高等数学复旦大学出版第三版下册课后答案习题全

合集下载

高等数学下册黄立宏廖基定著复旦大学出版社第十章课后答案

高等数学下册黄立宏廖基定著复旦大学出版社第十章课后答案

− 2 arcsin y ≤ x ≤ π; arcsin y ≤ x ≤ π − arcsin y.
0 π 1 π − arcsin y
所以 (5) 相应二重积分的积分区域 D 由 D1 与 D2 两部分组成,其中

0
dx ∫
x − sin 2
f ( x, y )dy = ∫ dy ∫
−1
−2arcsin y
∫ (1)
1
2
ww w.
图 10-5 (2) (4)
2 x 的交点(1,2),与 x=2 的交点为(2,4), (3)区域 D 如图 10-5 所示,直线 y=2x 与曲线 2 2 y= ≤ y ≤ 2 x, 1 ≤ x ≤ 2. x 与 x=2 的交点为(2,1) ,区域 D 可表示为 x 曲线
y=
1
1− y
f ( x, y )dx
可表示为
y 2 ≤ x ≤ y + 2, − 1 ≤ y ≤ 2 .
图 10-3 所以
图 10-4
2
D
−1
y2
课 后



x 所以 . 6. 画出积分区域,改变累次积分的积分次序:
∫∫
D
f ( x, y )dσ = ∫ dx ∫2 f ( x, y )dy
1
2y
2
2x
(1) (2)
课 后
I = ∫∫
D
4 + xy dσ , D = {( x, y ) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}
2 2

∫∫
ln( x + y )dσ < ∫∫ [ln( x + y )]2 dσ

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)
101
(4) b•
ê§ lim
x→∞
xb eax
=
lim
x→∞
bxb−1 aeax
=
··· =
lim
x→∞
b! abeax
=0
bؕ
ê§K[b]
b
<
[b]+1§u´
|x|[b] eax
|x|b eax
<
|x|[b]+1 eax (|x|
> 1)§
þ¡®y²§‚ 4••0§Ïd§¥m 4•••0.
l
§é?¿a, b§þk lim
lim
+
=
x→0
24
24
1
6
ax − bx
ax ln a − bx ln b
a
(9) lim
= lim
= ln a − ln b = ln (a = 0, b = 0)
x→0 x
x→0
1
b
x−1
1
(10) lim
x→1
ln x
= lim
x→1
1
=1
x
(11) lim ax − xa = lim ax ln a − axa−1 = aa(ln a − 1)
(x2 − 1) sin x
(4) lim x→1 ln
1 + sin π x
2

x2 sin 1
1
1
2x sin − cos
1 cos
(1) Ï
x ©f!©1Óžéx¦ ê§
x

x x → 0ž4•Ø•3§Ïdâ
sin x
cos x
cos x

高等数学下课后习题及答案

高等数学下课后习题及答案

高等数学下课后习题及答案
《高等数学下课后习题及答案》
在学习高等数学的过程中,课堂上的知识点讲解只是一个方面,更重要的是通过课后习题的练习来加深对知识的理解和掌握。

下面我们将介绍一些高等数学下课后习题及答案,希望能够帮助大家更好地学习和掌握这门学科。

1. 求下列函数的极限:
(a) lim(x→0) (sinx/x)
(b) lim(x→∞) (1+1/x)^x
答案:
(a) lim(x→0) (sinx/x) = 1
(b) lim(x→∞) (1+1/x)^x = e
2. 求函数f(x) = x^3 - 3x^2 + 2x的极值点。

答案:
f'(x) = 3x^2 - 6x + 2
令f'(x) = 0,解得x=1或x=2
再求f''(x),得f''(1) = 6,f''(2) = 6
所以x=1或x=2时,f(x)取极小值。

3. 求曲线y = x^3 - 3x^2 + 2x的渐近线方程。

答案:
当x→±∞时,y→±∞
所以y = x^3 - 3x^2 + 2x没有水平渐近线
当x→±∞时,y = x^3 - 3x^2 + 2x与y = x^3相似
所以y = x^3是y = x^3 - 3x^2 + 2x的斜渐近线。

