2016年人教版八年级上册数学第14章电子教案

合集下载

八上数学第14章电子教案1

八上数学第14章电子教案1

一、创设情境,故事引入 【情境设置】 教师请一位学生讲一讲《狗熊掰棒子》的故事 【学生活动】1 位学生有声有色地讲述着《狗熊掰棒子》的故事,•其 他学生认真听着,不时补充. 【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习 千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什 么呢?还记得吗? 【学生回答】多项式乘以多项式. 【教师激发】 大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了 同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识.
59 61 ? 60 60 ?
(2)从以上的过程中,你能寻找出什么规律? (3)请你用字母表现你所发现的规律,并得出结论. 【演练题 2】 1.计算: (1)118×122
2
(2)105×95
4
(3)1007×993
32
2.求(2-1) (2+1) (2 +1) (2 +1)„(2 +1)+1 的个位数字. 【教师活动】组织学生进行课堂演练,并适时归纳. 【学生活动】先独立完成上面的演练题,再与同伴交流. 四、随堂练习,巩固提升 【探研时空】 1.计算:[2a2-(a+b) (a-b)][(-a-b) (-a+b)+2b2]; 2.解不等式: (3x+4) (3x-4)<9(x-2) (x+3) ;
(3) (2a-3b) (2a+3b) (4a2+9b2) (16a4+81b4) . 5 3 5 3 25 9 解: (1)原式=( x+ y) ( x- y)= x 2 y2 2 4 2 4 4 16 5 5 (2)原式=(-0.7a2b- x) (-0.7a2b+ x) 6 6 5 25 =(-0.7a2b)2-( x)2=0.4 9a4b2- x2 6 36 (3)原式=(4a2-9b2) (4a2+9b2) (16a4+81b4) =(16a4-81b4) (16a4+81b4) =256a -6561b

初中数学人教版八年级上册:第14章《整式的乘除与因式分解》全章教案(22页)

初中数学人教版八年级上册:第14章《整式的乘除与因式分解》全章教案(22页)

初中数学人教版八年级上册实用资料第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点正确理解同底数幂的乘法法则.难点正确理解和应用同底数幂的乘法法则.一、提出问题,创设情境复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.[师]1015×103如何计算呢?[生]根据乘方的意义可知1015×103=(10×10×…×10)15个10×(10×10×10)=(10×10×…×10)18个10=1018.[师]很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015,103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.二、探究新知1.做一做(出示投影片)计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n.(m,n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)(a·a)=a5=a3+2.5m·5n=(5×5·…·5),\s\do4(m个5))×(5×5·…·5),\s\do4(n个5))=5m+n.[生]我们可以发现下列规律:a m·a n等于什么(m,n都是正整数)?为什么?(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议(出示投影片)[师生共析]a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a×a·…·a)m个a·(a×a·…·a)n个a=a·a·…·a(m+n)个a=a m+n于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m表示m个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[例1]计算:(1)x2·x5; (2)a·a6;(3)2×24×23; (4)x m·x3m+1.[例2]计算a m·a n·a p后,能找到什么规律?[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1),(2),(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算两个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7;(2)解:a·a6=a1·a6=a1+6=a7;(3)解:2×24×23=21+4·23=25·23=25+3=28;(4)解:x m·x3m+1=x m+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.解法一:a m·a n·a p=(a m·a n)·a p=a m+n·a p=a m+n+p;解法二::a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p;解法三:a m·a n·a p=(a·a…a)m个a·(a·a…a)n个a·(a·a…a)p个a=a m+n+p归纳:解法一与解法二都直接应用了运算法则,同时还运用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]am1·am2·am3·…am n=am1+m2+m3+…m n.[师]鼓励学生.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三、随堂练习1.m14可以写成()A.m7+m7B.m7·m7C.m2·m7D.m·m142.若x m=2,x n=5,则x m+n的值为()A.7 B.10 C.25D.523.计算:-22×(-2)2=________;(-x)(-x2)(-x3)(-x4)=________.4.计算:(1)(-3)2×(-3)5;(2)106·105·10;(3)x2·(-x)5;(4)(a+b)2·(a+b)6.四、课堂小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义,了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n是正整数).五、课后作业教材第96页练习.本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加. 在课堂教学时,通过幂的意义引导学生得出这一性质,接着再引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.重点会进行幂的乘方的运算.难点幂的乘方法则的总结及运用.一、复习引入(1)叙述同底数幂乘法法则,并用字母表示:(2)计算:①a2·a5·a n;②a4·a4·a4.二、自主探究1.思考:根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:(1)(32)3=32×32×32=3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a().(m是正整数)2.小组讨论对正整数n,你认识(a m)n等于什么?能对你的猜想给出验证过程吗?幂的乘方(a m)n=a m·a m·a m…a m n个=am+m+m+…m,\s\up6(n个m))=a mn字母表示:(a m)n=a mn(m,n都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.注意:幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.三、巩固练习1.下列各式的计算中,正确的是()A.(x3)2=x5B.(x3)2=x6C.(x n+1)2=x2n+1D.x3·x2=x62.计算:(1)(103)5; (2)(a4)4;(3)(a m)2; (4)-(x4)3.四、归纳小结幂的乘方的意义:(a m)n=a mn.(m,n都是正整数)五、布置作业教材第97页练习.运用类比方法,得到了幂的乘方法则.这样的设计起点低,学生学起来更自然,对新知识更容易接受.类比是一种重要的数学思想方法,值得引起注意.14.1.3积的乘方1.经历探索积的乘方和运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.重点积的乘方运算法则及其应用.难点幂的运算法则的灵活运用.一、问题导入[师]提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?[生]它的体积应是V=(1.1×103)3cm3.[师]这个结果是幂的乘方形式吗?[生]不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理.[师]积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙.二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.(出示投影片)1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b();(2)(ab)3=________=________=a()b();(3)(ab)n=________=________=a()b().(n是正整数)2.把你发现的规律先用文字语言表述,再用符号语言表达.3.解决前面提到的正方体体积计算问题.4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法.5.完成教材第97页例3.学生探究的经过:1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2),(3)题;(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n=(ab)·(ab)·…·(ab)n个ab=a·a·…·an个a·b·b·…·bn个b=a n b n.2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.用符号语言叙述便是:(ab)n=a n·b n.(n是正整数)3.正方体的V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3).通过上述探究,我们可以发现积的乘方的运算法则:(ab)n=a n·b n.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.再考虑如下问题:(abc)n如何计算?是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)n=a n·b n·c n.(n为正整数) 4.积的乘方法则可以进行逆运算.即a n·b n=(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.对于a n·b n=(a·b)n(n为正整数)的证明如下:a n·b n=(a×a×…×a)n个a(b×b×…×b)n个b——幂的意义=(ab)(ab)(ab)(ab)…(ab)n个(ab)——乘法交换律、结合律=(a·b)n——乘方的意义5.[例3](1)(2a)3=23·a3=8a3;(2)(-5b)3=(-5)3·b3=-125b3;(3)(xy2)2=x2·(y2)2=x2·y2×2=x2·y4=x2y4;(4)(-2x3)4=(-2)4·(x3)4=16·x3×4=16x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=a n·b n.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质.如(abc)n=a n·b n·c n;(n为正整数)(3)积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n.(n为正整数)三、随堂练习1.教材第98页练习.(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(-2xy)3;(2)(5x3y)2;(3)[(x+y)2]3;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。

