹性模量为G, d 2 =

材料力学第12章 能量法

材料力学第12章 能量法

范围内工作时,其轴线弯曲成为一段圆弧,如图12.5(a)所示。两端横截
面有相对转动,其夹角为θ ,由第7章求弯曲变形的方法可以求出
图12.5 与前面的情况相似,在线弹性范围内,当弯曲外力偶矩由零逐渐增加到M0时
,梁两端截面相对于转动产生的夹角也从零逐渐增加到θ ,M0与θ 的关系也
是斜直线,如图12.5(b)所示,所以杆件纯弯曲变形时的应变能为
dW在图12.2(a)中以阴影面积来表示。拉力从零增加到FP的整个加载过程
中所做的总功则为这种单元面积的总和,也就是说是△OAB的面积,即
可以将以上的分析推广到其他受力情况,因而静载荷下外力功的计算式可以
写为 式中的 F是广义力,它可以是集中力或集中力偶;Δ 是与广义力F相对应的
位移,称为广义位移,它可以是线位移或角位移。式(12.2)表明,当外力
在工程实际中,最常遇到的是横力弯曲的梁。这时梁横截面上同时有剪力和
弯矩,所以梁的应变能应包括两部分:弯矩产生的应变能和剪力产生的应变 能。在细长梁的情况下,剪切应变能与弯曲应变能相比,一般很小,可以不
计,常只计算弯曲应变能。另外,此时弯矩通常均随着截面位置的不同而变
化,类似于式(12.5)与式(12.9),梁的弯曲应变能为
表面上的剪力与相应的位移方向垂直,没有做功。因此,单元体各表面上的 剪切力在单元体变形过程中所做的功为
故单元体内积蓄的应变能为
则单元体内积蓄的应变比能为

这表明,vε 等于γ 直线
的面积。由剪切胡克定律=Gγ ,比能又可以写成下列形式
(3)扭转 如图12.4(a)所示的受扭圆轴,若扭转力偶矩由零开始缓慢增加到最终值T
,积蓄在弹性体内的应变能Vε 及能量耗损Δ E在数值上应等于载荷所做的功 ,既 如果在加载过程中动能和其他形式的能量耗损不计,应有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学习题第12章12-1一桅杆起重机,起重杆AB的横截面积如图所示。

钢丝绳的横截面面积为10mm2。

起重杆与钢丝的许用σ,试校核二者的强度。

力均为MPa[=]12012-2重物F=130kN悬挂在由两根圆杆组成的吊架上。

AC是钢杆,直径d1=30mm,许用应力[σ]st=160MPa。

BC是铝杆,直径d2= 40mm, 许用应力[σ]al= 60MPa。

已知ABC为正三角形,试校核吊架的强度。

12-3图示结构中,钢索BC由一组直径d =2mm的钢丝组成。

若钢丝的许用应力[σ]=160MPa,横梁AC单位长度上受均匀分布载荷q =30kN/m作用,试求所需钢丝的根数n。

若将AC改用由两根等边角钢形成的组合杆,角钢的许用应力为[σ] =160MPa,试选定所需角钢的型号。

12-4图示结构中AC为钢杆,横截面面积A1=2cm2;BC杆为铜杆,横截面面积A2=3cm2。

[σ]st = 160MPa,[σ]cop [F。

= 100MPa,试求许用载荷]12-5图示结构,杆AB为5号槽钢,许用应力[σ] = 160MPa,杆BC为bh= 2的矩形截面木杆,其截面尺寸为b = 5cm, h = 10cm,许用应力[σ] = 8MPa,承受载荷F = 128kN,试求:(1)校核结构强度;(2)若要求两杆的应力同时达到各自的许用应力,两杆的截面应取多大?12-6图示螺栓,拧紧时产生∆l = 0.10mm的轴向变形,试求预紧力F,并校核螺栓强度。

已知d1=8mm, d2=6.8mm, d3=7mm, l1=6mm, l2=29mm, l3=8mm; E=210GPa, [σ]=500MPa。

12-7图示传动轴的转速为n=500r/min,主动轮1输入功率P1=368kW,从动轮2和3分别输出功率P2=147kW 和P3=221kW。

已知[σ]=212MPa,[ ϕ]=1︒/m, G =80GPa。

(1)试按第四强度理论和刚度条件确定AB段的直径d1和BC段的直径d2。

(2)若AB段和BC段选用同一直径,试确定直径d。

(3)主动轮和从动轮的位置如可以重新安排,试问怎样安排才比较合理?12-8图示钢轴,d1 = 4d2/3, M=1kN·m,许用应力[σ]=160MPa,[ϕ ]=0.5︒/m, G=80GPa,试按第三强度理论和刚度条件设计轴径d1与d2。

