河南中考数学第18题汇总
2024中考数学全国真题分类卷 第十八讲 矩形、菱形、正方形 (含答案)

2024中考数学全国真题分类卷第十八讲矩形、菱形、正方形命题点1矩形的相关证明与计算1.(2023陕西)在下列条件中,能够判定▱ABCD 为矩形的是()A.AB =AC B.AC ⊥BD C.AB =AD D.AC =BD2.(2023邵阳)已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为________cm 2.3.(2023十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF ,AG 分别架在墙体的点B ,C 处,且AB =AC ,侧面四边形BDEC 为矩形.若测得∠FBD =55°,则∠A =________°.第3题图4.(2023吉林省卷)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且AF =14AC ,连接EF .若AC =10,则EF =________.第4题图5.(2022绍兴)图①是一种矩形时钟,图②是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上,若AB =30cm ,则BC 长为________cm(结果保留根号).第5题图6.(2023黔东南州)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥B D.若AC =10,则四边形OCED 的周长是________.第6题图7.(2023青海省卷)如图,矩形ABCD 的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,若AB =3,BC =4,则图中阴影部分的面积为________.第7题图8.(2023甘肃省卷)如图,在矩形ABCD 中,AB =6cm ,BC =9cm ,点E ,F 分别在边AB ,BC 上,AE =2cm ,BD ,EF 交于点G ,若G 是EF 的中点,则BG 的长为________cm.第8题图9.(2023宜昌)如图,在矩形ABCD 中,E 是边AD 上一点,F ,G 分别是BE ,CE 的中点,连接AF ,DG ,FG ,若AF =3,DG =4,FG =5,矩形ABCD 的面积为________.第9题图10.(2022贵港)如图,在矩形ABCD 中,BD 是对角线,AE ⊥BD ,垂足为E .连接CE ,若tan ∠ADB =12,则tan ∠DEC 的值是________.第10题图11.(2023苏州)如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为点E ,AE 与CD 交于点F.(1)求证:△DAF≌△ECF;(2)若∠FCE=40°,求∠CAB的度数.第11题图12.(2022金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB =2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连接BE.记∠ABE=α,求tanα的值.第12题图13.(2023云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.第13题图源自北师九上P19第3题14.(挑战题)(2023自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB =A B.我们还可以得到FC=________,EF=________;(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC 之间的距离.第14题图命题点2菱形的相关证明与计算15.(2023河池)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误..的是()第15题图A.AB=ADB.AC⊥BDC.AC=BDD.∠DAC=∠BAC16.(2023河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点,若OE=3,则菱形ABCD的周长为()第16题图A.6B.12C.24D.4817.(2023自贡)如图,菱形ABCD对角线交点与坐标原点O重合,点A(-2,5),则点C的坐标是()第17题图A.(5,-2)B.(2,-5)C.(2,5)D.(-2,-5)18.(2022绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC→CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()第18题图A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形19.(2023仙桃)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =()第19题图A.13 B.12 C.33 D.3220.(2023株洲)如图所示,在菱形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作CE ∥BD 交AB 的延长线于点E ,下列结论不一定...正确的是()第20题图A.OB =12CEB.△ACE 是直角三角形C.BC =12AE D.BE =CE 21.(2023海南)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若BF ∶CE =1∶2,EF =7,则菱形ABCD 的边长是()第21题图A.3B.4C.5D.47522.(新趋势)·条件开放性问题(2023齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是________________.(只需写出一个条件即可)第22题图23.(2023乐山)已知菱形ABCD的两条对角线AC,BD的长分别是8cm和6cm,则菱形的面积为________cm2.24.(2023温州)如图,在菱形ABCD中,AB=1,∠BAD=60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N 在对角线AC上.若AE=3BE,则MN的长为________.第24题图25.(2023陕西)如图,在菱形ABCD中,AB=4,BD=7.若M,N分别是边AD,BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E,F,则ME+NF的值为________.第25题图26.(2023天津)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE 的中点,AF与DE相交于点G,则GF的长等于________.第26题图27.(新趋势)·注重学习过程(2023嘉兴)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=O D.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分B D.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个..条件,并证明.第27题图28.(2023北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.第28题图29.(2023连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥D C.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P,M,N分别在线段BE,BC,CE上运动,求PM+PN的最小值.第29题图30.(2023娄底)如图①,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值;(2)如图②,当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.第30题图31.(2023宜昌)已知菱形ABCD中,E是边AB的中点,F是边AD上一点.(1)如图①,连接CE,CF.CE⊥AB,CF⊥A D.①求证:CE=CF;②若AE=2,求CE的长;(2)如图②,连接CE,EF.若AE=3,EF=2AF=4,求CE的长.第31题图命题点3正方形的相关证明与计算32.(2023玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A.互相平分B.互相垂直C.互相平分且相等D.互相垂直且相等33.(2023重庆A卷)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB 上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°第33题图34.(2023滨州)正方形ABCD的对角线相交于点O(如图①),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB,BC相交于点E,F(如图②),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()第34题图A.线段B.圆弧C.折线D.波浪线35.(2022仙桃)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3,其中正确结论的个数有()A.1个B.2个C.3个D.4个第35题图36.(2023绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()第36题图A.1B.2C.3D.437.(新趋势)·数学文化(2023江西)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为________.第37题图38.(2020天水)如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为________.第38题图39.(2023无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE,BC于点H,G,则BG=________.第39题图40.(2023海南)如图,正方形ABCD中,点E,F分别在边BC,CD上,AE=AF,∠EAF=30°,则∠AEB=________°;若△AEF的面积等于1,则AB的值是________.第40题图41.(2023泰安)如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE 折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为________.第41题图42.(2023山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为________.第42题图43.(2023安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=________°;(2)若DE=1,DF=22,则MN=________.第43题图44.(2023邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD 上,且BE=DF,OE=O A.求证:四边形AECF是正方形.第44题图45.(2023遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:△ADE ≌△CDG ;(2)若AE =BE =2,求BF 的长.第45题图46.(挑战题)(2023台州)图①中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图②,在正方形ABCD 各边上分别取点B 1,C 1,D 1,A 1,使AB 1=BC 1=CD 1=DA 1=45AB ,依次连接它们,得到四边形A 1B 1C 1D 1;再在四边形A 1B 1C 1D 1各边上分别取点B 2,C 2,D 2,A 2,使A 1B 2=B 1C 2=C 1D 2=D 1A 2=45A 1B 1,依次连接它们,得到四边形A 2B 2C 2D 2;…如此继续下去,得到四条螺旋折线.第46题图(1)求证:四边形A 1B 1C 1D 1是正方形;(2)求A 1B 1AB的值;(3)请研究螺旋折线BB 1B 2B 3…中相邻线段之间的关系,写出一个正确结论并加以证明.参考答案与解析1.D2.48【解析】∵矩形的一边长为6cm ,一条对角线的长为10cm ,由勾股定理可得矩形的另一边长为8cm ,∴矩形的面积为6×8=48(cm 2).3.1104.52【解析】∵四边形ABCD 是矩形,∴AC =BD =2AO =2OD =10,∴OD =12AC =5,∵AF =14AC ,∴AF =12OA ,∵E 是AD 的中点,∴EF 是△AOD 的中位线,∴EF =12OD =52.5.303【解析】∵钟表数字2和数字3之间的夹角为360°12=30°且钟表数字2的刻度在矩形ABCD 的对角线BD 上,AB =30cm ,∴∠DBC =∠ADB =30°,∴BC =AD =AB tan ∠ADB=AB tan 30°=3033=303(cm).6.20【解析】∵四边形ABCD 是矩形,∴AC =BD =10,OA =OC ,OB =OD ,∴OC =OD =12BD =5,∵DE ∥AC ,CE ∥BD ,∴四边形CODE 是平行四边形,∵OC =OD =5,∴四边形CODE 是菱形,∴四边形CODE 的周长为4OC =4×5=20.7.6【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,AO =OC ,∴∠EAO =∠FCO ,在△AEO 和△CFO EAO =∠FCO =OC AOE =∠COF,∴△AEO ≌△CFO (ASA),∴S △AEO =S △CFO ,∴阴影部分的面积等于矩形ABCD 的面积的一半,∵矩形面积为AB ·BC =3×4=12,∴阴影部分的面积为12×12=6.8.13【解析】∵四边形ABCD 是矩形,∴AB =CD =6cm ,∠ABC =∠C =90°,AB ∥CD ,∴∠ABD =∠BDC ,∵AE =2cm ,∴BE =AB -AE =6-2=4cm ,∵G 是EF 的中点,∴EG =BG =12EF ,∴∠BEG =∠ABD ,∠BEG =∠BDC ,∴△EBF ∽△DCB ,∴EB DC =BF CB,∴46=BF 9,∴BF =6,∴EF =BE 2+BF 2=42+62=213(cm),∴BG =12EF =13cm.9.48【解析】∵四边形ABCD 是矩形,∴∠BAD =∠CDA =90°.