人教版八年级数学第十四章《整式的乘法与因式分解》教案

人教版八年级数学第十四章《整式的乘法与因式分解》教案

第十四章整式的乘法与因式分解1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算,能根据幂的各种运算性质解决数学问题和简单的实际问题.2.了解零指数幂的意义;探索整式乘除法的法则,会进行简单的乘除法运算.3.要求学生说出平方差公式和完全平方式的特点,能正确地利用平方差公式和完全平方式进行多项式的乘法.4.了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以相互转化的思想,学会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).让学生主动参与到一些探索过程中来,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的能力.通过本章中一些生活实例的学习,体会数学与生活之间的密切联系,在一定程度上了解数学的应用价值,提高学生学习的兴趣.本章是整式的加减的后续学习,首先,从幂的运算开始入手,逐步展开整式的乘除法运算;接着,在整式的乘法中提炼出两种特殊的乘法运算,即两个乘法公式;最后,从整式乘法的逆过程出发,引入因式分解的相关知识.本章主要有如下特点:1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟的过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.5.教材的安排、例题的讲解与习题的处理都给教师留有较大的余地与足够的空间,教师能根据各地学生的实际情况,充分发挥自己的教学主动性和积极性,创造性地进行教学.【重点】1.理解和掌握幂的运算性质.2.掌握整式的乘除运算方法,理解乘法公式,能对多项式进行因式分解.【难点】1.整式的乘除运算.2.利用乘法公式进行计算,利用提公因式法和因式分解法对多项式进行因式分解.1.幂的运算是整式乘除的基础,在教学幂的运算性质时,要让学生经历探索的过程,通过特例计算,自己概括出有关运算法则,理解并掌握这些法则,并能用来进行简单的计算.要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.在教学中要注意渗透化归的思想.对于整式的乘除法要让学生通过适当的尝试,获得一些直接体验,体验单项式与单项式相乘的运算规律,在此基础上总结出整式乘除法的一些运算法则,对于一些法则的获得要注意结合图形,让学生体会特点,从而加深对知识的理解和掌握.2.对于乘法公式的教学,要留出更多的时间和空间让学生自主探索,发现规律,体验乘法公式的来源,理解公式的意义和作用,降低对公式的记忆要求.教学时可以让学生直接计算较为简单的情况,在此基础上指出这一乘法结果的普遍性.教师要注意从已有的整式乘法的知识中提炼出这一乘法公式,让学生明确公式来源于整式的乘法,又应用于整式乘法的辩证性.3.对于因式分解这部分内容,要注意留给学生讨论的时间,引导学生进行归纳、概括.注意教给学生因式分解的方法和步骤,强化提公因式法和公式法的结构特点,让学生在不断练习中得以巩固和提高.总之,在本章的教学中,教师要创造性地使用教材,充分发挥自己在教学中的组织、引导、合作的作用,通过创设一定的问题情境,帮助学生在做一做、探索、交流与讨论中,主动地去获取知识.本章的教学中,教师不要人为地增加学生的记忆负担,提高对学生的要求,也不要人为地补充一些繁、难、偏、旧的内容,根据学生的具体情况,可以在某些具体问题上,让一部分学有余力的学生得到更好的发展,体现教材的弹性.14.1整式的乘法1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算.2.从幂的运算入手,逐步展开整式的乘法,要了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法的计算.3.通过计算,提高学生独立思考、主动探索的能力.1.在推理的过程中,让学生学会类比的方法,培养学生的观察、抽象、概括的能力.2.在观察的过程中,让学生掌握整式乘法的一些计算方法,并能运用这些方法进行计算.1.让学生体验从特殊到一般的过程,能自己在实践中总结概括法则.2.培养学生学习数学的积极性,让学生树立热爱数学的情感.【重点】1.同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法法则.2.整式的乘法法则.【难点】1.能正确进行同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法计算.2.整式的乘法的一些计算.14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.能运用同底数幂的乘法法则解决一些实际问题.1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律.体会科学的思想方法,激发学生探索创新的精神.【重点】正确理解同底数幂的乘法法则.【难点】正确理解和应用同底数幂的乘法法则.【教师准备】多媒体课件(1,2,3).【学生准备】复习幂的意义.导入一:复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.提出问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?【师】能否用我们学过的知识来解决这个问题呢?【生】运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.【师】1015×103如何计算呢?【生】根据乘方的意义可知:1015×103=(10× (10)15个10×(10×10×10)=(10×10× (10)18个10=1018.【师】很好,通过观察大家可以发现1015,103这两个因数是同底数幂的形式,所以我们把像1015×103的运算叫做同底数幂的乘法,根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.[设计意图]首先让学生回忆幂的一些知识,然后根据教材中的问题1让学生列式、观察并计算出结果,从而导入到本节课的学习之中.