以上就是一些高等数学下课后习题及答案的介绍,希望能够对大家的学习有所帮助。

在学习过程中,多做习题,多总结规律,相信大家一定能够掌握好这门学科。

复旦大学数学系《数学分析》(第3版)(下册)章节题库-多变量微积分学-含参变量的积分和反常积分【圣才

复旦大学数学系《数学分析》(第3版)(下册)章节题库-多变量微积分学-含参变量的积分和反常积分【圣才


从而
于是不等式 p≤α<p+1,蕴含 I(p)≥I(α)>I(p+1),I(p+1)≥I(α+1)>I(p+2),
由此推出
因为
所以由上式可得
在此式中用 α+n 代 α(因而 p+n≤α+n<p+n+1,亦即相应地用 p+n 代 p),即 得
由此可知当 n→∞时,数列 f(α+n)(n=1,2,…)有极限 π/2.但上面已证 f(x)以 1 为周期,所以
(2)证明如下: 因为在上面步骤②中已证 I(α)是 α 的减函数,所以 I(α)>I(α+1)>I(α+2),
由此可知
(最后一步用到上面步骤①中的结果),即 I(α+1)/I(a)介于 l 和(α+2)
2 / 44
圣才电子书

/(α+1)之间,从而
十万种考研考证电子书、题库视频学习平 台
这蕴含 f(α+1)=(α+2)I(α+1)I(α+2)=(α+1)I(α)I(α+1)=f(α).
因此 f 是周期函数(周期为 1),从而若 p 为一个整数,则
1 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平


②因为当 0<x<π/2 时 0<sinx<1,所以当
由 分
F(y)= 而,更有
易知 f(x,y)是 0≤x≤1,0≤y≤1 上的连续函数.从而,积
是 0≤y≤1 上的连续函数,因此,
.从
9.设:
其中 a<b 及 f(y)为可微分的函数,
8 / 44
圣才电子书

求 F''(x).
十万种考研考证电子书、题库视频学习平 台
解:当 x∈(a,b)时,由于
于是,得
(3)利用对称性知,所求的体积为

关于 高等数学课后习题答案 复旦大学出版社 李开复编

关于 高等数学课后习题答案 复旦大学出版社 李开复编

高等数学(上)第一章 函数与极限1. 设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ 2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ;⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ 3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。

4. 设数列{}nx 有界, 又,0lim =∞→nn y证明: .0lim =∞→nnn yx5. 根据函数的定义证明: ⑴ ()813lim 3=-→x x(2) 0sin lim =+∞→x x x6. 根据定义证明: 当0→x 时,函数x x y 21+=是无穷大.问x 应满足什么条件时,才能使?104>y 7. 求极限:⑴13lim223+-→x x x =0⑵ ()hx h x h 22lim-+→=x h h x h h 2)2(lim 0=+→⑶13lim 242+-+∞→x x x x x =0(4) ()2121lim nn n -+++∞→Λ=212)1(lim 2=-∞→n n n n (5)⎪⎭⎫ ⎝⎛---→311311lim x x x =1)1)(1(31lim 221-=++--++→x x x x x x(6) ()223222lim -+→x x x x =∞8. 计算下列极限: ⑴ xxx 1sinlim 20→=0⑵ x x x arctan lim ∞→=0arctan .1lim =∞→x xx 9. 计算下列极限:⑴ x x x ωsin lim 0→=ϖϖϖϖ=→.sin lim 0xx x ⑵ x x x 3tan lim 0→=33cos 1.3sin lim 0=→xx x x ⑶ xx xx sin 2cos 1lim 0-→=2sin .sin 2lim 20=→xx xx(4)xx x 321⎪⎭⎫ ⎝⎛-∞→lim =6620)21(lim ---→=⎥⎦⎤⎢⎣⎡-e x xx(5)()xx x 121+→lim =22.210)21(lim e x xx =+→(6)xx x x ⎪⎭⎫ ⎝⎛--∞→13lim =21)2.(21)121(lim -+--∞→=-+e xxx10. 利用极限存在准则证明:⑴ 11211lim 222=⎪⎭⎫⎝⎛++++++∞→πππn n nn n n Λ故原式=1⑵ 数列ΛΛ,222,22,2+++的极限存在,并求其极限.11. 当0→x 时, 22x x -与32x x -相比, 哪一个是较高阶的无穷小12. 当1→x 时, 无穷小x -1和()2121x -是否同阶是否等价13. 证明: 当0→x 时, 有2~1sec 2x x -.14. 利用等价无穷小的代换定理, 求极限:xx x x 30sin sin tan lim-→.15. 讨论()201212x x f x x x ⎧≤<=⎨-≤≤⎩ 的连续性, 并画出其图形.16. 指出下列函数的间断点属于哪一类.若是可去间断点,则补充或改变函数的定义使其连续.⑴2,123122==+--=x x x x x y⑵ 11311=⎩⎨⎧>-≤-=x x xx x y1x y ==017. 讨论函数()xx x x f nnn 2211lim +-=∞→的连续性, 若有间断点,判别其类型。

