推荐2011年高考数学专题——指数函数、对数函数、幂函数(理科)

合集下载

高考数学中的幂函数和指数函数的性质解析

高考数学中的幂函数和指数函数的性质解析

高考数学中的幂函数和指数函数的性质解析高考数学中的幂函数和指数函数是非常重要的知识点。

这两种函数在数理化等学科中都有广泛的应用,因此在高考中也成为了不可忽视的重点。

掌握它们的性质,不仅可以解决一些基本的计算问题,还可以引申出很多思维难度较大的问题。

本文将对幂函数和指数函数的性质进行深入的解析。

一、幂函数的性质幂函数是一种非常基础的函数类型。

它的形式可以表示为$y = x^a$,其中$x$为自变量,$a$为指数。

幂函数的性质有以下几个方面。

1. 定义域:幂函数的定义域为$x>0$或$x<0$,即幂函数不能为负数。

2. 制图特点:当$a>1$时,幂函数的图像在第一象限上单调递增;当$0<a<1$时,幂函数的图像在第一象限上单调递减;当$a<0$时,幂函数的图像则关于$x$轴对称。

3. 奇偶性:当$a$为偶数时,幂函数关于$y$轴对称;当$a$为奇数时,幂函数关于原点对称。

4. 渐进线:当$a>0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$;当$a<0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$。