导入二:“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混沌的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【师】盘古的左眼变成了太阳,那么太阳离我们多远呢?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远吗?【生】可以列出算式:3×105×5×102=15×105×102=15ד?”.(引入课题)[设计意图]从远古到现代,让学生感受传说,极大地激发了学生的学习热情,同时相应问题的提出,也为学习同底数幂的乘法埋下了伏笔.导入三:北京奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量.那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?【师】你们能列式吗?(学生讨论得出108×105)【师】108,105我们称之为什么?(幂)【师】我们再来观察底数有什么特点?【生1】都是10.【生2】是一样的.【师】像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法.(揭示课题) [设计意图]利用提问题,一方面可以集中学生注意力,使之较快进入课堂学习状态,另一方面可以对学生进行爱国主义教育,增强学生的环保意识.问题1【课件1】计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n(m,n都是正整数).你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.【师】根据乘方的意义,同学们可以独立解决上述问题.【生】25×22 =(2×2×2×2×2)×(2×2)=27 =25+2.25表示5个2相乘,22表示2个2相乘,根据乘方的意义:a3·a2=(a·a·a)·(a·a)=a5=a3+2.5m.5n=(5×5× (5)m个5×(5×5× (5)n个5=5m+n.(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述)【生】我们可以发现下列规律:(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.【师生共析】a m·a n表示同底数幂的乘法,根据幂的意义可得:a m·a n=(a×a×…×a)m个a ×(a×a×…×a)n个a=a m+n.于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[知识拓展]同底数幂是具有相同底数的幂.(1)幂可以看做是代数式中的一类,是形如a n的代数式.目前,在我们研究的这类式子中,可以是任何有理数,也可以是整式,而a n中的n只能是正整数.(2)35与155不是同底数幂,因为它们的底数一个是3,一个是15,是不一样的,这说明两个幂是不是同底数幂,与它们的指数是否相同毫无关系.(3)53与515是同底数幂,因为它们的底数相同(都是5).同理,x3与x5,(a+b)2与(a+b)5也都是同底数幂.同底数幂的乘法法则的关键在于底数,底数一定要相同,并且二者是相乘关系,这样指数才能相加,否则不能运用此法则.问题2(针对导入三)1.探索108×105等于多少.(鼓励学生大胆猜想)学生可能会出现以下几种情况:①10013;②1040;③10040;④1013.[设计意图]猜想产生疑问,激发兴趣,为学生推导公式做好情感铺垫.【师】那到底谁的猜想正确呢?小组合作讨论,生回答,师板演:108× 105=(10× 10×…×10) 8个10×(10 × 10× (10)5个10=10×10×…×10 13个10=1013.即108× 105=108+5. [设计意图]师给出适当的提示后,相信学生能在已有的知识基础上,利用集体的智慧,找出猜想中的正确答案,并通过“转化”思想得出结论,也找到了正确的推理过程.2.出示问题:(学生口答,课件显示过程)a 6·a 9=(a ·a ·…·a ) 6个a·(a ·a ·…·a )9个a=a ·a ·…·a 15个a=a 15. 即a 6·a 9=a 6+9.3.观察以上两个式子,你有什么发现? 【师】这是两个特殊的式子,它们的指数分别是8,5;6,9.底数相同的两数的任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗?a m ·a n 怎么计算?[设计意图]a6·a9和a m·a n的推导过程由于108·105打好了坚实的基础,所以用填空的形式简化公式的推导过程,既避免了重复教学过程,也节约时间,同时也能达到让学生经历从具体到一般的推导过程.【板书】a m·a n=a m+n(m,n都是正整数).师补充解释m,n都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述.【板书】同底数幂相乘,底数不变,指数相加.[设计意图]全班学生参与活动,经历从理解法则的含义的概括到用十分准确简练的语言概括过程,从而提高学生的表达能力.问题3【课件2】(教材例1)计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.计算a m·a n·a p后,能找到什么规律?【师】我们先来看例1,是不是可以用同底数幂的乘法法则呢?【生1】(1)(2)(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.【生2】(3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.【师】同学们分析得很好.请自己做一遍,每组出一名同学板演,看谁算得又准又快.【生板演】(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1+6=a7.(3)解:(-2)×(-2)4×(-2)3=(-2)5×(-2)3=(-2)8=256.(4)解:x m·x3m+1=x m+3m+1=x4m+1.【师】接下来我们来看例2.受例1中第(3)题的启发,能自己解决吗?与同伴交流一下解题方法.解法1:a m·a n·a p=(a m·a n)·a p=a m+n·a p =a m+n+p.