高等数学复旦大学出版第三版课后答案

高等数学复旦大学出版第三版课后答案

206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。

高等数学复旦大学出版第三版课后答案习题全1(陈策提供)

高等数学复旦大学出版第三版课后答案习题全1(陈策提供)

习题一1. 下列函数是否相等,为什么?222(1)()();(2)sin (31),sin (31);1(3)(),() 1.1f xg x y x u t x x f x g x x x ===+=+-==+- 解: (1)相等.因为两函数的定义域相同,都是实数集R ;x =知两函数的对应法则也相同;所以两函数相等.(2)相等.因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等.(3)不相等.因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 求下列函数的定义域211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x xy y x x ==-==-解: (1)要使函数有意义,必须400x x -≥⎧⎨≠⎩即 40x x ≤⎧⎨≠⎩所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩即 301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1).(3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须12sin 1x -≤≤ 即 11sin 22x -≤≤即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数).也即ππππ66k x k -+≤≤+ (k 为整数).所以函数的定义域是ππ[π,π]66k k -++, k 为整数.3. 求函数1sin ,00,0x y xx ⎧≠⎪=⎨⎪=⎩的定义域与值域. 解: 由已知显然有函数的定义域为(-∞,+∞),又当0x ≠时,1x可以是不为零的任意实数,此时,1sinx可以取遍[-1,1]上所有的值,所以函数的值域为[-1,1]. 4. 没1()1xf x x-=+,求1(0),(),().f f x f x -解: 10(0)110f -==+,1()1(),1()1x x f x x x --+-==+--1111().111x x f x x x--==++ 5.设1,10()1,02x f x x x -≤<⎧=⎨+≤≤⎩,求(1)f x -.解: 1,1101,01(1).(1)1,012,13x x f x x x x x -≤-<≤<⎧⎧-==⎨⎨-+≤-≤≤≤⎩⎩6. 设()2,()ln xf xg x x x ==,求(()),(()),(())f g x g f x f f x 和(())g g x . 解: ()ln (())22,g x x x f g x ==(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==⋅=⋅()2(())22,(())()ln ()ln ln(ln ).xf x f f xg g x g x g x x x x x ====7. 证明:3()21f x x =-和()g x =. 证:由321y x =-解得x =故函数3()21f x x =-的反函数是)y x =∈R ,这与()g x =数,所以3()21f x x =-和()g x =. 8. 求下列函数的反函数及其定义域:2531(1); (2)ln(2)1;1(3)3; (4)1cos ,[0,π].x xy y x xy y x x +-==+++==+∈ 解: (1)由11xy x-=+解得11y x y -=+,所以函数11x y x -=+的反函数为1(1)1xy x x-=≠-+. (2)由ln(2)1y x =++得1e 2y x -=-,所以,函数ln(2)1y x =++的反函数为1e2()x y x -=-∈ R .(3)由253x y +=解得31(log 5)2x y =- 所以,函数253x y +=的反函数为31(log 5)(0)2y x x =-> .(4)由31cos y x =+得cos x =又[0,π]x ∈,故x =又由1cos 1x -≤≤得301cos 2x ≤+≤,即02y ≤≤,故可得反函数的定义域为[0,2],所以,函数31cos ,[0,π]y x x =+∈的反函数为(02)y x =≤≤.9. 判断下列函数在定义域内的有界性及单调性:2(1); (2)ln 1xy y x x x ==++ 解: (1)函数的定义域为(-∞,+∞), 当0x ≤时,有201x x ≤+,当0x >时,有21122x x x x ≤=+, 故(,),x ∀∈-∞+∞有12y ≤.