12-9 图示钢轴所受扭转力偶矩分别为M1=0.8kN·m,M2=1.2kN·m及M3=0.4kN·m。

已知:l1=0.3m,l2=0.7m, [σ]=100MPa, [ϕ]=0.25︒/m, G=80GPa。

试按第三强度理论和刚度条件求轴的直径。

12-10图示组合轴,套筒和芯轴借两端刚性平板牢固地连接在一起。

设作用在刚性平板上的力矩M=2kN·m,套筒和芯轴的切变模量分别为G1=40GPa,G2=80GPa。

许用应力分别为[σ]1=85MPa,[σ]2=110MPa。

试按第三强度理论分别校核套筒与芯轴的强度。

12-11图示槽形截面悬臂梁,F=10kN, M=70kN·m, [σt]=35MPa, [σc]=120MPa,试校核其强度。

12-12图示简支梁,由四块尺寸相同的木板胶合而成,试校核其强度。

已知:F =4kN, l = 400mm, b = 50mm, h = 80mm,板的许用应力[σ]=7MPa,胶缝的许用应力[τ]=5MPa。

12-13图示外伸梁由25a工字钢制成,其跨度l=6m, 全梁上受均布载荷q作用,为使支座处截面A、B上及跨度中央截面C上的最大正应力均为140MPa,试求外伸部分的长度a及载荷集度q。

12-14某四轮吊车之轨道为两工字形截面梁,设吊车重力W=50kN,最大起重量F=10kN,工字钢的许用应力为[σ] = 160MPa,[τ] = 80MPa,试选择吊车梁的工字钢型号。