5. 导数规律:当$y=x^a$,则$\dfrac{dy}{dx}=ax^{a-1}$。

在幂函数的导数规律中,指数减1并乘以常数,就是导数。

以上是幂函数的几个常见性质,可以根据具体问题作出判断。

下面将重点介绍指数函数的性质。

二、指数函数的性质指数函数是另一种基础的函数类型。

它的形式可以表示为$y = a^x$,其中$a$为底数,$x$为自变量。

指数函数的性质有以下几个方面。

1. 定义域:指数函数的定义域为$(-\infty,+\infty)$,可以为任意实数。

2. 制图特点:当$0<a<1$时,指数函数的图像在第一象限上单调递减,且关于$y$轴对称;当$a>1$时,指数函数的图像在第一象限上单调递增。

3. 反函数:指数函数的反函数为对数函数,即$y = \log_{a}x$。

指数对数幂函数知识点汇总

指数对数幂函数知识点汇总

指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。

高考数学 试题汇编 第三节 幂函数、指数函数与对数函

高考数学 试题汇编 第三节 幂函数、指数函数与对数函

第三节幂函数、指数函数与对数函数指数函数考向聚焦指数函数是高考的重点内容,考查内容涉及以下几个方面:一是指数幂的运算以及幂值的大小比较;二是指数函数以及与指数函数有关的函数图象的应用;三是指数函数的性质及其应用.指数函数在高考中主要以选择题的形式出现,为基础题目,所占分值为5分左右,在高考试卷中常有考查.1.(2010年安徽卷,文7)设a=(,b=(,c=(,则a,b,c的大小关系是( )(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a解析:观察a、c可比较幂函数y=在(0,+∞)为增函数,∵>,∴a>c,再比较b、c.利用指数函数y=()x在R上为减函数.而>,∴c>b,∴a>c>b.选A.答案:A.对数函数考向聚焦对数函数是高考的热点内容,考查内容涉及以下几个方面:一是对数运算以及对数值的大小比较;二是对数函数以及与对数函数有关的函数图象的应用;三是对数函数的性质及其应用.对数函数在高考中主要以选择题的形式出现,为基础题目和中档题,所占分值为5分左右,在高考试卷中常有考查.备考指津对数运算是一个难点和易错点,应强化训练,要重视对数函数图象和性质的练习,熟练掌握借助函数图象解决问题的方法.2.(2012年安徽卷,文3,5分)(log29)·(log34)=( )(A)(B)(C)2 (D)4解析:根据对数的换底公式(log29)·(log34)=·=·=4. 答案:D.3.(2012年全国大纲卷,文11,5分)已知x=ln π,y=log52,z=,则( )(A)x<y<z (B)z<x<y(C)z<y<x (D)y<z<x解析:由题意可得x>1,y<1,z<1,又因为y=log5 2<log5=,z==>,∴x>z>y,故选D.答案:D.4.(2012年重庆卷,文7,5分)已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是( )(A)a=b<c (B)a=b>c(C)a<b<c (D)a>b>c解析:a=log23+log2=log23=log2>log22=1.b=log29-log2=log2=log2>log22=1,c=log32<log33=1.故选B.答案:B.5.(2011年安徽卷,文5)若点(a,b)在y=lg x图象上,a≠1,则下列点也在此图象上的是( )(A)(,b) (B)(10a,1-b)(C)(,b+1) (D)(a2,2b)解析:由点(a,b)在y=lg x图象上知b=lg a,由于lg=-lg a=-b;lg(10a)=lg 10+lg a=1+lg a=1+b;lg=1-lg a=1-b;lg(a2)=2lg a=2b,因此点(,b),(10a,1-b),(,b+1)不在函数图象上,点(a2,2b)在函数图象上.故选D.答案:D.6.(2011年天津卷,文5)已知a=log23.6,b=log43.2,c=log43.6,则( )(A)a>b>c (B)a>c>b (C)b>a>c (D)c>a>b解析:∵a=log23.6=log43.62,b=log43.2,c=log43.6,又∵f(x)=log4x为增函数,且3.62>3.6>3.2,∴log43.62>log43.6>log43.2,即a>c>b,故选B.答案:B.7.(2011年重庆卷,文6)设a=lo,b=lo,c=log3,则a,b,c的大小关系是( )(A)a<b<c (B)c<b<a(C)b<a<c (D)b<c<a解析:c=log 3=lo.又<<且函数f(x)=lo x在其定义域上为减函数,所以lo>lo>lo,即a>b>c.故选B.答案:B.本题主要考查了对数的换底公式以及对数函数单调性的应用等知识,同时对等价转化的数学思想方法也进行了考查.8.(2010年浙江卷,文2)已知函数f(x)=log2(x+1),若f(α)=1,则α=( )(A)0 (B)1 (C)2 (D)3解析:∵log2(α+1)=1,∴α+1=2,∴α=1.故选B.答案:B.9.(2010年辽宁卷,文10)设2a=5b=m,且+=2,则m=( )(A)(B)10 (C)20 (D)100解析:由2a=m,得a=log2m;同理b=log5m,又+=2,∴+===2.故m=,故选A.答案:A.10.(2012年北京卷,文12,5分)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)= . 解析:∵f(x)=lg x,f(ab)=1,∴lg(ab)=1,∴f(a2)+f(b2)=lg a2+lg b2=2(lg a+lg b)=2lg(ab)=2.答案:2幂函数考向聚焦幂函数在高考中考查要求相对较低,主要考查幂函数的定义、常见的简单幂函数的图象与单调性,在高考试卷中幂函数偶有考查.一般以选择题和填空题的形式出现,难度较小,为基础题目,所占分值为4分左右.11.(2012年天津卷,文4,5分)已知a=212,b=()-0.8,c=2log52,则a,b,c的大小关系为( )(A)c<b<a (B)c<a<b(C)b<a<c (D)b<c<a解析:∵b=()-0.8=20.8=<21.2=a,即1<b<a,又∵c=2log52=log54<1,∴c<b<a.故选A.答案:A.。

高考数学专题指数函数、对数函数、幂函数试题及其答案详解

高考数学专题指数函数、对数函数、幂函数试题及其答案详解

1.函数()3(02)xf x x =<≤值域为( )A .(0)+∞,B .(19],C .(01),D .[9)+∞,2.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =3.以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln24.若A=}822|{2<≤∈-xZ x ,B=}1|log ||{2>∈x R x ,则)(C R B A I 的元素个数为( )A .0个B .1个C .2个D .3个 5.设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞U6.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A .①③B .①②C .③D .②7.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数8.设,,a b c 均为正数,且11222112log ,log ,log ,22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c << 9.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M I N ( ) A .{}1>x x B .{}1<x x C .{}11<<-x x D .∅10.设a ∈{-1,1,21,3},则使函数y=x a的定义域为R 且为奇函数的所有a 值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,311.设函数)(x f 定义在实数集上,它的图象关于直线x =1对称,且当1≥x 时,)(x f =13-x,则有( )A .)31(f <)23(f <)32(fB .)32(f <)23(f <)31(f C .)32(f <)31(f <)23(f D . )23(f <)32(f <)31(f12.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .1 13.函数)(x f =x 2log 1+与)(x g =12+-x 在同一直角坐标系下的图象大致是( )14.设1>a ,函数)(x f =x a log 在区间]2,[a a 上的最大值与最小值之差为21,则a =( ) A .2 B .2 C .22 D .4 15.若1>a ,且y a x aa y a xlog log -<---,则x 与y 之间的大小关系是( )A .0>>y xB .0>=y xC .0>>x yD .无法确定 16.函数|1|||ln --=x ey x 的图象大致是( )17.函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则()f x =____________。