解法2:a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p.解法3:a m·a n·a p= (a×a×…×a)m个a ×(a×a×…×a)n个a×(a×a×…×a)p个a=a m+n+p.【归纳】解法1与解法2都直接应用了运算法则,同时还运用了乘法的结合律;解法3是直接应用乘方的意义.三种解法得出了同一结果,我们需要这种开拓思维的创新精神.【生】那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加呢?【师】是的,能不能用符号表示出来呢?【生】a m1·a m2·a m3·…·a m n=a m1+m2+m3+…+m n.【师】(鼓励学生)那么例1中的第(3)题我们就可以直接应用法则运算了.(-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256.1.同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n 都是正整数).2.推广:a m·a n·a p=a m+n+p.3.(课件3)注意:在应用同底数幂乘法法则时,注意以下几点:(1)底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x-y)2与(x-y)5等.(2)a可以是单项式,也可以是多项式.(3)按照运算性质,只有相乘时才是底数不变,指数相加.1.计算a6×a3的结果是()A.a9B.a2C.a18D.a3解析:原式=a6+3=a9.故选A.2.下列计算正确的是()A.x·x2=x2B.x2·x2=2x2C.x2+x3=x5D.x2·x=x3解析:A.底数不变,指数相加,故A错误;B.底数不变,指数相加,故B错误;C.不是同底数幂的乘法,指数不能相加,故C错误;D.底数不变,指数相加,故D正确.故选D.3.计算(-a)3·(-a)2的正确结果是()A.a5B.-a5C.a6D.-a6解析:原式=(-a)3+2=(-a)5=-a5.故选B.4.计算.(1)(-5)×(-5)2×(-5)3;(2)(-a)·(-a)3;(3)-a3·(-a)2;(4)(a-b)2·(a-b)3;(5)(a+1)2·(1+a)·(a+1)3.解析:利用同底数幂乘法法则进行计算,底数不同的利用互为相反数的奇偶次幂的性质进行转化.解:(1)(-5)×(-5)2×(-5)3=(-5)6=56.(2)(-a)·(-a)3=(-a)4=a4.(3)-a3·(-a)2=-a3·a2=-a5.(4)(a-b)2·(a-b)3=(a-b)5.(5)(a+1)2·(1+a)·(a+1)3=(a+1)6.14.1.1同底数幂的乘法1.法则2.公式例题讲解例1例2一、教材作业【必做题】教材第96页练习.【选做题】教材第104页习题14.1第9,10题.二、课后作业【基础巩固】1.计算(-x2)·x3的结果是()A.x5B.-x5C.x6D.-x62.下列计算正确的是()A.a3·a2=a6B.b4·b4=2b4C.x5+x5=x10D.y7·y=y83.下列运算正确的是()A.a5·a5=2a5B.a5+a5=a10C.a5·a5=2a10D.a5·a5=a104.a2014可以写成()A.a2010+a4B.a2010·a4C.a2014·aD.a2007·a20075.下列运算错误的是()A.(-a)(-a)=(-a)2B.-32·(-3)4=(-3)6C.(-a)3·(-a)2=(-a)5D.(-a)3·(-a)3=a6【能力提升】6.设a m=8,a n=16,则a m+n等于()A.24B.32C.64D.1287.下列各式成立的是()A.(x-y)2=-(y-x)2B.(x-y)n=-(y-x)n(n为正整数)C.(x-y)2(y-x)2=-(x-y)4D.(x-y)3(y-x)3=-(x-y)6【拓展探究】8.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得2S-S=22014-1,即S=22014-1,即1+2+22+23+24+…+22013=22014-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).【答案与解析】1.B(解析:(-x2)·x3=-x2+3=-x5.故选B.)2.D(解析:A.应为a3·a2=a5,故本选项错误;B.应为b4·b4=b8,故本选项错误;C.应为x5+x5=2x5,故本选项错误;D.y7·y=y8,正确.故选D.)3.D(解析:A.应为a5·a5=a10,故本选项错误;B.应为a5+a5=2a5,故本选项错误;C.应为a5·a5=a10,故本选项错误;D.a5·a5=a10,正确.故选D.)4.B(解析:A.a2010+a4不能进行计算;B.a2010·a4 =a2014;C.a2014·a=a2015;D.a2007·a2007=a4014,故选B.)5.B(解析:A.(-a)(-a)=(-a)2,故本选项正确;B.-32·(-3)4=-32·34=-36,故本选项错误;C.(-a)3·(-a)2=(-a)3+2=(-a)5,故本选项正确;D.(-a)3·(-a)3=(-a)3+3=(-a)6=a6,故本选项正确.故选B.)6.D(解析:∵a m=8,a n=16,∴a m+n=a m·a n=8×16=128.故选D.)7.D(解析:A.(x-y)2=(y-x)2,故本选项错误;B.(x-y)n=-(y-x)n(n为奇数),故本选项错误;C.(x-y)2(y-x)2=(x-y)4,故本选项错误;D.(x-y)3(y-x)3=-(x-y)6,故本选项正确.故选D.)8.解:(1)设S=1+2+22+23+24+…+210,将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将两式相减得2S-S=211-1,即S=211-1,则1+2+22+23+24+…+210=211-1.(2)设S=1+3+32+33+34+…+3n①,两边同(3n+1-1),则1+3+32+33+34+…时乘以3得3S=3+32+33+34+…+3n+3n+1②,②-①得3S-S=3n+1-1,即S=12(3n+1-1).+3n=12在教学中教师通过实际问题创设情境,导入新课,激发了学生学习数学的兴趣,通过学生的自主探索,让学生经历观察——类比——抽象——概括等过程,归纳出同底数幂的乘法法则,提高了学生的自主意识和自我解题的能力.