∵F ,G 为BE ,CE 中点,∴在Rt △ABE 中,AF =BF =EF =12BE ,在Rt △CDE 中,DG =CG =EG =12CE ,∴BE =6,CE =8,∵EF =3,EG =4,FG =5,EF 2+EG 2=FG 2,∴△EFG 为直角三角形,∠FEG =90°,∴S 矩形ABCD =2S △BEC =2×12BE ·CE =48.10.23【解析】如解图,过点C 作CF ⊥BD 于点F ,∵四边形ABCD 为矩形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,在△ABE 与△CDF 中AEB =∠CFDABE =∠CDF=CD,∴△ABE ≌△CDF (AAS),∴AE =CF ,BE =DF .∵AE ⊥BD ,tan ∠ADB =AB AD =12,∴设AB =a ,则AD =2a ,∴BD =5a ,∵S △ABD =12BD ·AE =12AB ·AD ,∴AE =CF =255a ,∴BE =DF =AB 2-AE 2=a 2-(255a )2=55a ,∴EF =BD -2BE =5a -2×55a =355a ,∵CF ⊥BD ,∴tan ∠DEC =CF EF =23.第10题解图11.(1)证明:将矩形ABCD 沿对角线AC 折叠,则AD =BC =EC ,∠D =∠B =∠E =90°,在△DAF 和△ECF 中,DFA =∠EFCD =∠E =EC,∴△DAF ≌△ECF (AAS);(2)解:∵△DAF ≌△ECF ,∴∠DAF =∠ECF =40°.∵四边形ABCD 是矩形,∴∠DAB =90°.∴∠EAB =∠DAB -∠DAF =90°-40°=50°.∵由折叠的性质得∠EAC =∠CAB ,∴∠CAB=25°.12.解:(1)∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OC=OB=OD.∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴AC=BD=2OB=4;(2)∵在矩形ABCD中,∠BAD=90°,∴AD=BD2-AB2=16-4=23.由(1)得,OA=OD.又∵OE⊥AD,∴AE=12AD=3,在Rt△ABE中,tanα=AEAB=32.13.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴AB∥DF,∴∠DFE=∠ABE.∵E为线段AD的中点,∴DE=AE.在△DFE和△ABE DFE=∠ABE DEF=∠AEB=AE,∴△DFE≌△ABE(AAS),∴DF=AB.又∵AB∥DF,∴四边形ABDF是平行四边形.∵∠BDF=90°,∴平行四边形ABDF是矩形;(2)解:∵四边形ABDF是矩形,∴∠ABD=90°,AF=BD,AB=DF.∵AD=5,DF=3,∴在Rt △ADF 中,AF =AD 2-DF 2=52-32=4,∴AF =BD =4,AB =DF =3.∵四边形ABCD 是平行四边形,∴CD =AB =3.∵∠BDF =90°,∴∠BDC =90°.∴S =S 矩形ABDF +S △BCD =DF ·BD +12CD ·BD =3×4+12×3×4=12+6=18.14.(1)解:DC ,AD ;(2)证明:∵EF =AD ,AD =BC ,∴EF =BC ,同理可得FC =EB ,∴四边形EFCB 为平行四边形,∴EF ∥BC ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴EF ∥AD ;(3)解:如解图,过点E 作EG ⊥BC 交BC 延长线于点G ,EG 即为EF 与BC 之间的距离,由题意可得,HC =40cm ,BC =30cm ,BE =DC =80cm ,第14题解图在Rt △HBC 中,HB =HC 2+BC 2=402+302=50cm ,∵HC ∥EG ,∴△BCH ∽△BGE ,∴HC EG =BH BE ,即40EG =5080,解得EG =64cm ,∴EF 与BC 之间的距离为64cm.15.C16.C17.B 【解析】菱形为中心对称图形,对角线的交点即为对称中心,∵A 点坐标为(-2,5),∴相应的C 点坐标为(2,-5).18.C 【解析】由∠B =60°知,菱形由两个等边三角形组合而成,当AP ⊥BC 时,此时△ABP 为直角三角形;当点P 到达点C 处时,此时△ABP 为等边三角形;当点P 在CD 上且位于CD 的中垂线时,则△ABP 为直角三角形;当点P 与点D 重合时,此时△ABP 为等腰三角形.19.C 【解析】如解图,由题意可得,∠BDC =60°,BD =CD =AC ,∴△BCD 是等边三角形,∴BC =BD ,∠BCD =60°,∴AC =BC ,∠ACB =120°,∴∠BAC =∠ABC =12×(180°-120°)=30°,∴tan ∠ABC =tan 30°=33.第19题解图20.D【解析】∵四边形ABCD 是菱形,∵AO =CO =12AC ,AC ⊥BD ,∵CE ∥BD ,∴△AOB ∽△ACE ,∠AOB =∠ACE =90°,∴AO AC =OB CE =AB AE =12,∴△ACE 是直角三角形,OB =12CE ,∴BC =12AE ,故选D.21.B 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,DC =BC ,∠A =∠C ,设BF =x ,则CE =2x ,∵点E 是CD 的中点,∴CD =AB =AD =4x ,如解图,过点D 作DH ⊥AB 于点H ,∵EF ⊥AB ,∴四边形DEFH 为矩形,∴EF =DH =7,HF =DE =2x ,∴AH =3x ,在Rt △ADH 中,AD 2=AH 2+DH 2,即(4x )2=(3x )2+(7)2,解得x =1(负值已舍去),∴AD =4x =4.第21题解图22.AB =CD (答案不唯一)【解析】由题中条件AC ⊥BD 可知,只需四边形ABCD 为平行四边形即可,又AB ∥CD ,故添加AB =CD (答案不唯一).23.24【解析】S =12×8×6=24(cm 2).24.32【解析】如解图,连接BD ,交AC 于O ,连接EF ,∵四边形ABCD 为菱形,∴AB=BC ,∵菱形AENH 和菱形CGMF 大小相同,∴AE =CF ,∴EF ∥AC ,由题意知,四边形AEFM ,EFCN 均为平行四边形,∴EF =AM =CN ,∵EF ∥AC ,∴△BFE ∽△BCA ,∴EFAC=BE BA ,∵AE =3BE ,AB =1,∴AB =4BE ,∴EF AC =BE BA =14,∴AM =CN =14AC ,∴MN =12AC=OA ,∵∠BAD =60°,AB =AD =1,AO 垂直平分BD ,∴OD =12,∴OA =AD 2-OD 2=12-(12)2=32,∴MN =32.第24题解图25.152【解析】如解图①,连接AC 交BD 于点O ,∵四边形ABCD 为菱形,∴AC ⊥BD ,OD =12BD =72,CD =4,∴OC =OA =42-(72)2=152,设AM =BN =a ,则DM =4-a ,∵ME ⊥BD ,NF ⊥BD ,∴△DME ∽△DAO ,△BNF ∽△BCO ,∴ME OA =DMDA =4-a 4,NF OC =BN BC =a 4,∴ME OA +NF OC =4-a 4+a 4=1,∴ME +NF =OA =152.第25题解图①【一题多解】如解图②,连接AC 交BD 于点O ,过点M 作MG ⊥AC 于点G ,∵四边形ABCD 为菱形,∴AC ⊥BD ,OD =12BD =72,CD =4,∴OC =OA =42-(72)2=152,∵AC ⊥BD ,ME ⊥BD ,∴∠AMG =∠ADO =∠CBO ,ME =GO ,又∵AM =BN ,NF ⊥BD ,∴△AMG ≌△NBF ,∴NF =AG ,∴ME +NF =GO +AG =AO =152.第25题解图②26.194【解析】如解图,过点F 作FM ⊥DE 于点M ,∵四边形ABCD 为菱形,∴AB =AD =CD =2.∵E 为AB 的中点,∠DAB =60°,∴AE =1,∠AED =90°,由勾股定理,得DE =AD 2-AE 2=3.∵四边形ABCD 为菱形,∴AB ∥CD ,∴∠ADC =120°,∠CDE =90°.∵FM⊥DE,F为CE的中点,∴M为DE的中点,即FM∥CD,FM=12CD=1,ME=DM=12DE=32,∴FM∥AB,FM=AE,∴∠EAG=∠MFG,∵∠AGE=∠FGM,∴△AEG≌△FMG(AAS),∴EG=MG=12ME=34,又∵FM∥CD,∴∠FMG=∠CDE=90°,在Rt△FMG中,由勾股定理,得FG=MG2+FM2=(34)2+12=194.第26题解图27.解:赞成小洁的说法,补充:AB=CB.证明:由小惠证法得:AB=AD,CB=CD,又∵AB=CB,∴AB=AD=CB=CD,∴四边形ABCD是菱形.28.证明:(1)∵四边形ABCD为平行四边形,∴BO=DO,AO=CO.又∵AE=CF,∴AO-AE=CO-CF,即OE=OF,∴四边形EBFD为平行四边形;(2)∵∠BAC=∠DAC,DO=BO,∴AO⊥BD.由(1)得四边形EBFD为平行四边形,∴四边形EBFD是菱形.29.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵DE=AD,∴DE=BC.又∵点E在AD的延长线上,∴DE∥BC,∴四边形DBCE为平行四边形.又∵BE ⊥DC ,∴四边形DBCE 为菱形;(2)解:如解图,由菱形对称性得,点N 关于BE 的对称点N ′在DE 上,第29题解图∴PM +PN =PM +PN ′.当P ,M ,N ′三点共线时,PM +PN =PM +PN ′=MN ′.过点D 作DH ⊥BC ,垂足为H ,∵DE ∥BC ,∴MN ′的最小值即为平行线间的距离DH 的长.∵△DBC 是边长为2的等边三角形,∴在Rt △DBH 中,∠DBH =60°,DB =2,∴DH =DB ·sin ∠DBH =2×32=3,∴PM +PN 的最小值为3.30.解:(1)①∵四边形BCDE 和四边形BCFG 都是菱形,∴BE =BC =CF ,CF ∥GE ,∴∠OCF =∠OBE ,∵∠COF =∠BOE ,∴△COF ≌△BOE (AAS),∴OC =OB ,OF =OE ,∴无论θ为何值,EF 与BC 相互平分;②θ=60°;【解法提示】∵OC =OB ,∴OB =12BC =12BE ,∵EF ⊥BC .∴∠BOE =90°,∴∠OEB =30°,∴∠OBE =60°,∵GF ∥BC ,∴∠G =∠OBE =60°,即当θ=60°时,EF ⊥BC .(2)tan ∠ABC =2,理由如下:由(1)知BC =BE =2OB ,当θ=90°时,则四边形BCDE 和四边形BCFG 都是正方形,∴∠OBE =90°,∴tan∠BOE=BEOB=2,∵BC为动点A所在圆弧对应圆的直径,∴∠BAC=90°,∵EF垂直平分AC,∴EF∥AB,∴∠ABC=∠BOE,∴tan∠ABC=tan∠BOE=2.∴当θ=90°时,tan∠ABC=2,使得EF垂直平分AC.31.(1)①证明:∵CE⊥AB,CF⊥AD,∴∠BEC=∠DFC=90°.∵四边形ABCD是菱形,∴∠B=∠D,BC=DC,∴△BEC≌△DFC(AAS),∴CE=CF;②解:∵E是边AB的中点,AE=2,∴BE=AE=2.∵四边形ABCD是菱形,∴BC=BA=4.∵CE⊥AB,∴在Rt△BEC中,CE=BC2-BE2=23;(2)解:如解图①,延长FE交CB的延长线于点M,∵四边形ABCD为菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM.∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴EM=EF,BM=AF.∵AE=3,EF=2AF=4,∴EM=4,BM=2,BE=3,∴BC =AB =2AE =6,∴CM =8,∴BM EM =24=12,EM CM =48=12,∴BM EM =EM CM ,∵∠BME =∠EMC ,∴△MEB ∽△MCE ,∴BE EC =BM EM =12,∵BE =3,∴CE =6.注:延长CE 交DA 的延长线于点N ,方法类似.第31题解图①【一题多解】如解图②,延长FE 交CB 的延长线于点M ,过点E 作EN ⊥BC 于点N .∵四边形ABCD 为菱形,∴AD ∥BC ,AB =BC ,∴∠AFE =∠M ,∠A =∠EBM ,∵E 是边AB 的中点,∴AE =BE ,∴△AEF ≌△BEM (AAS),∴EM =EF ,BM =AF .∵AE =3,EF =2AF =4,∴EM =4,BM =2,BE =3,∴BC =AB =2AE =6,∴CM =8.∵在Rt △MEN 和Rt △BEN 中,EM 2-MN 2=EN 2,BE 2-BN 2=EN 2,∴EM 2-MN 2=BE 2-BN 2,∴42-(2+BN )2=32-BN 2,解得BN =34,则CN =6-34=214,∴EN 2=BE 2-BN 2=32-(34)2=13516,∴在Rt △ENC 中,CE 2=EN 2+CN 2=13516+44116=36,∴CE =6(负值已舍去).第31题解图②32.D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第32题解图33.C【解析】∵四边形ABCD 是正方形,∴∠B =∠BAD =90°,∠BAC =45°,AB =AD ,又∵BE =AF ,∴△ABE ≌△DAF ,∴∠ADF =∠BAE .