12-15矩形截面简支梁由圆形木料制成,已知F = 5kN, a = 1.5m, [σ] = 10MPa。

若要求在圆木中所截取的梁抗弯截面系数具有最大值,试确定此矩形截面bh的值及所需木料的最小上径d。

12-16如图所示支承楼板的木梁,其两端支承可视为铰支,跨度l = 6m, 两木梁的间距a = 1m,楼板受均布载荷q=3.5kN/m2的作用。

若[σ] = 100MPa, [τ] = 10MPa,木梁截面为矩形,b/h = 2/3,试选定其尺寸。

12-17图示为一承受纯弯曲的铸铁梁,其截面为⊥形,材料的拉伸和压缩的许用应力之比[σt]/[σc]=1/4,求水平翼板的合理宽度b。

12-18图示轧辊轴直径D = 280mm,l = 450mm, b = 100mm,轧辊材料的许用应力[σ] = 100MPa。

试根据轧辊轴的强度求轧辊能承受的最大轧制力F(F = qb)。

12-19某操纵系统中的摇臂,右端所受的力F1=8.5kN,截面1-1和2-2均为高宽比h/b=3的矩形,材料的许用应力[σ] = 50MPa。

试确定1-1及2-2两个横截面的尺寸。

12-20为了起吊W = 300kN的大型设备,采用一台150kN和一台200kN的吊车及一根辅助梁AB,如图所示。

已知钢材的许用应力[σ] = 160MPa,l = 4m。

试分析和计算:(1)设备吊在AB的什么位置(以到150kN吊车的间距a表示),才能保证两台吊车都不会超载?(2)若以普通热轧工字型钢作为辅梁,确定工字钢型号。

12-21图示结构中,ABC为No10普通热轧工字型钢梁,钢梁在A处为铰链支承,B处用圆截面钢杆悬吊。

已知梁与杆的许用应力均为[σ] = 160MPa。

试求:(1)许可分布载荷集度q;(2)圆杆直径d。

12-22组合梁如图所示,已知q = 40kN/m, F = 48kN,梁材料的许用应力[σ] = 160MPa。

试根据形变应变能强度理论对梁的强度作全面校核。

12-23梁受力如图所示,已知F = 1.6kN, d = 32mm, E = 200GPa。

若要求加力点的挠度不大于许用挠度[v] = 0.05mm,试校核梁的刚度。

12-24一端外伸的轴在飞轮重力作用下发生变形,已知飞轮重W = 20kN,轴材料的E = 200GPa。

轴承B处的许用转角[θ] = 0.5︒。

试设计轴径d。

12-25简易桥式起重机的最大载荷F = 20kN,起重机梁为32a工字钢,E = 210GPa, l = 8.76m,规定许用挠度[v] = l/500。

试校核梁的刚度。

12-26图示承受均布载荷的简支梁由两根竖向放置普通槽钢组成。

已知q = 10kN/m, l= 4m,材料的[σ] = 100MPa,许用挠度[v] = l/1000, E = 200GPa。

试确定槽钢型号。

12-27图示三根压杆,它们的最小横截面面积相等,材料相同,许用应力[σ] = 120MPa,试校核三杆的强度。

12-28矩形截面杆在自由端承受位于纵向对称面内的纵向载荷F,若已知F = 60kN,试求:(1)横截面上点A的正应力取最小值的截面高度h;(2)在上述h值下点B的正应力值。

12-29已知木质简支梁,横截面为矩形,l = 1m, h = 200mm, b = 100mm。

受力情况如图所示,F = 4kN。

[σ] = 20MPa。

校核强度。

12-30有一用10号工字钢制造的悬臂梁,长度为l,端面处承受通过截面形心且与z轴夹角为α的集中力F作用。

试求当α为何值时,截面上危险点的应力值为最大。

12-31两槽钢一端固定,另一端装一定滑轮,拉力F可通过定滑轮与拉力为40kN的W力平衡,构件的主要尺寸见图,[σ] = 80MPa,试选择适当的槽钢型号。

12-32由三根木条胶合而成的悬臂梁的如图所示,跨长l = 1m,若胶合面上的许用切应力为0.34MPa,木材的许用弯曲正应力为[σ] = 10MPa,许用切应力[τ] = 1MPa,试求许可载荷F。

12-33手摇式提升机如图所示,最大提升力为W = 1kN,提升机轴的许用应力[σ] = 80MPa。

试按第三及第四强度理论设计轴的直径。

12-34图示一齿轮传动轴,齿轮A上作用铅垂力F1= 5kN,齿轮B上作用水平方向力F2= 10kN。

若[σ] = 100MPa,齿轮A的直径为300mm,齿轮B的直径为150mm,试用第四强度理论计算轴的直径。

12-35电动机功率P = 9kW,转速n = 715rpm,皮带轮直径D = 250mm,电动机轴外伸长度l = 120mm,轴的直径d = 40mm, 轴材料的许用应力[σ] = 60MPa。

试按最大切应力理论校核轴的强度。

12-36图示传动轴,传递的功率P = 7kW,转速n = 200rpm。

齿轮A上作用的力F与水平切线夹角20︒(即压力角)。

皮带轮B上的拉力F1和F2为水平方向,且F1 = 2F2。

若轴的[σ] = 80MPa,试对下列两种情况,按最大切应力理论设计轴的直径。

(1)忽略皮带轮的重力W。

(2)考虑皮带轮的自重W = 1.8kN 。

12-37 圆截面等直杆受横向力F 和绕轴线的外力偶M 作用。

由实验测得杆表面A 点处沿轴线方向的线应变40104-⨯=οε,杆表面B 点处沿与母线成45︒方向的线应变4451075.3-⨯=οε。

并知杆的抗弯截面系数W = 6000mm 3,弹性模量E = 200GPa ,泊松比v = 0.25,许用应力[σ] = 140MPa 。

试按第三强度理论校核杆的强度。

12-38 图示圆截面杆,直径为d ,承受轴向力F N 与扭力矩T 作用,杆用塑性材料制成,许用应力为[σ]。

试画出危险点处微体的应力状态图,并根据第四强度理建立杆的强度条件。

12-39 图示圆截面钢杆,承受载荷F 1,F 2与力矩M 作用。

试根据第三强度理论校核杆的强度。

已知载荷F 1 = 500N ,F 2 = 15kN ,力矩M = 1.2kN ·m ,许用应力[σ] = 160MPa 。

12-40 图示圆截面钢轴,由电机带动。

在斜齿轮的齿面上,作用有切向力F t = 1.9kN 、径向力F r = 740N 以及 平行于轴线的外力F = 660N 。

若许用应力[σ] = 160MPa ,试根据第四强度理论校核轴的强度。

12-41图示简支梁,跨度中点承受集中载荷F作用。

若横截面的宽b保持不变,试根据等强度观点确定截面高度h (x)的变化规律。

许用应力[σ]与许用切应力[τ]均为已知。

相关文档
最新文档