在归纳出同底数幂的乘法法则之后,教师通过例1、例2的学习,让学生加深了对同底数幂的乘法法则的理解.整个过程学生对知识的接受和理解较好,突出了学生的主体地位和教师的主导作用,学生学得开心,知识掌握较好.因为本节课的内容较简单,所以在习题的设计上,教师可增加些难度,让学生通过变式训练,使学生的能力得到进一步的提高.另外,对于法则的概括和理解要尽量让学生自己去独立完善,教师要少说,多讲评.教学中要适当增加难度,增加变式训练,如法则的逆应用和底数为负数的习题.法则的逆应用要重点让学生掌握,以提高学生解决问题的能力.同时,一定要让学生分清幂的底数,明确只要在同底数幂相乘的时候才能用法则进行计算,否则不行.另外,对于法则的概括以及延伸的a m·a n·a p=a m+n+p,一定要让学生尽量发挥小组合作的能力,发现计算方法,从而总结出规律.教学过程能让学生独立完成的,教师绝不包办代替,把课堂应尽量还给学生.练习(教材第96页)解:(1)原式=b5+1=b6.(2)原式=-121+2+3=-126=164.(3)原式=a2+6=a8.(4)原式=y2n+n+1=y3n+1.题型1一般的同底数幂的乘法问题计算:(1)x2·x3;(2)(-2)4·(-2)3;(3)(a-1)4·(a-1)2.〔解析〕(1)可以直接得到x5;(2)中将(-2)看作相同的底数,由法则可得(-2)7;(3)中将(a-1)看作一个整体作为相同的底数.解:(1)x2·x3=x5.(2)(-2)4·(-2)3=(-2)7 =-27.(3)(a-1)4·(a-1)2=(a-1)6.题型2间接运用同底数幂的乘法法则计算:(1)-t3·(-t)4·(-t)5;(2)(z-y)3·(z-y)·(y-z)2.〔解析〕虽然底数不同,但仅仅只有符号之差,如z-y与y-z,可以先把底数变为相同的底数,再用法则计算.解:(1)-t3·(-t)4·(-t)5 =-t3·t4·(-t5)=t3·t4·t5=t12.(2)(z-y)3·(z-y)·(y-z)2=(z-y)3·(z-y)·(z-y)2=(z-y)6.〔方法提示〕对于不能直接运用同底数幂乘法法则的问题,通常先将题目中各项进行转化,化为同底数幂再运用法则计算,此过程中注意符号的确定.题型3同底数幂乘法法则的逆用计算:(-2)2007+(-2)2008.〔解析〕若直接计算,则相当麻烦,可以运用同底数幂的逆运算,将(-2)2008化成(-2)2007×(-2),再进行计算,比较简便.解:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-2)2007×(-1)=22007.(2014·温州中考)计算m 6·m3的结果是()A.m18B.m9C.m3D.m2〔解析〕根据同底数幂的乘法法则,底数不变,指数相加可知m6·m3=m9.故选B.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.2.了解幂的乘方的运算性质,并能解决一些实际问题.通过分组探究,培养学生合作交流的意识、提高学生勇于探究数学的品质.【重点】会进行幂的乘方的运算.【难点】幂的乘方法则的总结及运用.【教师准备】预设学生学习中容易混淆的知识.【学生准备】复习同底数幂的乘法法则.导入一:(1)叙述同底数幂乘法法则,并用字母表示.(2)计算:①a2·a5·a3;②a4·a4·a4.大家已经会进行同底数幂的乘法运算:a m·a n=a m+n(m,n都是正整数),那么幂的乘方运算又应该如何进行呢?[设计意图]通过复习巩固上节课所学的同底数幂的乘法法则的内容,为探索幂的乘方做好准备.导入二:(1)有甲、乙两个球,如果甲球的半径是乙球半径的n倍,那么甲球的体积是乙球体积的多少倍?学生口答:n3倍.(2)引导学生计算:(102)3=,怎样计算?(102)3=106.方法一:(102)3=102×102×102=102+2+2=106.方法二:(102)3=(100)3=1000000=106.[设计意图]在独立思考的基础上,组织学生交流、讨论,培养学生思维的严密性,让学生体验在交流中获益的乐趣.并在此过程中,引导学生主动反思,回顾解决问题的方法,为进入新课做准备.一、法则的探究1.思考.【课件1】根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3=32×32×32 =3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a()(m是正整数).【师】教师要加强引导,强调应用中的注意事项.2.小组讨论.对正整数n,你认为(a m)n等于什么?能对你的猜想给出检验过程吗?【生】小组互相探索、交流,积极思考,然后各组派代表回答,相互点评,补充得出关于幂的乘方法则.幂的乘方法则:(a m)n=a m·a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.字母表示:(a m)n=a mn(m,n是正整数).语言叙述:幂的乘方,底数不变,指数相乘.教师说明法则中a可以是一个具体的数,也可以是单项式或多项式.[知识拓展]理解法则注意两点:(1)在形式上,幂的乘方的底数本身就是一个幂;(2)法则可推广到[(a m)n]k=a mnk(m,n,k是正整数);(3)幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2写成a7,也不能把a5·a2的计算结果写成a10;(4)幂的乘方是变乘方为乘法(底数不变,指数相乘),如(a3)2=a3×2=a6;而同底数幂的乘法是变乘法为加法(底数不变,指数相加),如a3·a2=a3+2=a5.[设计意图]在探索幂的乘方法则的过程中,学生经历了由特殊到一般的过程,让学生学会了归纳,同时培养学生的合作意识.思路二探索练习1.32表示个相乘;(32)3表示个相乘;a2表示个相乘;(a2)3表示个相乘.2.(32)3=××=(根据a m·a n=a m+n)=;(a2)3=××=(根据a m·a n=a m+n)=.引导学生观察、猜测(32)3与(a2)3的底数、指数,并用乘方的概念解答问题.3.(a m)3=××=(根据a m·a n=a m+n)=;(a m)n=××…×=(根据a m·a n=a m+n)=.