∵AE 平分∠BAC ,∴∠ADF =∠BAE =12∠BAC =22.5°,∴∠CDF =∠ADC -∠ADF =90°-22.5°=67.5°.34.A【解析】如解图,以点B 为坐标原点,建立平面直角坐标系xBy ,设正方形ABCD的边长为1,∵四边形ABCD 是正方形,∴∠OAE =∠OBF =45°,OA =OB .∵∠AOB =∠EOF =90°,∴∠AOB -∠EOB =∠EOF -∠EOB ,即∠AOE =∠BOF ,∴△AOE ≌△BOF (ASA),∴AE =BF .设AE =BF =a ,则F (a ,0),E (0,1-a ).∵点G 是EF 的中点,∴G (12a ,12-12a ),∴点G 在直线y =-x +12上运动,又∵点E ,F 分别在线段AB ,BC 上,∴点G 的运动轨迹是线段.第34题解图35.C【解析】①如解图,过点E分别作EM⊥CD于点M,EN⊥AD于点N,由题意得,EN=EF=BG,EM=EG=ND,在Rt△DEN和Rt△GFE中,EN=EF∠END=∠FEG ND=EG,∴Rt△DEN≌Rt△GFE(SAS),∴DE=FG,故结论①正确;②如解图,延长DE交FG于点P,由Rt△DEN≌Rt△GFE可得∠NDE=∠EGF,∵∠PEG=∠DEN,∴∠DPG=∠DNE=90°,∴DE⊥FG,故结论②正确;③在Rt△DEN和Rt△FGB中,DE=FG NE=BG,∴Rt△DEN≌Rt△FGB(HL),∴∠BFG=∠ADE,故结论③正确;④当点E为对角线AC,BD的交点时,FG取得最小值,最小值为22,故结论④错误.综上所述,正确的结论为①②③,共3个.第35题解图36.C【解析】∵对角线互相平分的四边形为平行四边形,∴当MN的连线过BD的中点O 时,∵BE=DF,∴BD的中点也是EF的中点,同时平分MN,∴存在无数个平行四边形MENF,说法①正确;当MN过点O时,四边形MENF为平行四边形,当EF=MN时,四边形MENF为矩形,∴存在无数个矩形MENF,当MN过点O且垂直于BD时,四边形MENF 恒定为菱形,∴存在无数个菱形MENF,∴说法②③正确;当MN过点O且垂直于BD时,若MN=EF,则四边形MENF为正方形,∵此时MN的长度恒定,∴EF的长度恒定,此时只存在一个正方形MENF,说法④错误.37.5【解析】由题图可知①②是两个全等的等腰直角三角形,∵拼成的正方形的对角线长为2,∴①②两个等腰直角三角形的直角边的长度为1,∴结合题图可知拼成的长方形的长为2,宽为1,∴其对角线的长为22+12=5.38.(-1,5)【解析】如解图,过点F 作FQ ⊥x 轴于点Q ,过点E 分别作EM ⊥x 轴于点M ,作EN ⊥FQ 于点N ,∴四边形NQME 是矩形,∴NQ =EM =3,∠NEM =90°.∵∠FEN +∠NEO =90°,∠NEO +∠OEM =90°,∴∠FEN =∠OEM .∵EF =EO ,∠FNE =∠EMO ,∴△EFN ≌△EOM ,∴EN =EM =3,FN =OM =2,∴FQ =FN +NQ =5,QO =EN -OM =1.∵F 在第二象限,∴F (-1,5).第38题解图39.1【解析】如解图,连接AG ,EG ,∵正方形ABCD 的边长为8,∴AB =BC =CD =8,∠B =∠C =90°,∵E 是CD 的中点,∴CE =4.设BG =x ,则CG =8-x ,在Rt △ABG 中,AG 2=AB 2+BG 2,即AG 2=82+x 2,在Rt △CEG 中,EG 2=CE 2+CG 2,即EG 2=42+(8-x )2.∵HG 垂直平分AE ,∴AG =EG ,∴AG 2=EG 2,∴82+x 2=42+(8-x )2,解得x =1,即BG =1.第39题解图40.60,3【解析】∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∵AE =AF ,∴Rt △ABE ≌Rt △ADF (HL),∴∠BAE =∠DAF =12×(90°-30°)=30°,∴∠AEB =∠AFD =60°,∴BE =12AE ,如解图,过点E 作EG ⊥AF 于点G ,∵∠BAE =∠GAE ,∴BE =GE .∵S △AEF =12AF ·EG =12×2BE ·BE =1,∴BE =1(负值已舍去),∴AB =3BE =3.第40题解图41.2【解析】如解图,连接AP ,∵四边形ABCD 为正方形,∴AB =AD =BC =CD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12BC =3,根据折叠的性质,得AF =AB =6,EF =BE =3,∠AFE =∠B =90°,∴AF =AD ,在Rt △APF 和Rt △APD 中,=AD=AP,∴Rt △APF ≌Rt △APD (HL),∴DP =FP .设DP =FP =x ,则EP =x +3,CP =6-x ,在Rt △PEC 中,根据勾股定理得CE 2+CP 2=EP 2,即32+(6-x )2=(x +3)2,解得x =2,∴DP =2.第41题解图42.434【解析】∵AN ⊥EF ,四边形ABCD 为正方形,∴∠AMF =∠ADF =90°,∴∠DAN+∠AGM =∠FGD +∠GFD =90°,∵∠AGM =∠FGD ,∴∠DAN =∠GFD ,设DN =x ,∵BE =DF =5,CN =8,∴AD =BC =CD =DN +CN =x +8,EC =BC -BE =x +8-5=x +3,CF =CD +DF =x +8+5=x +13,在Rt △FEC 中,tan ∠GFD =EC CF =x +3x +13,在Rt △ADN中,tan ∠DAN =DNAD =x x +8,∵∠DAN =∠GFD ,∴tan ∠GFD =tan ∠DAN ,即x +3x +13=xx +8,解得x =12,在Rt △AND 中,∠ADN =90°,AD =x +8=12+8=20,DN =x =12,则AN =AD 2+DN 2=434.【一题多解】如解图,过点G 作GH ⊥BC 于点H ,∵四边形ABCD 为正方形,∴AD =DC =BC =GH ,∠ADC =∠AGH =∠GHE =90°,∴∠AGM +∠EGH =90°,∵AN ⊥EF ,∴∠NAD +∠AGM =90°,∴∠EGH =∠NAD ,在△GHE 和△ADN中,GHE =∠ADN ,=AD ,EGH =∠NAD ,∴△GHE ≌△ADN (ASA),∴HE =DN .设DN =x ,则HE =x ,AD =BC=CD =x +8,CH =GD =BC -BE -EH =3,CF =CD +DF =x +13,CE =x +3,∵tan F =GD DF =EC CF ,∴35=x +3x +13,解得x =12,∴DN =12,AD =20,∴在Rt △ADN 中,AN =202+122=434.第42题解图43.(1)45;(2)2615【解析】(1)∵△BEF 为等腰直角三角形,∴BE =FE ,∠BEF =90°,∵FG ⊥AG ,∴∠G =90°,∵四边形ABCD 为正方形,∴∠A =90°,∴∠A =∠G ,∵∠AEB +∠GEF =∠GEF +∠GFE =90°,∴∠AEB =∠GFE ,∴△AEB ≌△GFE (AAS),∴AE =GF ,AB =EG ,又∵AD =AB ,∴EG =AD ,∴DG =AE ,∴DG =GF ,∴∠FDG =45°;(2)如解图①,过点F 作FO ⊥CD 于点O ,则四边形DGFO 为正方形,又∵DE =1,DF =22,∴FO =2,AD =AE +DE =GF +DE =3,∴DC =AD =BC =AB =EG =3,OD =OF =2,∴OC =DC -DO =1,∵FO ∥AG ,∴△EDM ∽△FOM ,∴DM OM =DE OF =12,∴DM =23,∴OM =43,∵FO ∥BC ,∴△OFN ∽△CBN ,∴ON CN =OF CB =23,∴ON OC =ON ON +CN =25,∴ON =25,∴MN =OM +ON =43+25=2615.第43题解图①第43题解图②【一题多解】解法一:如解图②,延长BC 交GF 的延长线于点H ,∵DE =1,DF =22,∠FDG =45°,∴DG =FG =2,∴AE =DG =2,∴AD =AE +DE =3,∵四边形ABCD 是正方形,∴AD =DC =3,∵DC ∥GH ,∠CDG =∠DGH =∠DCH =90°,∴四边形DCHG 为矩形,∴CH =DG =2,FH =GH -GF =DC -GF =1,∴△EDM ∽△EGF ,△BCN ∽△BHF ,∴ED EG =DM GF ,BC BH =NC FH ,即13=DM 2,35=NC 1,∴DM =23,NC =35,∴MN =DC -DM -NC =3-23-35=2615.解法二:由(1)得AE =GF ,AB =GE ,∵DE =1,DF =22,∠FDG =45°,∴AE =GF =2,∴AB =AD =GE =3,如解图③,以点D 为坐标原点,建立平面直角坐标系,∴B (-3,-3),F (2,-2),E (-1,0),设直线BF 的解析式为y 1=k 1x +b 1(k 1≠0),将B (-3,-3)和F (2,-2)3k 1+b 1=-3k 1+b 1=-21=151=-125,∴直线BF 的解析式为y 1=15x -125,令x =0,得y =-125,∴点N 的坐标为(0,-125),设直线EF 的解析式为y 2=k 2x +b 2(k 2≠0),将E (-1,0)和F (2,-2)k 2+b 2=0k 2+b 2=-22=-232=-23,∴直线EF 的解析式为y 2=-23x -23,令x =0,得y =-23,∴点M 的坐标为(0,-23),∴MN =(-23)-(-125)=2615.第43题解图③44.证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∵BE =DF ,∴BO -BE =DO -DF ,即OE =OF ,∴四边形AECF 是菱形.∵OA =OE ,∴OA =OC =OE =OF ,∴AC =EF ,∴四边形AECF 是正方形.45.(1)证明:∵正方形ABCD 和菱形EFGH ,∴AD =CD ,∠A =∠C =90°,DE =DG ,在Rt △ADE 与Rt △CDG 中,=CD=DG ,∴Rt △ADE ≌Rt △CDG (HL);(2)解:如解图,连接EG 交DF 于点O ,第45题解图∵AE =BE =2,由(1)得Rt △ADE ≌Rt △CDG ,∴CG =AE =2,BG =CB -CG =2,∵∠ABC =90°,∴在Rt △EBG 中,EG =EB 2+BG 2=22,∴EO =2,在Rt △ADE 中,AD =4,AE =2,∴EF =DE =AE 2+AD 2=25,在Rt △OEF 中,OF =EF 2-OE 2=20-2=32,∴DF =2OF =62,∵DB =2AB =42,∴BF =DF -DB =22.46.(1)证明:在正方形ABCD 中,AB =BC =AD ,∠A =∠B =90°,∵AB 1=BC 1=DA 1=45AB ,∴AA 1=BB 1=15AB ,∴△AB 1A 1≌△BC 1B 1,∴A 1B 1=B 1C 1,∠AB 1A 1=∠BC 1B 1,又∵∠BC 1B 1+∠BB 1C 1=90°,∴∠BB 1C 1+∠AB 1A 1=90°,∴∠A 1B 1C 1=90°.同理可证:B 1C 1=C 1D 1=D 1A 1=A 1B 1,∴四边形A 1B 1C 1D 1是正方形;(2)解:∵AB 1=BC 1=CD 1=DA 1=45AB ,设AB =5a ,则AB 1=4a ,∴B 1B =AA 1=a ,∴A 1B 1=17a ,∴A 1B 1AB =17a 5a =175;(3)解:结论1:螺旋折线BB 1B 2B 3…中相邻线段的比均为51717或175.证明:∵AB 1=45AB ,∴BB 1=15AB .同理,B 1B 2=15A 1B 1,∴B 1B B 1B 2=AB A 1B 1=51717.同理可得B 1B 2B 2B 3=51717,∴螺旋折线BB 1B 2B 3…中相邻线段的比均为51717或175.结论2:螺旋折线BB 1B 2B 3…中相邻线段夹角的度数不变.证明:∵B 1B BC 1=B 2B 1B 1C 2=14,∠A 1B 1C 1=∠ABC =90°,∴△BB 1C 1∽△B 1B 2C 2,∴∠BB 1C 1=∠B 1B 2C 2.∵∠C 1B 1B 2=∠C 2B 2B 3=90°,∴∠BB 1C 1+∠C 1B 1B 2=∠B 1B 2C 2+∠C 2B 2B 3,即∠BB 1B 2=∠B 1B 2B 3.同理可证∠B 1B 2B 3=∠B 2B 3B 4=…,∴螺旋折线BB 1B 2B 3…中相邻线段夹角的度数不变.。
中考数学第1-18题训练7