即函数21xy x=+有上界. 又因为函数21xy x =+为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数21xy x =+有界.又由1212121222221212()(1)11(1)(1)x x x x x x y y x x x x ---=-=++++知,当12x x >且121x x <时,12y y >,而 当12x x >且121x x >时,12y y <. 故函数21xy x =+在定义域内不单调. (2)函数的定义域为(0,+∞),10,0M x ∀>∃>且12;e 0M x M x >∃>>,使2ln x M >.取012max{,}x x x =,则有0012ln ln 2x x x x M M +>+>>, 所以函数ln y x x =+在定义域内是无界的. 又当120x x <<时,有12120,ln ln 0x x x x -<-<故1211221212(ln )(ln )()(ln ln )0y y x x x x x x x x -=+-+=-+-<. 即当120x x <<时,恒有12y y <,所以函数ln y x x =+在(0,)+∞内单调递增. 10. 判断下列函数的奇偶性:22(1)()(2)e e sin .x x f x y x -==-+解: (1)()()f x f x -==()f x ∴=.(2)222222()e e sin()e e sin (e e sin )()x x x x x x f x x x x f x ----=-+-=-+=--+=-∴函数22e e sin x x y x -=-+是奇函数.11. 设()f x 定义在(-∞,+∞)上,证明:(1) ()()f x f x +-为偶函数; (2)()()f x f x --为奇函数. 证: (1)设()()()F x f x f x =+-,则(,)x ∀∈-∞+∞, 有()()()()F x f x f x F x -=-+= 故()()f x f x +-为偶函数.(2)设()()(),G x f x f x =--则(,)x ∀∈-∞+∞,有()()()[()()]()G x f x f x f x f x G x -=---=---=-故()()f x f x --为奇函数.12. 某厂生产某种产品,年销售量为106件,每批生产需要准备费103元,而每件的年库存费为0.05元,如果销售是均匀的,求准备费与库存费之和的总费用与年销售批数之间的函数(销售均匀是指商品库存数为批量的一半). 解: 设年销售批数为x , 则准备费为103x ;又每批有产品610x 件,库存数为6102x 件,库存费为6100.052x ⨯元. 设总费用为,则63100.05102y x x⨯=+.13. 邮局规定国内的平信,每20g 付邮资0.80元,不足20 g 按20 g 计算,信件重量不得超过2kg,试确定邮资y 与重量x 的关系. 解: 当x 能被20整除,即[]2020x x =时,邮资0.802025x xy =⨯=;当x 不能被20整除时,即[]2020x x ≠时,由题意知邮资0.80120x y ⎡⎤=⨯+⎢⎥⎣⎦.综上所述有,02000;2520200.80,02000.1202020x xx x y x x x x ⎧⎡⎤<≤=⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎡⎤⎪⨯<≤≠+⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩且且 其中20x ⎡⎤⎢⎥⎣⎦,120x ⎡⎤+⎢⎥⎣⎦分别表示不超过20x ,120x +的最大整数. 14. 已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h hS S h h h h ϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h hϕ>=->得定义域为. 15. 下列函数是由哪些基本初等函数复合而成的?5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.16. 证明:11(1)arcsin h ln(h ln ,1121xx x x x x+=+=-<<-证: (1)由e e sinh 2x x y x --==得2e 2e 10x xy --=解方程2e2e 10xx y --=得e x y =因为e 0x >,所以e x y =ln(x y =所以sinh y x =的反函数是arcsin h ln(().y x x x ==-∞<<+∞(2)由e e tanh e e x x x xy x ---==+得21e 1xy y +=-,得1112ln ,ln 121y y x x y y ++==--;又由101yy+>-得11y -<<, 所以函数tanh y x =的反函数为11arctan h ln (11).21xy x x x+==-<<-17. 