通过上面的探索活动,你发现了什么?【归纳】幂的乘方,底数不变,指数相乘.(a m)n=a mn(m,n是正整数).【说明】 在此过程中教师应当鼓励学生,自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化),并运用自己的语言进行描述,然后再让学生回顾这一性质的得出过程,进一步体会幂的意义.[设计意图]学生在探索练习的指引下,自主完成有关的练习,并在练习中发现幂的乘方的法则,经历由猜测到探索的过程,从而理解法则的实际意义,在本质上认识、学习幂的乘方的来历.思路三1.x 3表示什么意义?2.如果把x 换成a 4,那么(a 4)3表示什么意义?3.怎样把a 2·a 2·a 2·a 2 =a 2+2+2+2写成比较简单的形式?4.由此你会计算(a 4)5吗?5.根据乘方的意义及同底数幂的乘法填空: (1)(53)2 =53×53=5();(2)(52)3=()×( )×()=5();(3) (a 3)5 =a 3×()×( )×( )×()=a ().6.用同样的方法计算(a 3)4,(a 11)9,(b 3)n (n 为正整数).这几道题学生都不难做出,在处理这类问题时,关键是如何得出3+3+3+3=12,教师应多举几例.(a 11)9=a 11·a 11·…·a 11=a 11+11+11+…+119个11=a 99.(b 3)n =b 3·…·b 3=b 3+3+3+…+3n 个3=b 3n .教师应指出这样处理既麻烦,又容易出错,此时应让学生思考,有没有简捷的方法?引导学生认真思考,并得到:(23)2 =23×2=26;(32)3=32×3 =36;(a 11)9=a 11×9=a 99;(b 3)n =b 3×n = b 3n .观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?怎样说明你的猜想是正确的?(a m )n =a m ·a m ·a m·…·a m n 个a m(乘方的意义)=a m +m +m +…+mn 个m(同底数幂的乘法) =a mn (乘法定义),即(a m )n =a mn (m ,n 是正整数).这就是幂的乘方法则.你能用语言叙述这个法则吗?幂的乘方,底数不变,指数相乘. [设计意图]通过层层导入与渗透,让学生通过类比总结出幂的乘方的计算法则,整个过程由浅入深,体现了循序渐进的原则.二、例题讲解(教材例2)计算: (1)(103)5; (2)(a 4)4; (3)(a m )2;(4)-(x 4)3.〔解析〕要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.启发学生共同完成例题.学生在教师启发下,完成例题的问题,并进一步理解幂的乘方法则.解:(1)(103)5=103×5=1015.(2)(a4)4=a4×4=a16.(3)(a m)2=a m×2=a2m.(4)-(x4)3=-x4×3=-x12.想一想:a mn等于(a m)n(m,n是正整数)吗?学生类比同底数幂的乘法运算得出a mn=(a m)n(m,n是正整数),也就是说对于幂的乘方法则,它的逆应用同样成立.当一个幂的指数是积的形式时,就可以写成幂的乘方的形式.a20=(a4)()=(a5)()=(a2)()=(a10)().已知x m=4,x n=5,试求代数式x3m+2n的值.〔解析〕x3m+2n x3m·x2n(x m)3·(x n)2,整体代入,x m=4,x n=5即可求解.解:x3m+2n=x3m·x2n=(x m)3·(x n)2=43×52=1600.1.(a m)n=a mn(m,n都是正整数)的使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于一个是“指数相乘”,一个是“指数相加”.1.下列运算正确的是()A.2a2+3a=5a3B.a2·a3=a6C.(a3)2=a6D.a3-a3=a解析:A.2a2+3a,不是同类项不能相加,故A选项错误;B.a2·a3=a5,故B选项错误;C.(a3)2=a6,故C选项正确;D.a3-a3=0,故D选项错误.故选C.2.下列运算中,计算结果正确的是()A.3x-2x=1B.2x+2x=x2C.x·x=x2D.(a3)2=a4解析:A.3x-2x=x,所以A选项不正确;B.2x+2x=4x,所以B选项不正确;C.x·x=x2,所以C选项正确;D.(a3)2=a6,所以D选项不正确.故选C.3.计算.(1)x n-2·x n+2;(n是大于2的整数)(2)-(x3)5;(3)[(-2)2]3;(4)[(-a)3]2.解析:(1)根据同底数幂的乘法法则求解;(2)(3)(4)根据幂的乘方的法则求解.解:(1)原式=x n-2+n+2=x2n.(2)原式=-x15.(3)原式=43=64.(4)原式=a6.14.1.2幂的乘方一、法则的探究推理过程:(a m)n=a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.公式:(a m)n=a mn(m,n都是正整数).法则:幂的乘方,底数不变,指数相乘.二、例题讲解一、教材作业【必做题】教材第97页练习.【选做题】教材第104页习题14.1第1题(1)~(4).二、课后作业【基础巩固】1.计算(-a3)2的结果是()A.a6B.-a6C.a8D.-a82.计算:(a3)2·a3=.3.若9x=3x+2,则x=.4.已知2m=3,2n=22,则22m+n=.5.若2·8m=42m,则m=.【能力提升】6.若m,n都是正整数,且a>1,则(a n)m和(a m)n是否一定相等?若一定相等,请给予证明;若不一定相等,请举出反例.7.已知a m=2,a n=3,m,n是正整数且m>n.求下列各式的值:(1)a m+1;(2)a3m+2n.【拓展探究】8.试比较35555,44444,53333三个数的大小.【答案与解析】1.A(解析:(-a3)2=a3×2=a6.故选A.)2.a9(解析:先计算幂的乘方,再计算同底数幂的乘法.所以原式=a6·a3=a9.)3.2(解析:9x=32x=3x+2,2x=2+x,解得x=2,故答案为2.)4.36(解析:∵2m=3,2n=22,∴22m+n=22m·2n=(2m)2·2n=32·22=9×4=36.)5.1(解析:∵2·8m=42m,∴2×23m=24m,∴1+3m=4m,解得m=1.)。