一、选择题: 1.计算3-1的结果是( ).A .31B .—31C .3D .—32.下列计算错误的是( ).A .(一2x)3=一2x 3B .一a 2·a =一a 3C .(一x)9÷(一x)3=x 6 D .(-2a 3)2=4a 6 3.下列二次根式中与2是同类二次根式的是( ). A .12 B .23 C .32 D .18 4、下列图形中,不是三棱柱的表面展开图的是( ).A v =2m 一2 D . v =m 2一1 C . v =3m 一3 D v =m 十1 6.一元二次方程x 2+x +2=0的根的情况是A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根 A .160万人,33.5万人 B.144万人,33.5万人 C .144万人,34万人 D .144万人,33万人 8.下列命题中的假命题是( ).A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形c 一组对边平行且相等的四边形是平行四边形 D .一组对边相等且有一个角是直角的四边形是矩形 9.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .b a -8分钟B .b a +8分钟C .b b a +-8分钟D .bb a --8分钟10.如图,ΔACD 和ΔAEB 都是等腰直角三角形,∠CAD =∠EAB =900.四边形ABCD 是平行四边形,下列结论中错误的是( ).A .ΔACE 以点A 为旋转中心,逆时针方向旋转900后与ΔADB 重合 B .ΔACB 以点A 为旋转中心,顺时针方向旋转2700后与ΔDAC 重合 C .沿AE 所在直线折叠后,ΔACE 与ΔADE 量重合D .沿AD 所在直线折叠后,ΔADB 与ΔADE 重台11.如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21B .41 C.81 D .16112.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,ID .1,l二、填空题: 13.某校九年级一班体育兴趣小组四位同学的身高(单位:cm)分别为:170、170、t66、174,则这四位同学的平均身高为________cm .14.在同一圆中,一条弧所对的圆心角和圆周角分别为(2x +70)0和900,则x =_______.15.关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.16.圆锥的体积公式是:圆锥的体积=31×底面积×高,则高为7.6cm ,底面半径为2.7cm 的圆锥的体积等于________cm .(结果保留2个有效数字,π取3.14) 17.在Rt ΔABC 中,∠C =900,BC :AC =3:4.则cosA =_______. 18.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________. 三、本大题共2个小题.每小题5分,共10分. 19.计算: 2sin450+cos300·tan600—2)3(- (应有必要的运算步骤)20.计算:b a b -2十a 十b。
2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。
17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。
那么等腰三角形的底长为2x = 12。
18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。
第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。
然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。
最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。
20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。
设张三的年龄为x,李四的年龄为y。
那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。
所以10年后张三的年龄是30岁,李四的年龄是40岁。
第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。
证明过程略。
第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。
祝你考试顺利!。
2018年河南省中学考试数学试卷含问题详解解析汇报

实用文档2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)分)﹣的相反数是(3()1..D CA .﹣B.﹣.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()231011 0.2147×102.147×10 D..2.147×10 B.0.2147×10 C.A3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()23523534733=1.D2x﹣xCx.(﹣x)=﹣B.x+x=x .x?x=x A,15.3%年旅游收入不断增长,同比增速分别为:35.(分)河南省旅游资源丰富,2013~2017 )17.1%12.7%,15.3%,14.5%,.关于这组数据,下列说法正确的是(15.3%12.7%A.中位数是B.众数是C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()..BA D..C7.(3分)下列一元二次方程中,有两个不相等实数根的是()2222+1=0x.+3=2x .=x .+6x+9=0 .AxBxCxD(﹣)1实用文档张卡片正面上的图案是“”,14张卡片,其中3张卡片正面上的图案8.(3分)现有”,它们除此之外完全相同.把这4是“张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是().DC ..B .A9.(3分)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点,EF;③作射线OF,交边点DAC于点G,则点G的坐标为()(﹣2,.2).(3 ﹣,2)DA.)(﹣1,2 B.(,2)C10.(2018.河南.10)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度2变化的关系图象,)x(s的面积y(cm)随时间是点匀速运动到点B,图2F运动时,△FBC )则a的值为(2.D2C A..B .分,请把答案填在答題卷相应题分,满分155二、细心填一填(本大题共小题,每小题3号的横线上)= ﹣.分)计算:(11.3|﹣5|12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.实用文档.(3 分)不等式组的最小整数解是13.逆时针旋转的中点D,将△AC=BC=2ABC 绕AC14.(3分)如图,在△ABC中,∠ACB=90°,.的运动路径为,则图中阴影部分的面积为90°得到△A'B′C',其中点B,BC为边AN上一动点,连接在边CAM上,AC=4,点B15.(3分)如图,∠MAN=90°,点并延长交DEBC的中点,连接,E分别为AC,ABC△A′BC与△关于BC所在直线对称,点D .AB的长为A,连接A′E.当△′EF为直角三角形时,BA′所在直线于点F分,请认真读题)题,共758三、计算题(本大题共.x=+1816.(分)先化简,再求值:﹣(1,其中)÷分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的(.917为了解市民对治理杨絮方法的赞同情给人们造成困扰,呼吸道疾病等,杨絮易引发皮肤病、,并根据调查结果绘制了如下况,某课题小组随机调查了部分市民(问卷调查表如表所示)尚不完整的统计图.治理杨絮一一您选哪一项?(单选)实用文档根据以上统计图,解答下列问题:人;1)本次接受调查的市民共有(;E的圆心角度数是(2)扇形统计图中,扇形)请补全条形统计图;(3 万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.4)若该市约有90(.)的图象过格点(网格线的交点)Py=(x>0(18.9分)如图,反比例函数)求反比例函数的解析式;(1,要求每个矩形均需满足下列两个2B铅笔画出两个矩形(不写画法)(2)在图中用直尺和条件:P;①四个顶点均在格点上,且其中两个顶点分别是点O,点的值.k②矩形的面积等于O作⊙,过点于点CC交⊙于点的直径,AB是⊙ODO⊥ABO,连接DAO分)如图,(19.9 .于点BC交DOF,连接于点的切线交DOE ;)求证:(1CE=EF实用文档(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115实用文档日销售量×(销售单价﹣成本单价))(注:日销售利润= 的值;x的取值范围)及m1)求y关于x的函数解析式(不要求写出()根据以上信息,填空:(2最大,最大值wx= 元时,日销售利润该产品的成本单价是元,当销售单价元;是)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销3(元的375090元时,日销售利润不低于售单价仍存在(1)中的关系.若想实现销售单价为销售目标,该产品的成本单价应不超过多少元?)问题发现(122.(10分)填M.AC,BD交于点OC=OD,∠AOB=∠COD=40°,连接,,如图1在△OAB和△OCD中,OA=OB 空:;①的值为.AMB的度数为②∠)类比探究(2的延BDAC交OAB=COD=90°,∠∠OCD=30°,连接OAB如图2,在△和△OCD中,∠AOB=∠的度数,并说明理由;的值及∠AMB长线于点M.请判断)拓展延伸(3,OD=1BD所在直线交于点M,若,OB=在平面内旋转,将△(在2)的条件下,OCD绕点OAC,ACM重合时的长.C请直接写出当点与点2经﹣C.直线y=x5轴于点两点,交,轴于交y=ax11.23(分)如图,抛物线+6x+cxABy CB过点,.实用文档(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.实用文档2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分))﹣的相反数是().(2018.河南.1 1..﹣BC.A D.﹣【分析】直接利用相反数的定义分析得出答案.的相反数是:.解:﹣【解答】故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()231011×10D2.147×10 .0.2147×A.2.14710 10B.0.2147×C.n【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.10,2.147亿,用科学记数法表示为×10【解答】解:214.7 .故选:C n110的形式,其中【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×的值以及an的值.,≤|a|<10n 为整数,表示时关键要正确确定那么在原正方体中,如图是它的一种展开图,(.3分)某正方体的每个面上都有一个汉字,3 )与“国”字所在面相对的面上的汉字是(实用文档A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()23523534733=1x2x=x D.﹣.A.(﹣x)=﹣xB.x+x=x Cx?x同底数幂相乘及合并同类项法则逐一计算即可判同类项概念、【分析】分别根据幂的乘方、断.623,此选项错误;)【解答】解:A、(﹣x=﹣x32不是同类项,不能合并,此选项错误;xB、、x734,此选项正确;?C、xx=x333,此选项错误;x=x ﹣D、2x C.故选:同类项概念、同底数幂相解题的关键是掌握幂的乘方、【点评】本题主要考查整式的运算,乘及合并同类项法则.,15.3%年旅游收入不断增长,~分)河南省旅游资源丰富,20132017同比增速分别为:3.5()17.1%14.5%15.3%12.7%,,,.关于这组数据,下列说法正确的是(15.3%A.中位数是.众数是12.7%BC.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;实用文档、(15.3%+12.7%+15.3%+14.5%+17.1%)C=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为().BA .C..D【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.线,根据题意,可列方程组为:.人,羊价为y x【解答】解:设合伙人数为故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.)(7.3分)下列一元二次方程中,有两个不相等实数根的是(2222+1=0 1x+3=2x D.(x﹣)...Ax+6x+9=0 Bx=x C 【分析】根据一元二次方程根的判别式判断即可.2+6x+9=0 xA【解答】解:、2,×△=6﹣49=36﹣36=0 方程有两个相等实数根;2=x 、xB2x=0 ﹣x20=△(﹣××4﹣1)1>0=1实用文档两个不相等实数根;2+3=2x xC、22x+3=0x﹣2,3=﹣8<0×△=(﹣2)﹣41×方程无实根;2+1=0 (x﹣1)D、2,﹣1(x﹣1)= 则方程无实根;B.故选:2的根与)本题考查的是一元二次方程根的判别式,一元二次方程ax+bx+c=0(a≠0【点评】2时,方方程有两个不相等的两个实数根;②当△=0有如下关系:①当△>0时,=b△﹣4ac 0时,方程无实数根.程有两个相等的两个实数根;③当△<张卡片正面上的图案是“”,1张卡片正面上的图案3分)现有4张卡片,其中3.8(”,它们除此之外完全相同.把这是“4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是().D .A .BC.【分析】直接利用树状图法列举出所有可能进而求出概率.,表示,用B,AA表示,A解:令【解答】3用张,312可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.实用文档9.(3分)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点FD,E;③作射线OF,交边点AC于点G,则点G的坐标为()(﹣2,D.2)C.(3 ﹣,2)A.1(﹣,2)B.,(2)AG=AO=,即可得到AGO=∠AOG,,【分析】依据勾股定理即可得到Rt△AOH中,依据∠AO=.1,2进而得出)HG=﹣1,可得G(﹣【解答】解:∵?AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,AO=,中,∴Rt△AOH由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,AG=AO=,∴﹣1∴,HG=﹣G1(,2),∴故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解实用文档决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动2的as)变化的关系图象,则cm)随时间x(的面积B,图2是点F运动时,△FBCy(到点)值为(2..AD.B.2C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的BD=,应用两次勾股定理分别求BE和a高DE,再由图象可知,.