高中数学必修1 指数函数、对数函数和幂函数

高中数学必修1 指数函数、对数函数和幂函数

指数函数、对数函数和幂函数指数函数、对数函数和幂函数是描述现实中某些变化规律的重要的数学模型,是高中阶段学习的三类重要且常用的基本初等函数,也是进一步学习数学的基础。

本章中,学生将在第一章学习函数概念的基础上,通过三个具体的基本初等函数的学习,进一步理解函数的概念与性质,学习用函数模型研究和解决一些实际问题的方法。

一、内容和课程学习目标本章主要学习指数函数、对数函数、幂函数等基本初等函数的概念和性质。

通过本章学习,应使学生达到以下的学习目标:1.了解指数函数模型的实际背景。

2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

4.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。

6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。

7.知道指数函数y=ax 与对数函数y=loga x互为反函数(a > 0, a≠1)。

8.通过实例,了解幂函数的概念;结合函数y=x, y=x2, y=x3, y=1/x, y=x1/2的图象,了解它们的变化情况。

二、内容安排全章分为三节,教学时间约需15课时,具体分配如下(仅供参考):2. 1 指数函数约6课时2.2 对数函数约6课时2. 3 幂函数约1课时小结约2课时本章知识结构如下:1.本章首先涉及指数幂的扩充。

学生在初中学习了数的开平方、开立方以及二次根式的概念,又学习了正整数指数幂、零指数幂、负整数指数幂,学习了整数指数幂的运算法则.有了这些知识作准备,教科书通过实际问题引出了分数指数幂,说明了扩张指数取值范围的必要性,由此先将平方根与立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,然后进一步探究了分数指数幂及其运算性质,最后通过有理指数幂逼近无理指数幂,通过一个实例介绍了无理指数幂的概念,将指数的范围扩充到了实数。

高考数学知识考点精析5:指数函数、对数函数与幂函数

高考数学知识考点精析5:指数函数、对数函数与幂函数

第五讲 指数函数、对数函数与幂函数一、指数:1、n 次方根的定义:如果一个数的n 次方a(n >1,n ∈N *)那么这个数叫做a 的n 次方根,即x n =a,则x 叫做a 的n 次方根(n >1,n ∈N *)。

2、n 次方根的性质:(1)0的n 次方根是0。

即n 0=0(n >1,n ∈N *),(2)nn a )(=a(n ∈N *)(3)当na, 当n 为偶数时, |a |3、分数指数幂的定义:(1)()1,,,0 n N n m a a a n m nm *∈=(2)()1,,,011 n Nn m a aaanmnm nm*-∈==,(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。

二、指数函数:1、定义:形如y=a x(a >0,且a ≠1)的函数叫做指数函数。

2、指数函数y=a x (a >0,且a ≠1)的图象和性质:1、对数的定义:如果()0,1na b aa =≠,那么b 叫做以a 为底N 的对数,记做()log 0,1a N b a a =≠,由定义知负数和0没有对数。

通常以10为底的对数叫做常用对数,记做10lg log N N =。

以无理数e =2.71828…为底的对数叫做自然对数。

记做ln log e N N =。

2、对数的运算性质:()()()()()1log log log ,2log log log .3log log ,4log log ,,,,,,0,1m a a a aa a n n a a a a MMN M N M N N nM n M b b M N a b n ma m=+=-=∙=≠3、对数的恒等式:()()()()()()log log log 1log 10,2log 1,3,4log 15log ,log ,log log log ,,,,0,,1log log ab b NN aa ab a a a b a b b a a N a N N N b bc c a b c N a b a a======∙=≠四、对数函数:1、定义:形如y=log a x (a>0,a ≠1)的函数叫做对数函数。