人教版数学八年级上册14.1.2《幂的乘方》教案2

人教版数学八年级上册14.1.2《幂的乘方》教案2

人教版数学八年级上册14.1.2《幂的乘方》教案2一. 教材分析《幂的乘方》是人教版数学八年级上册第14章第1节的一部分,本节内容是在学生已经掌握了有理数的乘方、幂的定义等知识的基础上进行授课的。

本节课主要让学生学习幂的乘方,即同底数幂相乘,以及积的乘方,即幂与幂相乘。

这两个概念在数学中是非常重要的,它们不仅在初中数学中占有重要的地位,而且在中考和高中数学学习中也是经常出现的。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对幂的概念有了一定的了解。

但是,对于幂的乘方和积的乘方这两个概念,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对于幂的运算规则和性质还不够熟悉,这也是需要在教学中加以引导和巩固的。

三. 教学目标1.让学生理解幂的乘方的概念,掌握幂的乘方的运算规则。

2.让学生理解积的乘方的概念,掌握积的乘方的运算规则。

3.培养学生的运算能力,提高学生的数学思维能力。

四. 教学重难点1.幂的乘方的概念和运算规则。

2.积的乘方的概念和运算规则。

3.幂的运算规则和性质的运用。

五. 教学方法采用问题驱动法、实例教学法、分组讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而理解和掌握幂的乘方和积的乘方的概念和运算规则。

六. 教学准备1.PPT课件2.教学案例和练习题3.黑板和粉笔七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾幂的概念,为新课的学习做好铺垫。

2.呈现(15分钟)利用PPT课件,呈现幂的乘方和积的乘方的定义和运算规则,让学生初步感知这两个概念。

3.操练(15分钟)让学生分组讨论,通过实例来理解和掌握幂的乘方和积的乘方的运算规则,同时引导学生总结幂的运算规则和性质。

4.巩固(10分钟)进行一些幂的运算练习,让学生在实践中进一步巩固幂的乘方和积的乘方的概念和运算规则。

5.拓展(10分钟)引导学生思考幂的乘方和积的乘方在实际问题中的应用,让学生感受数学与生活的联系。

人教版八年级上册数学第14章 整式的乘法与因式分解 【教案】 整式的乘法——单项式与单项式相乘

人教版八年级上册数学第14章 整式的乘法与因式分解 【教案】 整式的乘法——单项式与单项式相乘

单项式与单项式相乘教学内容:人教版八年级上册14.1.4整式的乘法教学目标:1、让学生通过适当的尝试,获得直接的经验,体验单项式与单项式的乘法运算规律,总结运算法则;2、使学生能正确区别各单项式中的系数,同底数幂和不同底数幂的因式;3、让学生感知单项式法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式。

教学重点:对单项式运算法则的理解和应用。

教学难点:尝试与探究单项式与单项式的乘法运算规律。

教学方法:讲授法教学用具:多媒体课件、黑板课时安排:一课时教学过程:一、复习回顾:(查漏补缺和复习并指名学生回答)1、指出下列名称的公式及运算法则同底数幂相乘: 幂的乘方: 积的乘方:2、只要认真,你就能全部判断正确,看谁一遍做对。

(1)632.m m m = (2)725)(a a = (3)632)(ab ab =nm n m a a a +=⋅mn n m a a =)(n n n b a ab =)((4)1055m m m =+ (5)523)()(x x x -=--3、单项式中的数字因数叫做这个单项式的__系数__。

二、创设情境,导入新课:问题:光的速度约为5103⨯千米/秒,太阳光照射到地球上需要的时间大约是2105⨯秒,你知道地球与太阳的距离约是多少千米吗? 启发思考:在这里,求距离,会遇到什么运算呢?导入新课: 因式都是单项式,它们相乘,就是我们今天要学习的“单项式与单项式相乘”。

出示课题和教学目标。

三、探索研究:(1)怎样计算(5103⨯)×(2105⨯)?计算过程中用到哪些运算律及运算性质?(2)如果将上式中的数字改为字母,比如()25)(bc ac ⨯,怎样计算这个式子? 地球与太阳的距离约是:87105.11015⨯=⨯(千米)()25)(bc ac ⨯是两个单项式5ac 与2bc 相乘,我们可以利用乘法交换律,结合律及同底数幂的运算性质来计算:()25)(bc ac ⨯=(a ⋅b)⋅(25c c ⋅) =25+abc = 7abc 。