【解答】解:过点D作DE⊥BC于点E2 acm的面积为.用时为as,△FBCA由图象可知,点F由点到点DAD=a ∴∴DE=2 ∴s到B时,用当点F从D BD=∴Rt△DBE中,BE=ABCD∵是菱形DC=a 1,∴EC=a﹣中,Rt△DEC222)1a+a=2(﹣a=解得实用文档.故选:C解答过程中要注意函数图象变化与【点评】本题综合考查了菱形性质和一次函数图象性质,动点位置之间的关系.分,请把答案填在答題卷相应题分,满分15二、细心填一填(本大题共5小题,每小题3号的横线上) 2 .﹣= .(3分)计算:|﹣5|11【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.3 ﹣【解答】解:原式=5 .=2 .故答案为:2 此题主要考查了实数运算,正确化简各数是解题关键.【点评】的度数°,则∠BOC于点O,∠EOD=50ABAB3分)如图,直线,CD相交于点O,EO⊥.12(.140°为直接利用垂直的定义结合互余以及互补的定义分析得出答案.【分析】O,于点O,EO⊥AB,【解答】解:∵直线ABCD相交于点EOB=90°,∴∠°,∵∠EOD=50 °,∴∠BOD=40 °.40°=140°﹣的度数为:则∠BOC180 °.故答案为:140实用文档【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.分)不等式组的最小整数解是﹣(32 .13.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.解:【解答】∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转πB.的运动路径为,则图中阴影部分的面积为90°得到△A'B′C',其中点L=,计算即可;【分析】利用弧长公式【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,=π.S= ∴阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.实用文档,BC为边AN上一动点,连接在边AM上,AC=4,点B°,点15.(3分)如图,∠MAN=90C 并延长交DE,BC的中点,连接D,E分别为ACBC△A′与△ABC关于BC所在直线对称,点的长为4AB或4 .F,连接A′E.当△A′EF为直角三角形时,A′B所在直线于点【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,实用文档222﹣AC,由勾股定理得:AB=BC=4∴;AB=②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;4或4的长为;综上所述,AB故答案为:;4或4【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)x=+1.1分)先化简,再求值:(16.8(﹣)÷,其中实用文档【分析】根据分式的运算法则即可求出答案,x=+1时,【解答】解:当原式?=x =1﹣=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;实用文档(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;°×=28.8360°,(2)扇形统计图中,扇形E的圆心角度数是°;28.8故答案为:,D选项的人数为2000×25%=500(3)补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.y=(x>0)的图象过格点(网格线的交点)P.(18.9分)如图,反比例函数(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.实用文档,利用待定系数法即可求出反比例函数的解析式;y=1)将P点坐标代入【分析】()根据矩形满足的两个条件画出符合要求的两个矩形即可.(2),(2,2y=(x>0)的图象过格点P(【解答】解:1)∵反比例函数2=4,∴k=2×y=∴反比例函数的解析式为;2)如图所示:(即为所求作的图形.OAPB、矩形OCDP矩形待定系数法反比例函数图象上点的坐标特征,【点评】本题考查了作图﹣应用与设计作图,求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.OC作⊙O于点C,过点,连接O的直径,DO⊥AB于点ODA交⊙是⊙(19.9分)如图,AB .DO 于点F交的切线交DO于点E,连接BC ;1)求证:CE=EF(G.填空:并延长,交⊙)连接AFO于点(2 为菱形;时,四边形ECFG 的度数为①当∠D 30°为正方形.时,四边形22.5的度数为②当∠D °ECOG实用文档°,再利用等腰三角形和互余4=901+∠1)连接OC,如图,利用切线的性质得∠【分析】(,然后根据等腰三角形的判定定理得到结论;∠2证明∠1=都为等边三角形,从而得到和△FEG°时,∠DAO=60°,证明△CEF(2)①当∠D=30 ECFG为菱形;EF=FG=GE=CE=CF,则可判断四边形°,利用对称得∠°,利用三角形内角和计算出∠COE=45D=22.5°时,∠DAO=67.5②当∠°,从而证明四边OCE=90∠OEG得到∠OEG=EOG=45°,则∠COG=90°,接着证明△OEC≌△为正方形.ECOG为矩形,然后进一步证明四边形ECOG形,如图,1)证明:连接OC【解答】(为切线,∵CE ,⊥CE∴OC °,∠4=90∴∠OCE=90°,即∠1+ AB,∵DO⊥B=90°,∴∠3+∠,∠而∠2=3 °,2+∠B=90∴∠,而OB=OC B,∠∴∠4= 2,∴∠1=∠;∴CE=FE DAO=60°,)解:①当∠(2D=30°时,∠为直径,而AB °,∴∠ACB=90实用文档∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.实用文档必连【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及9分)20.(某运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.若干支架组成,兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.,155cmCEAB的距离的长为B两点间的距离为90cm.低杠上点C到直线如图所示,底座上A,CAE的夹角∠AC与直线ABAB的距离DF的长为234cm,已知低杠的支架高杠上点D到直线CH°.求高、低杠间的水平距离为80.3BD与直线AB的夹角∠DBF为82.4°,高杠的支架°≈,tan82.4,cos82.4°≈0.1321cm的长.(结果精确到,参考数据sin82.4°≈0.991 )tan80.3°≈5.8500.983°≈,cos80.3°≈0.168,7.500,sin80.3通.计算出EF的长.分别求出Rt和△DBF中,AE、BFACERt利用锐角三角函数,【分析】在△的长.CH过矩形CEFH得到中,△解:在【解答】RtACE实用文档CAE=,tan∠∵≈≈21(cm=)∴AE=在Rt△DBF中,DBF=,tan∠∵≈=40(cm=∴)BF=∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.实用文档【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,22)+2000,﹣5(x﹣100+1000x(﹣5x+600)(x﹣80)=﹣5x﹣48000=w= 取得最大值,此时w=2000,∴当x=100时,w ,2000;故答案为:80,100 )设科技创新后成本为b元,(3 x=90时,当3750,(90﹣b)≥(﹣5×90+600)65,解得,b≤65元.答:该产品的成本单价应不超过解答本题的关键本题考查二次函数的应用、一元二次方程的应用、不等式的应用,【点评】是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.)问题发现10分)(122.(填交于点M.连接∠COD=40°,AC,BD,1如图,在△OAB和△OCD中,OA=OBOC=OD,∠AOB= 空: 1 ;①的值为②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延.请判断的值及∠AMB的度数,并说明理由;长线于点M (3)拓展延伸,OB=若OD=1,,所在直线交于点,在平面内旋转,绕点将△)(在2的条件下,OCDOACBDM 与点请直接写出当点CM的长.重合时AC实用文档;AC=BD,比值为1≌△DOB(SAS),得【分析】(1)①证明△COADBO+°﹣(∠根据三角形的内角和定理得:∠AMB=180得∠CAO=∠DBO,②由△COA≌△DOB,°;°=40ABD)=180°﹣140∠OAB+∠,由全等三角形的,则AOC∽△BOD=2()根据两边的比相等且夹角相等可得△的度数;性质得∠AMB∽△和4,同理可得:△AOC与点(3)正确画图形,当点CM重合时,有两种情况:如图3°,的长.,可得BOD,则∠AMB=90AC 【解答】解:1)问题发现(COD=40°,1,∵∠AOB=∠①如图DOB,∴∠COA=∠,OC=OD,OA=OB∵SAS),∴△COA≌△DOB(AC=BD,∴=1,∴DOB,②∵△COA≌△DBO,∴∠CAO=∠AOB=40°,∵∠°,OAB+∠ABO=140∴∠°=180∠ABD)OAB+°﹣∠CAO+∠OAB+ABD)=180(∠DBO+∠(∠AMB=180中,在△AMB∠°﹣=40°,°﹣140 °;1;②40故答案为:①)类比探究(2实用文档=,∠AMB=90,°,理由是:如图2Rt△COD中,∠DCO=30°,∠DOC=90°,∴,,同理得:∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,=,∠CAO=∠DBO∴,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,°,,AMB=90 ∴∠,则,AC=x设BD=xRt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,OB=,OAB=30中,∠°,Rt△AOB AB=2OB=2,∴222在Rt△AMB中,由勾股定理得:AC+BC=AB,,2,﹣6=0x﹣x =0,)(x+2)(x﹣3 ,=﹣2,x=3x21;AC=3∴°,,同理得:∠AMB=90与点M重合时,如图4,②点C AC=x,,则设BD=x222在Rt△AMB中,由勾股定理得:AC+BC=AB,实用文档)2=+(x+22,x+x﹣6=0 ,﹣2)=0(x+3)(x ,3x=2,x=﹣21AC=2∴;3AC 或的长为2.综上所述,几何变换问本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,【点评】,根据相似三角形的性质,并运用类比的思想解决BODAOC题,解题的关键是能得出:△∽△问题,本题是一道比较好的题目.2经﹣5y轴于点C.直线y=xx(11分)如图,抛物线y=ax+6x+c交轴于A,B两点,交23..,过点BC )求抛物线的解析式;(1 .BC于点M(2)过点A的直线交直线BCAM的平行线交直线B,C重合),作直线(不与点⊥①当AMBC时,过抛物线上一动点P 为顶点的四边形是平行四边形,求点P的横坐标;PA于点Q,若以点,M,,Q M2ACBBCAMAC②连接,当直线与直线的夹角等于∠的倍时,请直接写出点的坐标.实用文档,然后利用待定系数法求抛),0),B(5【分析】(1)利用一次函数解析式确定C(0,﹣5 物线解析式;2∠为等腰直角三角形得到∠OBC=0),再判断△OCBx+6x﹣5=0得A(1,(2)①先解方程﹣,接着根据平行四边形的性质得到AM=2OCB=45°,则△AMB为等腰直角三角形,所以PD=°得到1,利用∠PDQ=45⊥x轴交直线BC于DPQ=AM=2,如图PQ=4,,PQ ⊥BC,作PD225+6m﹣PD=﹣m5),讨论:当P点在直线BC上方时,5(m,﹣m+6m﹣),则D (m,m﹣设P2,然后分别解方程即可﹣5)PD=m﹣5﹣(﹣m+6m下方时,﹣(m﹣5)=4;当P点在直线BC 得到P点的横坐标;,利用,如图2M于,交AC于EN,NH⊥x轴于H,作AC 的垂直平分线交BCAN②作⊥BC于1),(3,﹣2N等腰三角形的性质和三角形外角性质得到∠AMB=2∠ACB,再确定1的解EM,﹣),利用两直线垂直的问题可设直线AC的解析式为y=5x﹣5,E点坐标为(1,﹣x)代入求出b得到直线EM的解析式为析式为y=y=﹣x+b,把E(﹣,﹣1,2M,如图上作点M关于N点的对称点BC则解方程组得M点的坐标;作直线211,3=),根据中点坐标公式得到5设ACB,M(x,x﹣B=2C=利用对称性得到∠AM∠AM∠221的坐标,从而得到满足条件的点M的坐标.即可得到然后求出xM2 5,﹣),C5=x=0)当时,y=x﹣﹣5,则(01解:【解答】(),(,则,解得﹣时,当y=0x5=0x=5B50,实用文档2,解得,y=ax5)代入+6x+c 得(5,0),C(0,﹣把B2;+6x﹣5∴抛物线解析式为y=﹣x2),1=1,x=5,则A(,0)①解方程﹣(2x+6x﹣5=0得x21),,0),C(0,﹣5∵B(5 OCB为等腰。
2024年河南省中考数学试题(原卷版)