专题 对数函数、幂函数(教案)高考数学二轮重难点复习专题

专题 对数函数、幂函数(教案)高考数学二轮重难点复习专题

对数与对数运算1.在指数函数y =a x (a >0,且a ≠1)中,幂指数x ,又叫做以a 为底y 的对数.2.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数.3.对数恒等式a log aN =N .4.对数与指数间的关系:a b =N ⇔b =log a N (a >0,a ≠1).5.常用对数/自然对数以10为底的对数叫做常用对数,通常把log 10N 记作lg N . 以e 为底的对数叫做自然对数,通常把log e N 记作ln N . 6.对数运算性质 (1)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ⇔log a (MN )=log a M +log a N ;⇔log a MN =log a M -log a N ;⇔log a M n =n log a M (n ⇔R ). (2)对数的性质 ⇔log a Na= N ;⇔log a a N = N (a >0且a ≠1).(3)对数的换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).对数函数1.一般地,我们把函数y =log a x (a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞).2.对数函数的图象与性质a >10<a <1(1)(0,+∞) 习题1.对数式lg(2x -1)中实数x 的取值范围是________;2.对数式log (x -2)(x +2)中实数x 的取值范围是______.3.下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ; ⑤y =log x (x +2);⑥y =2log 4x ; ⑦y =log 2(x +1). A .1个 B .2个 C .3个D .4个4.若对数函数f (x )的图象过点(4,-2),则f (8)=________.5.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________.6.函数f (x )=log 3(2x -1)的定义域为______.7.函数f (x )=12-x+ln(x +1)的定义域为______. 8.函数y =log 32x -1的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1 9.已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )10.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)11.函数2()ln(28)f x x x =-- 的单调递增区间是( )A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞12.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________. 13.若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中不可能成立的是( )A .a <b <cB .b <a <cC .c <b <aD .a <c <b14.设 a =log 36,b =log 48,c =log 510,则 ( )15.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b16.已知 log a 13>log b 13>0,则 a ,b 之间的大小关系是 ( )A. 1<b <aB. 1<a <bC. 0<a <b <1D. 0<b <a <117.函数 y =√log 0.5(4x−3) 的定义域为 ( )A. (34,1)B. (34,+∞)C. (1,+∞)D. (34,1)∪(1,+∞)18.函数 y =log a (x +1)+2(a >0且a ≠1) 恒过定点,其坐标为 .幂函数1.一般地,函数y =x α(α⇔R )叫做幂函数,其中x 是自变量,α是常数.2.幂函数的图像3.幂函数的性质4.“对号”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:习题1.在函数y =x -2,y =2x 2,y =(x +1)2,y =3x 中,幂函数的个数为( )A .0B .1C .2D .32.已知幂函数y =f (x )的图象过点(2, 2),则f (9)=________.3.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝⎛⎭⎫12的值等于________. 4.当x ∈(1,+∞)时,下列函数中图象全在直线y =x 下方的增函数是( )A. y =x 12B. y =x 2C. y =x 3D. y =x −1 5.若(2m +1)21>(m 2+m -1)21,则实数m 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,26.已知α⇔{-1,1,2,3},则使函数y x α=的值域为R ,且为奇函数的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,37.已知幂函数f (x )=x 12)(-+m m (m ⇔N +)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.8.已知f (x )=x 21,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f (1a )<f (1b )B .f (1a )<f (1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a )D .f (1a )<f (a )<f (1b)<f (b ) 9.已知 a =(13)3,b =x 3,c =lnx ,当x >2 时,a,b,c 的大小关系为( )A. a <b <cB. a <c <bC. c <b <aD. c <a <b 10.已知函数12)15()(++-=m x m m x h 为幂函数,且为奇函数(1)求m 的值(2)求函数]21,0[,)(21)()(∈-+=x x h x h x g 的值域。

2011届高考数学指数函数与对数函数3

2011届高考数学指数函数与对数函数3

指数函数、对数函数与幂函数
一、知识梳理
1.指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x
y a 的图象与性质:
2.同底的指数函数x y a =与对数函数log a y x =互为反函数;
3.指数函数与对数函数的图象特征及性质:
(1)函数x
y a =与log x a y =()01a a >≠且图象关于 对称;
(2)函数x y a =与x y a -=()01a a >≠且图象关于 对称; (3)函数1log x a
y =与log x a y =()01a a >≠且图象关于 对称。