写出下列数列的通项公式,并观察其变化趋势:1234579(1)0,,,,,; (2)1,0,3,0,5,0,7,0,; (3)3,,,,.3456357----解: 1(1),1n n x n -=+当n →∞时,1n x →. 1(2)cos π2n n x n -=,当n 无限增大时,有三种变化趋势:趋向于+∞,趋向于0,趋向于-∞.21(3)(1)21nn n x n +=--,当n 无限增大时,变化趁势有两种,分别趋于1,-1. 18. 对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有n x a ε-<:1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε====解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<.当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数. (2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21n ε>即可.取21N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有0n x ε-<.当0.0001ε=时, 821100.0001N ⎡⎤==⎢⎥⎣⎦或大于108的整数. 19. 根据数列极限的定义证明:21313(1)lim0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有21n ε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<-,只要n >,取n =,则当n>N 时,1ε<-,从而lim 1n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.20. 若lim n n x a →∞=,证明lim n n x a →∞=,并举反例说明反之不一定成立. 证:lim 0n n x →∞=,由极限的定义知,0,0N ε∀>∃>,当n N >时,恒有n x a ε-<.而 n n x x a a ε-<-<0,0N ε∴∀>∃>,当n N >时,恒有n x a ε-<,由极限的定义知lim .n n x a →∞=但这个结论的逆不成立.如(1),lim 1,nn n n x x →∞=-=但lim n n x →∞不存在.21. 利用单调有界准则证明下列数列有极限,并求其极限值:1111(1)1,2,; (2)1,1,1,2,.1nn n nx x x n x x n x ++=====+=+证: (1)122x =<,不妨设2k x <,则12k x +<=.故对所有正整数n 有2nx <,即数列{}n x 有上界.又1n n n x x x+-=0>,又由2n x <从而10n n x x +->即1n n x x +>, 即数列{}n x 是单调递增的.由极限的单调有界准则知,数列{}n x 有极限. 设lim n n x a →∞=,则a =于是22a a =,2,0a a ==(不合题意,舍去),lim 2n n x →∞∴=.(2) 因为110x =>,且111nn nx x x +=++, 所以02n x <<, 即数列有界又 111111111(1)(1)nn n n n n n n n n x x x x x x x xx x --+---⎛⎫⎛⎫++-=-= ⎪ ⎪++++⎝⎭⎝⎭由110,10n n x x -+>+>知1n n x x +-与1n n x x --同号, 从而可推得1n n x x +-与21x x -同号, 而 1221131,1,022x x x x ==+=-> 故10n n x x +->, 即1n n x x +>所以数列{}n x 单调递增,由单调有界准则知,{}n x 的极限存在. 设lim n n x a →∞=, 则11a a a=++, 解得1122a a +-==(不合题意,舍去). 所以lim n n x →∞=22. 用函数极限定义证明:22222102sin 314(1)lim 0; (2)lim 3; (3)lim 4; 42141(4)lim 2; (5)lim sin 0.21x x x x x x x x xx x x x x x →+∞→∞→-→→---===-++-==+证:(1)0ε∀>,要使1sin sin 0x xx x xε=≤<-, 只须1x ε>,取1X ε>,则当x X >时,必有sin 0xxε<-,故sin lim0x xx→+∞=.