2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1−B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示( ) A. 8578410×B. 105.78410×C. 115.78410×D. 120.578410×3. 如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B.50°C. 40°D. 30°4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B.C. D.为5. 下列不等式中,与1x −>组成的不等式组无解的是( ) A. 2x >B. 0x <C. <2x −D. 3x >−6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A.12B. 1C.43D. 27. 计算3···a a a a个的结果是( )A 5aB. 6aC. 3a a +D. 3a a8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A.19B.16C.15D.139. 如图,O是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A.8π3B. 4πC.16π3D. 16π.10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为___________. 14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=°,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.的的三、解答题(本大题共8个小题,共75分)16. (1(01−;(2)化简:231124a a a + +÷−−. 17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表 队员 平均每场得分 平均每场篮板 平均每场失误 甲26.5 82 乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1×−,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30°,在点P 处看塑像顶部点A 的仰角APE ∠为60°,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m1.73≈). 21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由. 23. 综合与实践在学习特殊四边形过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.的(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号). (2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线. ①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示). (3)拓展应用如图3,在Rt ABC △中,90B ∠=︒,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.。
(中考数学真题复习)第18讲 二次函数综合应用 基础例题 附答案解析

中考数学复习二次函数综合应用一、选择题1.(2012·济宁)一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A) A.5元B.10元C.0元D.3600元2.(2012·北海)为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是(B) A.600m2B.625m2C.650m2D.675m23.(2012·河北)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是(C) A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒4.如图18-1所示,抛物线y =12(x-2)2-8与x轴交于A、B两点,顶点为C,为使△ABC成为直角三角形,必须将抛物线向上平移几个单位(D)A.7B.6C.5D.4二、填空题5.已知抛物线y=x2+x+b2经过点a,-14和(-a,y1),则y1的值是__34__.6.飞机着陆后滑行的距离s(单位:m)与滑行时间t(s)的函数关系式是s=60t-1.5t2,飞机着陆后滑行的最长时间是__20__s.7.如图18-2所示,已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P图18-1图18-2从A 点出发,沿A →B →C →E 运动,到达点E .若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当y=13时,x 的值等于__23或53__.8.甲乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (m)与其距地面高度h (m)之间的关系式为h =-112s 2+23s +32.如图18-3所示,已知球网AB 距原点5m ,乙(用线段CD 表示)扣球的最大高度为94m ,设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是__5<m <4+7__.三、解答题9.用长为12m 的篱笆,一边利用足够长的墙围出一块苗圃如图18-4所示,围出的苗圃是五边形ABCDE ,AE ⊥AB ,BC ⊥AB ,∠C =∠D =∠E .设CD =DE =x m ,五边形ABCDE 的面积为S m 2.问当x 取什么值时,S 最大?并求出S 的最大值.解:连接EC ,作DF ⊥EC ,垂足为F ,∵∠DCB =∠CDE =∠DEA ,∠EAB =∠CBA =90°,∴∠DCB =∠CDE =∠DEA =120°,∵DE =CD ∴∠DEC =∠DCE =30°,∴∠CEA =∠ECB =90°,∴四边形EABC 为矩形,∵DE =x m ,∴AE =6-x ,DF =12x ,EC =3x ,S =-334x 2+63x (0<x <6).当x =4m 时,S 最大=123m 2.10.(2011·成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图18-5所示的长方形ABCD .已知木栏总长为120米,设AB 边的长为x 米,长方形ABCD的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值图18-3图18-4图18-5时,S取得最值(请指出是最大值还是最小值)?并求出这个最值.解:∵AB=x,∴BC=120-2x,∴S=x(120-2x)=-2x2+120x;当x=120 2×2=30时,S有最大值为0-12024×(-2)=1800.(2)学校计划将苗圃内药材种植区域设计为如图18-5所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.解:设圆的半径为r,路面宽为a,根据题意得4r+2a=60,2r+2a=30,解得r=15,a=0.∵路面宽至少要留够0.5米宽,∴这个设计不可行.B组能力提升11.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是(B) A.第8秒B.第10秒C.第12秒D.第15秒12.(2013·兰州)如图18-6所示,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为(B) 13.(2011·泸州)如图18-7所示,半径为2的圆内接等腰梯形ABCD,图18-6图18-7它的下底AB 是圆的直径,上底CD 的端点在圆周上,则该梯形周长的最大值是__10__.14.如图18-8所示,P 是边长为1的正三角形ABC 的BC 边上一点,从P 向AB 作垂线PQ ,Q 为垂足.图18-8延长QP 与AC 的延长线交于R ,设BP =x (0≤x ≤1),△BPQ 与△CPR 的面积之和为y ,把y 表示为x 的函数是__y =338x 2-32x +34__.15.(2013·滨州)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm ,高为20cm.请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计).解:已知抽屉底面宽为x cm ,则底面长为180÷2-x =(90-x )cm.由题意得y =x (90-x )×20=-20(x 2-90x )=-20(x -45)2+40500当x =45时,y 有最大值,最大值为40500.答:当抽屉底面宽为45cm 时,抽屉的体积最大,最大体积为40500cm 3.16.(2013·潍坊)为了改善市民的生活环境,我市在某河滨空地处修建一个如图18-9所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点D 、E 在斜边AB 上,F 、G 分别在直角边BC 、AC 上;又分别以AB 、BC 、AC 为直径作半圆,设计了两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中AB =243米,∠BAC =60°.设EF =x 米,DE =y 米.图18-9(1)求y 与x 之间的函数解析式;解:在Rt △ABC 中,由题意得AC =123米,BC =36米,∠ABC =30°,∴AD =DG tan60°=x 3=33x ,BE =EF tan30°=3x ,又AD +DE +BE =AB ,∴y =243-33x -3x =243-433x (0<x <8).(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?解:矩形DEFG 的面积S =xy =243-433x =-433x 2+243x =-433(x -9)2+108 3.所以当x =9时,矩形DEFG 的面积最大,最大面积为1083平方米.(3)求两弯新月(阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的13?解:记AC 为直径的半圆、BC 为直径的半圆、AB 为直径的半圆面积分别为S 1、S 2、S 3,两弯新月面积为S ,则S 1=18πAC 2,S 2=18πBC 2,S 3=18πAB 2,由AC 2+BC 2=AB 2可知S 1+S 2=S 3,∴S 1+S 2-S =S 3-S △ABC ,故S =S △ABC ,所以两弯新月的面积S =12×123×36=2163(平方米)由-433(x -9)+1083=13×2163,即(x -9)2=27,解得x =9±33,符合题意,所以当x =9±33米时,矩形DEFG 的面积等于两弯新月面积的13.。
2018年河南省中考数学试卷(含答案与解析)

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前河南省2018年初中学业水平考试数 学(考试时间100分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.25-的相反数是( )A .25-B .25C .52-D .522.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元.数据“214.7亿”用科学记数法表示为( ) A .22.14710⨯ B .30.214710⨯ C .102.14710⨯D .110.214710⨯ 3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( ) A .厉 B .害 C .了 D .我(第3题) 4.下列运算正确的是()A .235()x x -=-B .235x x x +=C .347x x x =gD .3321x x -=5.河南省游资源丰富,2013—2017年旅游收入不断增长,同比增速分别为15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是06.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩7.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2x x =C .232x x +=D .2(1)10x -+=8.现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取2张卡片,则这两张卡片正面图案相同的概率是( )A .916B .34C .38 D .129.如图,已知AOBC Y 的顶点0,0,(),2()1O A -,点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边,OA OB 于点,D E ;②分别以点,D E 为圆心,大于12DE 的长为半径作弧,两弧在AOB ∠内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( ) A .1,2) B . C .(3- D .2,2)-10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A D B →→以1cm/s 的速度匀速运动到点B .图2是点F 运动时,FBC △的面积2(cm )y 随时间(s)x 变化的关系图象,则a的值为( ) A B .2-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------国我的了害厉毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共20页) 数学试卷 第4页(共20页)C .5D .(第10题)二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:|5|-= .12.如图,直线,AB CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=,则BOC ∠的度数为 .(第12题)13.不等式组5243x x +⎧⎨-⎩≥>的最小整数解是 .14.如图,在ABC △中,90,2ACB AC BC ∠===.将ABC △绕AC 的中点D 逆时针旋转90得到A B C '''△,其中点B 的运动路径为BB ',则图中阴影部分的面积为 .