八年级上册数学第14章教案

八年级上册数学第14章教案

八年级上册数学第14章教案学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。

通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课乘方的结果叫a叫做•n是列式为,你能利用乘方的意义进行计算吗?二、探究新知:探一探:根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)55×54();(3)(-3)3×(-3)2=(-3)();(4)a6·a7a().(5)5m·5n(m、n都是正整数)=5().猜一猜:am·an(m、n都是正整数)你能说明你的猜想吗?说一说:你能用语言叙述同底数幂的乘法法则吗?同理可得:am·an·…apm、n、…、p都是正整数三、范例学习:【例1】计算:(1)103×104;(2)a·a3;(3)m·m3·m5;(4)xm·x3m+1(5)x·x2+x2·x练习:1.填空:⑴10×109=;⑵b2×b5=;⑶x4·x=;⑷x3·x3=2.计算:(1)(-x)·(-x)3;(2)b3·(-b2)·(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式.(1)(x+y)4·(x+y)3(2)(x-y)3·(x-y)·(y-x)(3)-8(y-x)2·(x-y)(4)(x+y)2m·(x+y)m+1即:b a2n a b2n,b a2n1a b2n(1n为正整数)四、自主检测1.计算:⑴10n×10m+1⑵x7·x5⑶m·m7·m9⑷-44×44⑸22n×22n+1⑹(-12)(-12)(2-12)3=2.判断题:判断下列计算是否正确?若有错,请改正。

人教版初中数学14章教案

人教版初中数学14章教案

人教版初中数学14章教案教学目标:1. 理解数据收集、整理与表达的意义和作用;2. 学会使用调查、实验等方法收集数据;3. 学会利用图表、统计表等方式整理和表达数据;4. 培养学生分析数据、解决问题的能力。

教学内容:1. 数据的收集:通过调查、实验等方式收集数据;2. 数据的整理:利用图表、统计表等方式整理数据;3. 数据的表达:利用图表、统计表等方式表达数据;4. 数据分析:通过分析数据,解决实际问题。

教学过程:一、导入(5分钟)1. 引导学生思考:在日常生活中,我们为什么要收集和整理数据?2. 学生分享自己的经历,教师总结数据收集和整理的重要性。

二、新课导入(15分钟)1. 讲解数据的收集方法:调查、实验等;2. 讲解数据的整理方法:图表、统计表等;3. 讲解数据的表达方式:图表、统计表等;4. 举例说明数据分析在实际问题中的应用。

三、课堂实践(15分钟)1. 学生分组,每组选择一个主题,进行数据收集和整理;2. 学生展示自己的成果,教师点评并指导。

四、巩固练习(10分钟)1. 学生独立完成练习题;2. 教师讲解答案,解析难点。

五、课堂小结(5分钟)1. 学生总结本节课所学内容;2. 教师补充并进行总结。

六、作业布置(5分钟)1. 完成课后练习题;2. 选择一个主题,进行数据收集和整理,下周分享。

教学反思:本节课通过讲解、实践、巩固等方式,使学生掌握了数据收集、整理与表达的方法和技巧。

在课堂实践中,学生分组进行数据收集和整理,培养了学生的团队协作能力。

在巩固练习环节,学生独立完成练习题,巩固了所学知识。

通过本节课的学习,学生能够运用数据分析和解决实际问题,提高了学生的数学素养。

在教学过程中,要注意关注学生的学习情况,及时进行指导和解答。

同时,要注重培养学生的动手操作能力和团队协作能力,提高学生的实践能力。

人教版八年级数学第十四章全部教案

人教版八年级数学第十四章全部教案

教学过程设计教学过程设计教学过程设计你从图象中能得到什么信息?学生回答:(1)这一天中凌晨4时气温最低为-3℃,14时气温最高为8℃.(2)从0时至4时气温呈下降状态,即温度随时间的增加而下根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多四、小结归纳五、作业设计x =x 2=x 2=.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,乌龟还是先到达了终点.……”用为时间,则下列图象中与故事情节.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系。

请你板书设画函数图象的一般步骤1、列表2、描点3、连线教学过程设计2、如图所示的曲线,哪个表示y是x的函数(四、小结归纳五、作业设计.柿子熟了,从树上落下来,可以大致刻画出柿子下落过程中.小明家距学校m千米,一天他从家上学,先以速度跑步,后以b千米/时的速度步行,到达学校共用设小明同学距学校的距离为s(千米),上学的时间为则s与t之间的大致图象是().在夏天,一杯开水放在院里,其水温T与放置的时间6.在平面直角坐标系中画出函数2xy=x-(2<教学过程设计.板书例:教学教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计新课标示范教案数学八年级上册D.6教学过程设计的解是_____≠0)的值为0?______,其速度每秒增加2m/s,)本题相等关系是什么?列出方程有怎样的关系y=6x-3与y=x+2在何时两函数值相等,可从图象上看出,直线y=6x-3与y=x+2即是kx+b=0与求的变量x为何值的关系,并确认了这个问题教学过程设计y=2x-4的图象,能否解决问题.由以上问题,你能否说出一次函数与一次不等式之2-kx 与b x y +-=32相教学过程设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、随堂练习,巩固深化
练习第1、2题.
五、课堂总结,发展潜能
本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用
【教师活动】在学生讨论的基础上,提问个别学生.
】夏天将要来临,有3家超市以相同价格
牌空调,他们在一年内的销售量(单位:台)分别是
请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.
教学后记:
【学生活动】分四人小组,合作探究,求出第一块的面积为
n+a),它们的和为m(n+a)+b(n+a)
【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如
【学生活动】分四人小组合作学习,求出S
1=mn;S
2
S=mn+nb+am+ab.
【教师提问】依据上面的操作,求得的图形面积,探索(
个多项式的每一项,再把所得的结果相加.
字母呈现:=ma+mb+na+nb.
教学后记:。

相关文档
最新文档