(2)0ε∀>,要使22221313313||44x x x x ε-=<<-++,只须x >取X =X x >时,必有223134x x ε-<-+, 故2231lim 34x x x →∞-=+. (3) 0ε∀>,要使24(4)22x x x ε-=<--++, 只要取δε=,则当02x δ<<+时,必有24(4)2x x ε-<--+,故224lim42x x x →--=-+. (4) 0ε∀>,要使21142221221x x x x ε-==<+-++,只须122x ε<+,取2εδ=,则当102x δ<<+时,必有214221x x ε-<-+故21214lim221x x x →--=+. (5) 0ε∀>,要使11sin0sin x x x x xε=≤<-, 只要取δε=,则当00x δ<<-时,必有1sin0x xε<-, 故01lim sin0x x x→=. 23. 求下列极限:222423123242233(1)lim ;(2)lim ;1311(3)lim ;(4)lim ;21311(1)(2)(3)(5)lim ;(6)lim ;215x x x x x n x x x x x x x x xx x x x x n n n x n→→→∞→∞→∞→∞-++-+-----++++++ (7)若211lim 221x x ax b x →∞⎛⎫+=-- ⎪+⎝⎭,求a 和b . 解:()()2232233lim 33933(1)lim 1lim 9151x x x x x x x →→→---===+++. 2221424242112222333422424lim()11(2)lim 2.31lim(31)13111111(3)lim lim .1121221111lim (4)lim lim 0.3131311lim 1(5x x x x x x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x →→→→∞→∞→∞→∞→∞→∞+++===--+-+-⨯+--==----⎛⎫-- ⎪-⎝⎭===-+⎛⎫-+-+ ⎪⎝⎭222222121lim 21)lim lim 01111lim 1x x x x x x x x x x x x →∞→∞→∞→∞⎛⎫++ ⎪+⎝⎭===+⎛⎫++ ⎪⎝⎭由无穷大与无穷小的关系知, 21lim21x x x →∞+=∞+. 3(1)(2)(3)1123(6)limlim 1115511123lim lim lim .11155n n n n n n n n n n n n n n n →∞→∞→∞→∞→∞+++⎛⎫⎛⎫⎛⎫=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=⋅⋅=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭24. 解:因为221(1)()(1)11x a x a b x b ax b x x +--++---=++ 由已知211lim 21x x ax b x →∞⎛⎫+=-- ⎪+⎝⎭知,分式的分子与分母的次数相同,且x 项的系数之比为12,于是 10a -= 且()112a b -+= 解得 31,2a b ==-. 25. 利用夹逼定理求下列数列的极限:(1)lim[(1)],01;k k n n n k →∞+-<<(2)n 其中11,,,m a a a 为给定的正常数;1(3)lim(123);(4)nn nn n →∞++解: 1111(1)0(1)(1)1(1)1k k k kk k n n n n n n n -⎡⎤⎡⎤<+-=<=+-+-⎢⎥⎢⎥⎣⎦⎣⎦而lim 00n →∞=,当1k <时,11lim0kn n -→∞=lim[(1)]0k k n n n →∞∴+-=.(2)记12max{,,,}m a a a a =则有n <<即1na m a <<⋅而 1lim , lim ,nn n a a m a a →∞→∞=⋅=故n a = 即12lim max{,,,}m n a a a =.(3)111(3)(123)(33)n nn n nn n<++<⋅即 113(123)3n nn n n+<++<而 1lim33,lim33n nn n +→∞→∞==故 1lim(123)3nn nn →∞++=.(4)11111n n<+<+ 而 1lim10,lim(1)1n n n→∞→∞=+=故1n =. 26. 通过恒等变形求下列极限:2222214123(1)11(1)lim; (2)lim;1222168(3)lim; (4)lim ;154n n nx x n n xx x x x x x →∞→∞→→++++-⎛⎫+++⎪⎝⎭-+-+--+32233π5422(5)lim ;1cot lim;2cot cot (9)lim(1)(1)(1)(1);(10)nx x x x x xxx x x x x x →+∞→→→→∞---+++< 112231100(1(1)lim ;(1)113(11)lim ; (12)lim ;(1)11log (1)1(13)lim ; (14)lim n n x x x x a x x x x x x x