(第14题)15.如图,90MAN ∠=,点C 在边AM 上,4AC =,点B 为边AN 上一动点,连接BC ,A BC '△与ABC △关于BC 所在直线对称.点,D E 分别为,AC BC 的中点,连接DE 并延长交A B '所在直线于点F ,连接A E '.当A EF '△为直角三角形时,AB 的长为 .(第15题)三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:21(1)11xx x -÷+-,其中1x . 17.(本小题满分9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如右表所示),并根据调查结果绘制(第17题)根据以上统计图,解答下列问题: (1)本次接受调查的市民共有 人.(2)扇形统计图中,扇形E 的圆心角度数是 . (3)请补全条形统计图.(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 18.(本小题满分9分)如图,反比例函数0ky x x=(>)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式.(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点,O P . ②矩形的面积等于k 的值.(第18题)19.(本小题满分9分)如图,AB 是O e 的直径,DO AB ⊥于点O ,连接DA 交O e 于点C ,过点C 作O e 的切线交DO 于点E ,连接BC 交DO 于点F .(1)求证:CE EF =.ABCD EOC D B A 调查结果扇形统计图E 25%40%12%15%调查结果条形统计图NM F EA′BCD B数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(2)连接AF 并延长,交O e 于点G ,填空:①当D ∠的度数为 时,四边形ECFG 为菱形. ②当D ∠的度数为 时,四边形ECFG 为正方形.(第19题)20.(本小题满分9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自已的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上,A B 两点间的距离为90cm ,低杠上点C 到直线AB 的距离CE 的长为155cm ,高杠上点D 到直线AB 的距离DF 的长为234cm ,已知低杠的支架AC 与直线AB 的夹角CAE ∠为82.4,高杠的支架BD 与直线AB 的夹角DBF ∠为80.3,求高、低杠间的水平距离CH 的长.(结果精确到1cm .参考数据:sin82.40.991≈,cos82.40.132,tan82.47.500,sin80.30.983,cos80.30.168≈≈︒≈︒≈,tan80.3 5.850≈)(第20题)21.(本小题满分10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之[注:日销售利润=日销售量⨯(销售单价-成本单价)](1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值;(2)该产品的成本单价是 元.当销售单价x = 元时,日销售利润ω最大,最大值是 元.(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3 750元的销售目标,该产品的成本单价应不超过多少元? 22.(本小题满分10分) (1)问题发现如图1,在OAB △和OCD △中,,,40OA OB OC OD AOB COD ==∠=∠=,连接,AC BD 交于点M .填空:①AC BD的值为 ;②AM B ∠的度数为 . (2)类比探究如图2,在OAB △和OCD △中,90,30AOB COD OAB OCD ∠=∠=∠=∠=,连接AC 交BD 的延长线于点M .请判断ACBD的值及AM B ∠的度数,并说明理由. (3)拓展延伸在(2)的条件下,将OCD △绕点O 在平面内旋转,,AC BD 所在直线交于点M .若1,OD OB ==请直接写出当点C 与点M 重合时AC 的长.图1 图2 备用图(第22题)23.(本小题满分11分)如图,抛物线26y ax x c =++交x 轴于,A B 两点,交y 轴于点C .直线5y x =-经过点,B C .(1)求抛物线的解析式.(2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点,B C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点,,,A M P Q 为顶点的四边形是平行四边形,求点P 的横坐标. ②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.MOD CBA M DCOBA OAB毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)(第23题) 备用图数学试卷 第9页(共20页) 数学试卷 第10页(共20页)河南省2018年初中学业水平考试数学答案解析一、选择题 1.【答案】B【解析】25-的相反数是25. 【考点】相反数. 2.【答案】C【解析】214.7亿1021470000000 2.14710==⨯. 【考点】科学记数法. 3.【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面. 故选:D .【考点】正方体的表面展开图. 4.【答案】C【解析】A 、236()x x -=-,此选项错误; B 、2x 、3x 不是同类项,不能合并,此选项错误; C 、347x x x =g ,此选项正确; D 、3332x x x -=,此选项错误; 故选:C .【考点】整式的运算. 5.【答案】B【解析】A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%, 故中位数是:15.3%,故此选项错误; B 、众数是15.3%,正确;C 、1(15.3%12.7%15.3%14.5%17.1%)14.98%5++++=,故选项C 错误;D 、∵5个数据不完全相同, ∴方差不可能为零,故此选项错误. 故选:B .【考点】中位数,众数,平均数,方差.6.【答案】A【解析】设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为:54573y x y x =+⎧⎨=+⎩.故选:A .【考点】列二元一次方程组解应用题. 7.【答案】B【解析】A 、2690x x ++=264936360∆=-⨯=-=,方程有两个相等实数根; B 、2x x =20x x -=2(1)41010∆=--⨯⨯=>,两个不相等实数根; C 、232x x +=2230x x -+=2(2)41380∆=--⨯⨯=-<,方程无实根; D 、2(1)10x -+=2(1)1x -=-,则方程无实根; 故选:B .【考点】一元二次方程根的判别式. 8.【答案】D数学试卷 第11页(共20页) 数学试卷 第12页(共20页)【解析】根据题意可列表如下表所示.通过表格可以看出,所有等可能结果共有12种,其中2张卡片正面图案相同的结果有6种,所以P (2张卡片正面图案相同)61122==.【考点】概率. 9.【答案】A【解析】∵AOBC 的顶点(0,0),(1,2)O A -,∴1,2AH HO ==,∴Rt AOH △中,AO =OF 平分AOB ∠,∴AOG EOG ∠=∠,又∵AG OE ∥,∴AGO EOG ∠=∠,∴AGO AOG∠=∠,∴AG AO =,∴1HG =,∴1,2)G ,故选:A .【考点】平行四边形的性质,角平分线的画法,平面直角坐标系中点的坐标. 10.【答案】C【解析】过点D 作DE BC ⊥于点E ,由图象可知,点F 由点A 到点D 用时为s a ,FBC △的面积为2cm a . ∴AD a =∴12DE AD a =g ∴2DE =当点F 从D 到B∴BD =Rt DBE △中,1BE ==∵ABCD 是菱形 ∴1EC a =-,DC a =Rt DEC △中,2222(1)a a =+-解得32a =.故选:C .【考点】函数图象的阅读理解. 二、填空题 11.【答案】2【解析】原式532=-=. 【考点】实数的运算. 12.【答案】140【解析】∵直线,AB CD 相交于点O ,EO AB ⊥于点O , ∴90EOB ∠=, ∵50EOD ∠=, ∴40BOD ∠=,则BOC ∠的度数为:18040140-=.故答案为:140.【考点】垂直的性质和补角的性质. 13.【答案】2-数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】5243x x +⎧⎨-⎩>①≥②∵解不等式①得:3x >-, 解不等式②得:1x ≤, ∴不等式组的解集为31x -<≤, ∴不等式组的最小整数解是2-, 故答案为:2-.【考点】解一元一次不等式组及其最小整数解.14.【答案】53π42-【解析】如图,连接,BD B D '.由旋转可知,90BDB BCD B C D '''∠=,△≌△. ∵2AC BC ==,点D 为AC 的中点,∴1CD =.又∵90ACB ∠=,∴B D BD '===∴153(12)1π242BDB CDC B S S S '''=-⨯+⨯=-阴影部分扇形梯形.【考点】阴影部分的面积. 15.【答案】4或【解析】当A EF '△为直角三角形时,存在两种情况: ①当∠A'EF=90°时,如图1,∵A BC '△与ABC △关于BC 所在直线对称, ∴'4,'A C AC ACB A CB ==∠=∠, ∵点,D E 分别为,AC BC 的中点, ∴D 、E 是ABC △的中位线,∴DE AB ∥,∴90CDE MAN ∠=∠=, ∴CDE A EF '∠=∠, ∴AC A E '∥, ∴ACB A EC '∠=∠, ∴A CB A EC ''∠=∠, ∴4A C A E ''==,Rt A CB '△中,∵E 是斜边BC 的中点,∴28BC A B '==,由勾股定理得:222AB BC AC =-,∴AB == ②当90A FE '∠=︒时,如图2, ∵90ADF A DFB ∠=∠=∠=, ∴90ABF ∠=,∵A BC '△与ABC △关于BC 所在直线对称, ∴45ABC CBA '∠=∠=, ∴ABC △是等腰直角三角形, ∴4AB AC ==;综上所述,AB的长为或4;故答案为:或4.【考点】直角三角形的性质,轴对称的性质. 三、解答题16.【答案】解:原式11(1)(1)1x x xx x--+-=+1x=-.当1x=时,原式11)=-=【解析】根据分式的运算法则即可求出答案.【考点】分式的运算.17.【答案】解:(1)2000(2)28.8(3)补全条形统计图如图所示.(4)9040%36⨯=(万人)即估计赞同“选育无絮杨品种,并推广种植”的人数约为36万人.【解析】(1)将A选项人数除以总人数即可得;(2)用360乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【考点】条形统计图和扇形统计图的综合运用.18.【答案】解:(1)∵点(2,2)P在反比例函数(0)ky xx=>的图象上,∴22k=,即4k=.∴反比例函数的解析式为4yx=.(2)如图所示,矩形OAPB,矩形OCDP,矩形OEFP都是符合题意的图形,任意画出两个即可.【解析】(1)将P点坐标代入kyx=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【考点】应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质.19.【答案】(1)证明:连接OC.∵CE 是O的切线,∴OC CE⊥.∴90FCO ECF∠+∠=.∵DO AB⊥,∴90B BFO∠+∠=.∵CFE BFO∠=∠,∴90B CFE∠+∠=.∵,OC OB FCO B=∠=∠.∴ECF CFE∠=∠.∴CE EF=.(2)解:①30②22.5【解析】(1)连接OC,如图,利用切线的性质得1490∠+∠=,再利用等腰三角形和互余证明12∠=∠,然后根据等腰三角形的判定定理得到结论;(2)①当30D∠=时,60DAO∠=,证明CEF△和FEG△都为等边三角形,从而得到EF FG GE CE CF====,则可判断四边形ECFG为菱形;②当22.5D∠=时,67.5DAO∠=,利用三角形内角和计算出45COE∠=,利用对称得45EOG∠=,则90COG∠=,接着证明OECOEG△≌△得到90OEG OCE∠=∠=,从而证明四边形ECOG为矩形,然后进一步证明四边形数学试卷第15页(共20页)数学试卷第16页(共20页)数学试卷 第17页(共20页) 数学试卷 第18页(共20页)ECOG 为正方形.【考点】切线的性质. 四、解答题20.【答案】解:在Rt CAE △中,15515520.7(cm)tan 7.500tan82.4CE AE CAE ==≈≈∠.在Rt DBF △中,23423440(cm)tan 5.850tan80.3DF BF DBF ==≈=∠.∴20.79040150.7151(cm)EF AE AB BF =++≈++=≈. ∵四边形CEFH 为矩形,∴151cm CH EF =≈. 即高、低杠间的水平距离CH 的长约是151cm .【解析】利用锐角三角函数,在Rt ACE △和Rt DBF △中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长. 【考点】锐角三角函数解直角三角形.21.【答案】解:(1)设y 关于x 的函数解析式为y kx b =+.由题意,得85175,95125,k b k b +=⎧⎨+=⎩解得5,600.k b =-⎧⎨=⎩∴y 关于x 的函数解析式为5600y x =-+. (2)80 100 2 000(3)设该产品的成本单价为a 元.由题意,得(590600)(90)3750a -⨯+-≥, 解得65a ≤.答:该产品的成本单价应不超过65元.