4.幂函数
(1).幂函数的概念:一般地,我们把形如 的函数称为幂函数,其中 是自变量, 是常数; 注意:幂函数与指数函数的区别.
(2).幂函数的性质:
a .幂函数的图象都过点 ;任何幂函数都不过 象限;
b .当0α>时,幂函数在[0,)+∞上 ;当0α<时,幂函数在(0,)+∞上 ;
c .当2,2α=-时,幂函数是 ;当11,1,3,3
α=-时,幂函数是 . 例1.已知函数()()
2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2007北京文、理,5分)函数()3(02)xf x x =<≤的反函数的定义域为( )A .(0)+∞,B .(19],C .(01),D .[9)+∞,B ;[解析] 函数()3(02)xf x x =<≤的反函数的定义域为原函数的值域,原函数的值域为(19],。

[考点透析]根据指数函数在对应区间的值域问题,结合原函数与反函数的定义域与值域之间的关系处理对应反函数的定义域问题。

2.(2007山东文、理,5分)给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x = B .()sin f x x =C .2()log f x x =D .()tan f x x =B ;[解析] 依据指、对数函数的性质可以发现A 满足()()()f x y f x f y +=,C 满足()()()f xy f x f y =+,而D 满足()()()1()()f x f y f x y f x f y ++=-,B 不满足其中任何一个等式。

[考点透析]根据指数函数、对数函数,结合三角函数等其他相关函数讨论分析对应的性质是高考中比较常见的考题之一,关键是掌握对应函数的基本性质及其应用。

3.(2007全国2理,5分)以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln2D ;[解析] ∵0ln 21<<,∴ln (ln2)<0,(ln2)2<ln2,而ln 2=21ln2<ln2,∴最大的数是ln2。

[考点透析]根据对数函数的基本性质判断对应函数值的大小关系,一般是通过介值(0,1等一些特殊值)结合对数函数的特殊值来加以判断。

4.(2007安徽理,5分)若A=}822|{2<≤∈-xZ x ,B=}1|log ||{2>∈x R x ,则)(C R B A 的元素个数为( )A .0个B .1个C .2个D .3个 C ;[解析] 由于A=}822|{2<≤∈-xZ x =}321|{<-≤∈x Z x =}11|{≤<-∈x Z x ={0,1},而B=}1|log ||{2>∈x R x =}2210|{><<∈x x R x 或,那么)(C R B A ={0,1},则)(C R B A 的元素个数为2个。

[考点透析] 从指数函数与对数函数的单调性入手,解答相关的不等式,再根据集合的运算加以分析和判断,得出对应集合的元素个数问题。

5.(2007江苏,5分)设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞A ;[解析] 由10)0(-==a f 得,011lg )(<-+=x x x f ,得⎪⎪⎩⎪⎪⎨⎧<-+>-+111011xx xx,01<<-∴x 。

[考点透析]根据对数函数中的奇偶性问题,结合对数函数的性质,求解相关的不等式问题,要注意首要条件是对数函数的真数必须大于零的前提条件。

6.(2007北京理,5分)对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A .①③B .①②C .③D .②D ;[解析] 函数①()lg(21)f x x =-+,函数(2)f x +=lg(||1)x +是偶函数;且()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数;但对命题丙:(2)()f x f x +-=||1lg(||1)lg(|2|1)lg|2|1x x x x ++--+=-+在x ∈(-∞,0)时,(||1)12lglg lg(1)(|2|1)213x x x x x +-+==+-+-+-为减函数,排除函数①,对于函数③,()cos(2)f x x =+函数(2)c o s (2f x x +=+不是偶函数,排除函数③,只有函数②2()(2)f x x =-符合要求。

[考点透析]根据对数函数、幂函数、三角函数的相关性质来分析判断相关的命题,也是高考中比较常见的问题之一,正确处理对应函数的单调性与奇偶性问题。

7.(2007天津理,5分)函数()2log 42(0)y x x =++>的反函数是( )A.142(2)x x y x +=->B.142(1)x x y x +=->C.242(2)x x y x +=->D.242(1)x x y x +=-> C ;[解析] 原函数过(4,1)-故反函数过(1,4)-从而排除A 、B 、D 。