x x x a x x-→→→→→----+⎛⎫- ⎪---⎝⎭+-3sin 00;sin (15)lim(12); (16)lim ln .xx x x x x→→+解:22123(1)(1)111(1)limlim lim .1222n n n n n n n n n →∞→∞→∞++++--⎛⎫===- ⎪⎝⎭1221112244411112(2)lim lim 2.11221221(1)(3)lim lim lim(1)0.1168(2)(4)22(4)lim lim lim .54(1)(4)13n n n n x xx x x x x x xx x x x xx x x x xx x x +→∞→∞→→→→→→⎛⎫- ⎪⎛⎫⎝⎭==+++ ⎪⎝⎭--+-==-=---+---===-+---32222000(5)lim lim lim2.(1lim lim(1 2.x x x x x x xx x →+∞→→→=====-+=--5555x x x x →→→→=====3333ππ4422π422π41cot 1cot (8)lim lim 2cot cot (1cot )(1cot )(1cot )(1cot cot )lim (1cot )(11cot cot )1cot cot 3lim .2cot cot 4x x x x x xx x x x x x x x x x x x x x →→→→--=---+--++=-+++++==++122222(9)lim(1)(1)(1)(1)(1)(1)(1)(1)lim111lim .11nnn x x x x x x x x x x x xx x x+→∞→∞→∞+++<-+++=--==--111211211(1(1)(10)lim(1))(1))(1)11.234!n n x n n n n x n n n n x n x x x x x x x x n n -→--→-→--=++++=++++==⨯⨯⨯⨯ 22223111221113213(11)lim lim lim (1)(1)(1)(1)11(1)(2)(2)lim lim 1.(1)(1)1x x x x x x x x x x x x x x x x x x x x x x x x x →→→→→++-+-⎛⎫==- ⎪-++-++--⎝⎭-+-+===--++++2212211221lim(1)(1)(12)lim 01lim(1)1lim.(1)x x x x x x x x x x x x x →→→→--==-+-+-+∴=∞-1log (1)(13)log (1)a x a x x x+=+ 而10lim(1).xx x e →+= 而1limlog log ln a a u eu e a→==0log (1)1lim.ln a x x x a→+∴=(14)令1,xu a =-则log (1),a x u =+当0x →时,0u →.所以00011limlim ln log (1)log (1)lim x x u aa u a u a u x u u→→→-===++(利用(13)题的结果). 1122000336ln(12)ln(12)sin sin 2sin 0lim 6ln(12)6lim limln(12)sin sin 61ln e 6(15)lim(12)limelimeeee e .xx x x x xx x xxx xx x x xxx x xx x →→→++→→→⋅⋅+⋅⋅+⨯⨯+======(16)令sin x u x =, 则00sin lim lim1x x xu x→→==而1limln 0u u →= 所以0sin limln0.x xx→= 27. 利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )x x x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln elim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.xx x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦28. 利用取对数的方法求下列幂指函数的极限:()11002(1)lim ;(2)lim ;e 3111(3)lim ;(4)lim .sin cos 1x x xxx xx x x xx x a b c x x x x →→→∞→∞⎛⎫+++ ⎪⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭解:(1)令1(e )xxy x =+,则1ln ln(e )x y x x=+ 于是:()0000ln e ln 111e lim ln lim ln lim ln e lim 1e e x x x x x x x x x x x y x x x x →→→→⎛⎫++ ⎪⎛⎫⎝⎭===++ ⎪⎝⎭e 