【解析】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和ω的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【考点】二次函数的应用,一元二次方程的应用,不等式的应用. 22.【答案】解:(1)①1②40 (2)90ACAMB BD=∠=. 理由如下:∵9030AOB COD OAB OCD ∠=∠=∠=∠=,, ∴tan603CO AODO BO===, COD AOD AOB AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,∴AOC BOD △∽△. ∴AC COCAO DBO BD DO=∠=∠. ∵90AOB ∠=,∴90DBO ABD BAO ∠+∠+∠=, ∴90CAO ABD BAO ∠+∠+∠=,∴90AMB ∠=.(3)AC的长为【解析】(1)①证明()COA DOB SAS △≌△,得AC BD =,比值为1;②由()COA DOB SAS △≌△,得CAO DBO ∠=∠,根据三角形的内角和定理得:180()18014040AMB DBO OAB ABD ∠=-∠+∠+∠=-=;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则 = ,由全等三角形的性质得∠AMB 的度数;(3)正确画图形,当点C 与点M 重合时,有两种情况:如图3和4,同理可得:AOCBOD △∽△,则90,ACAMB BD∠=AC 的长.【考点】三角形全等和相似的性质和判定,几何变换问题.23.【答案】解:(1)∵直线5y x =-交x 轴于点B ,交y 轴于点C , ∴(5,0),(0,5)B -.∵抛物线26y ax x c=++过点,B C ,数学试卷 第19页(共20页) 数学试卷 第20页(共20页)∴25300,5,a c c ++=⎧⎨=-⎩∴1,5.a c =-⎧⎨=-⎩∴抛物线的解析式为265y x x =-+-.(2)①∵5,90OB OC BOC ==∠=,∴45ABC ∠=. ∵抛物线265y x x =-+-交x 轴于,A B 两点, ∴(1,0)A .∴4AB =. ∵AM BC ⊥,∴AM =. ∵PQ AM ∥,∴PQ ⊥.若以点,,,A M P Q为顶点的四边形是平行四边形,则PQ AM ==过点P 作PD x ⊥轴交直线BC 于点D ,则45PDQ ∠=.∴4PD ==.设2(,65)P m m m -+-,则(,5)D m m -. 分两种情况讨论:a .当点P 在直线BC 上方时,2265(5)54PD m m m m m =-+---=-+=. ∴11m =(舍去),24m =. b .当点P 在直线BC 下方时,225(65)54PD m m m m m =---+-=-=.∴345522m m +==. 综上所述,点P 的横坐标为4或52+52-. ②1317(,)66M -或237(,)66-. 【解析】(1)利用一次函数解析式确定(0,5)C -,(5,0)B ,然后利用待定系数法求抛物线解析式;(2)①先解方程2650x x -+-=得(1,0)A ,再判断OCB △为等腰直角三角形得到45OBC OCB ∠=∠=,则A M B △为等腰直角三角形,所以AM =平行四边形的性质得到PQ AM PQ BC ==⊥,作PD x ⊥轴交直线BC 于D ,如图1,利用45PDQ ∠=得到4PD ==,设2(,65)P m m m -+-,则(,5)D m m -,讨论:当P 点在直线BC 上方时,265(5)4PD m m m =-+---=;当P 点在直线BC 下方时,25(65)4PD m m m =---+-=,然后分别解方程即可得到P 点的横坐标;②作AN BC ⊥于N ,NH x ⊥轴于H ,作AC 的垂直平分线交BC 于1M ,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到12AM B ACB ∠=∠,再确定(3,2)N -,AC 的解析式为55y x =-,E 点坐标为15(,)22-,利用两直线垂直的问题可设直线1EM 的解析式为15y x b =-+,把15(,)22E -代入求出b 得到直线1EM 的解析式为11255y x =--,则解方程组511255y x y x =-⎧⎪⎨=-⎪⎩得1M 点的坐标;作直线BC 上作点1M 关于N 点的对称点2M ,如图2,利用对称性得到212AM C AM B ACB ∠=∠=∠,设2(,5)M x x -,根据中点坐标公式得到13632x =,然后求出x 即可得到2M 的坐标,从而得到满足条件的点M 的坐标.【考点】二次函数综合题.。
专题18 投影与视图、命题、尺规作图-2023年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题18 投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc< D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 321.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同 22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是( )A .圆锥B .三棱锥C .三棱柱D .四棱柱23.(2022·广西梧州·中考真题)下列命题中,假命题...是( ) A .2-的绝对值是2-B .对顶角相等C .平行四边形是中心对称图形D .如果直线,a c b c ∥∥,那么直线a b ∥ 24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为( )A .3B .4C .6D .925.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是( )A .长方体B .正方体C .三棱柱D .圆柱26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为( )A.4个B.5个C.6个D.7个27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;②连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A .ABC 是等边三角形B .AB CD ⊥C .AH BH =D .45ACD ∠=︒ 33.(2022·四川广元·中考真题)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .52B .3C .2D .10334.(2022·河北·中考真题)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A .①③B .②③C .③④D .①④二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b >,那么0b a -<”的逆命题:________. 36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13m MC CD ==,垂直于地面的木棒EF 与影子FG 的比为2∶3,则点O ,M 之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m ,则AB =_________m .40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ⊥OD ,EF ⊥FG .已知小明的身高EF 为1.8米,求旗杆的高AB .42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)43.(2022·重庆·中考真题)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明BCE 的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图㾗迹). 在BAE 和EFB △中,∵EF BC ⊥,∴90EFB ∠=︒.又90A ∠=︒,∴__________________①∵AD BC ∥,∴__________________②又__________________③∴()BAE EFB AAS △≌△.同理可得__________________④∴111222BCE EFB EFC ABFE EFCD ABCD S S S S S S =+=+=△△△矩形矩形矩形.44.(2022·甘肃武威·中考真题)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义 甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧; 以丁为圆心,以乙丁为半径画弧得交点己; 再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线. 如图2,ABC ∠为直角. 以点B 为圆心,以任意长为半径画弧,交射线BA ,BC 分别于点D ,E ;以点D 为圆心,以BD 长为半径画弧与DE 交于点F ;再以点E 为圆心,仍以BD 长为半径画弧与DE 交于点G ;作射线BF ,BG .(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出DBG ∠,GBF ∠,FBE ∠的大小关系.45.(2022·浙江台州·中考真题)如图,在ABC 中,AB AC =,以AB 为直径的⊥O 与BC 交于点D ,连接AD .(1)求证:BD CD =;(2)若⊥O 与AC 相切,求B 的度数; (3)用无刻度的直尺和圆规作出劣弧AD 的中点E .(不写作法,保留作图痕迹)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008-2013年河南中考数学第18题汇总
2008年
18.(9分)复习“全等三角形”的知识时,老师布置了一道作业
题:
“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,
将AP绕点A
顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP。
”
小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△
ABC≌△ACP,从而证得BQ=CP。
之后,他将点P移到等腰三角形
ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请
你就图②给出证明。
2009年
18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.
根据上述信息解答下列问题:
(1)m=______,n=_________;
(2)在扇形统计图中,D组所占圆心角的度数为_____________;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?
2010年
2010年
18.(9分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
图①图②
2011年
18.(9分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).
在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m = ; (2)该市支持选项B 的司机大约有多少人?
(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?
2012年
18(9分)如图,在菱形ABCD 中,AB=2,60DAB ∠=
,点E 是AD 边的
中点,点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD ,AN.
(1)求证:四边形AMDN 是平行四边形;
(2)填空:①当AM 的值为 时,四边形AMDN 是矩形; ②当AM 的值为 时,四边形AMDN 是菱形。
2013年
18.(9分)如图,在等边三角形ABC中,BC=6cm
,射线AC∥BC,点E从点A出发沿射线AC以1cm/s
的速度运动,同时点F从点B出发沿射线BC以2cm/s
的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)填空:
①当t为__________s时,四边形ACFE是菱形;
②当t为__________s时,以A、F、C、E、为顶点的四边形是直角梯形.
答案
2008
证明:∵∠QAP=∠BAC
∴∠QAP+∠PAB=∠PAB+∠BAC
即∠QAB=∠PAC 4分
在△ABQ和△ACP中
AQ=AP
∠QAB=∠PAC
AB=AC
2009
18.(1)8,4;………………………………………………………2分(2)1440;………………………………………………………5分(3)估计该校平均每周体育锻炼时间不少于6小时的学生约有:
3000×20154
50
++
=3000×
39
50
=2340(人).……………………………9分
2011
18.(1)(C选项的频数为90,正确补全条形统计图);……………………………2分
20.………………………………………………………………………………………4分
(2)支持选项B 的人数大约为:5000×23%=1150.……………………………………6分 (3)小李被选中的概率是:
1002
115023.
=
………………………………………………9分 2012
18、(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM ∴,NDE MAE NDE AME ∠=∠∠=∠ 又∵点E 是AD 中点,∴DE=AE ∴,NDE MAE ND MA ≅∴= ∴四边形AMDN 是平行四边形 (2)①1;②2
2013
18.(9分)
(1)证明:∵D 为中点,∴AD=DC
∵AG ∥BC ,∴∠EAC=∠ACF ,∠AEF=∠EFC ,∴△ADE ≌△CDF (2)①6;②
32。