[考点透析]根据对应对数函数型的函数的反函数的求解步骤加以分析求解对应的反函数,但通过原函数与反函数之间的特殊关系,利用排除法加以分析显得更加简单快捷。

8.(2007天津理,5分)设,,a b c 均为正数,且11222112log ,log ,log ,22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<A ;[解析] 由122log a a =可知0a >21a ⇒>121l o g 102a a ⇒>⇒<<,由121l o g 2bb ⎛⎫= ⎪⎝⎭可知0b >⇒120l o g 1b <<112b ⇒<<,由21log 2cc ⎛⎫= ⎪⎝⎭可知0c >20log 112c c ⇒<<⇒<<,从而a b c <<。

[考点透析] 根据指、对数函数的性质及其相关的知识来处理一些数或式的大小关系是全面考察多个基本初等函数比较常用的方法之一。

关键是掌握对应函数的基本性质及其应用。

9.(2007广东理,5分)已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M N ( ) A .{}1>x x B .{}1<x x C .{}11<<-x x D .∅C ;[解析] 依题意可得函数xx f -=11)(的定义域M=}01|{>-x x =}1|{<x x , )1ln()(x x g +=的定义域N=}01|{>+x x =}1|{->x x ,所以M N=}1|{<x x }1|{->x x ={}11<<-x x 。

[考点透析] 本题以函数为载体,重点考查幂函数与对数函数的定义域,集合的交集的概念及其运算等基础知识,灵活而不难.10.(2007山东理,5分)设a ∈{-1,1,21,3},则使函数y=x a的定义域为R 且为奇函数的所有a 值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,3 A ;[解析] 观察四种幂函数的图象并结合该函数的性质确定选项。

[考点透析] 根据幂函数的性质加以比较,从而得以判断.熟练掌握一些常用函数的图象与性质,可以比较快速地判断奇偶性问题.特别是指数函数、对数函数、幂函数及其一些简单函数的基本性质.11.(2007江苏,5分)设函数)(x f 定义在实数集上,它的图象关于直线x =1对称,且当1≥x 时,)(x f =13-x,则有( )A .)31(f <)23(f <)32(fB .)32(f <)23(f <)31(fC .)32(f <)31(f <)23(fD . )23(f <)32(f <)31(fB ;[解析] 当1≥x 时,)(x f =13-x,其图象是函数xy 3=向下平移一个单位而得到的1≥x 时图象部分,如图所示, 又函数)(x f 的图象关于直线x =1对称,那么函数)(x f 的图象如下图中的实线部分, 即函数)(x f 在区间)1,(-∞上是单调减少函数, 又)23(f =)21(f ,而322131<<,则有)32()21()31(f f f >>,即)32(f <)23(f <)31(f .[考点透析] 利用指数函数的图象结合题目中相应的条件加以分析,通过图象可以非常直观地判断对应的性质关系. 12.(2007湖南文、理,5分)函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) A .4 B .3 C .2 D .1 B ;[解析] 函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象如下:根据以上图形,可以判断两函数的图象之间有三个交点。

[考点透析] 作出分段函数与对数函数的相应图象,根据对应的交点情况加以判断。

指数函数与对数函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工具作用。

特别注意指数函数与对数函数的图象关于直线x y =对称。

在求解过程中注意数形结合可以使解题过程更加简捷易懂。

13.(2007四川文、理,5分)函数)(x f =x 2log 1+与)(x g =12+-x 在同一直角坐标系下的图象大致是( )C ;[解析] 函数)(x f =x 2log 1+的图象是由函数x y 2log =的图象向上平移1个单位而得来的;又由于)(x g =12+-x =)1(2--x ,则函数)(x g =12+-x 的图象是由函数x y -=2的图象向右平移1个单位而得来的;故两函数在同一直角坐标系下的图象大致是:C 。

[考点透析] 根据函数表达式与基本初等函数之间的关系,结合函数图象的平移法则,得出相应的正确判断。

14.(2007全国Ⅰ文、理,5分)设1>a ,函数)(x f =x a log 在区间]2,[a a 上的最大值与最小值之差为21,则a =( )A .2B .2C .22D .4D ;[解析] 由于1>a ,函数)(x f =x a log 在区间]2,[a a 上的最大值与最小值之差为21, 那么a a a a log 2log -=21,即2log a =21,解得221=a ,即a =4。

相关文档
最新文档