0001e 1lim 1lim lim ln 1ln 11e e e e 11ln e 2x xxx x x x x x x x x x →→→⎡⎤⎛⎫⎛⎫==+⋅+⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=+⋅= 即()lim ln 2x y →= 即20lim e x y →= 即()120lim e e x x x x →=+. (2)令13xxxxa b c y ⎛⎫++= ⎪⎝⎭,则1ln ln3x x x a b c y x ++= 于是00333303300001lim(ln )lim ln 313lim ln 1333lim lim ln 1331111lim ln lim 13x x x x x x xxx x x xx x a b c x x x a b c x xxxxxxa b c x x x x x x x x x x a b c y x a b c x a b c a b c x a b c a b c x x x →→++-++-→++-→→→→++=⎡⎤⎛⎫++-=⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦++-⎛⎫++-=⋅+ ⎪⎝⎭⎛⎫---++=⋅++ ⎪+⎝⎭33331(ln ln ln )ln e ln 3x x x a b c a b c ++-⎡⎤⎛⎫-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦=++⋅=即0lim(ln )ln x y →= 即()lim ln x y →=故0lim x y →=即1lim 3x x xxx a b c →⎛⎫++=⎪⎝⎭(3)令11sin cos xy x x ⎛⎫=+ ⎪⎝⎭,则11ln ln sin cos y x x x ⎛⎫=+ ⎪⎝⎭ 于是11sin cos 1111sin cos 1111sin cos 111lim ln lim ln 1sin cos 11111lim ln 1sin cos 1sin cos 111sin 1cos lim ln lim 11xx x x x x x x x x y x x x x x x x x x x x x ⎛⎫+- ⎪⎝⎭+-→∞→∞+-→∞→∞⎧⎫⎪⎪⎡⎤⎛⎫=⎨⎬++- ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎡⎤⎛⎫⎛⎫=⋅++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫- ⎪=-⋅ ⎪ ⎪⎝⎭111sin cos 1111sin cos 1x x x x x +-→∞⎧⎫⎪⎪⎡⎤⎛⎫⎨⎬++- ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭2111sin 2ln e (10)ln e 1lim lim 11x x x x x x →∞→∞⎛⎫⎛⎫ ⎪⎪⎝⎭=⋅=-⋅= ⎪- ⎪ ⎪⎝⎭ 即limln 1x y →∞= 从而()lim ln 1x y →∞= 故lim e x y →∞= 即 11lim e sin cos xx x x →∞⎛⎫=+ ⎪⎝⎭.(4)令211xy x ⎛⎫=+ ⎪⎝⎭,则21ln ln 1y x x ⎛⎫=+ ⎪⎝⎭于是:22221222211lim(ln )lim ln lim ln 111111lim ln lim lim ln 110ln e 0x x x x x x x x x x y x x x x x x x x →∞→∞→∞→∞→∞→∞⎡⎤⎛⎫⎛⎫==+⎢⎥ ⎪+ ⎪⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫==⋅++ ⎪ ⎪⎝⎭⎝⎭=⋅= 即 ()lim lim(ln )0,ln 0x x y y →∞→∞==lim 1x y →∞∴= 即21lim 11xx x →∞⎛⎫=+ ⎪⎝⎭. 29. 当0x →时,22x x -与23x x -相比,哪个是高阶无穷小量?解:232200limlim 022x x x x x x x x x→→--==-- ∴当0x →时,23x x -是比22x x -高阶的无穷小量.30. 当1x →时,无穷小量1x -与221(1)1,(2)(1)2x x --是否同阶?是否等价? 解:211111(1)limlim 112x x x x x →→-==-+ ∴当1x →时,1x -是与21x -同阶的无穷小.2111(1)12(2)lim lim 112x x x xx →→-+==-∴当1x →时,1x -是与21(1)2x -等价的无穷小.31. 利用0sin lim 1x xx→=或等价无穷小量求下列极限:002000sin (1)lim ;(2)lim cot ;sin 1cos 2(3)lim ;sin arctan 3(5)lim;(6)lim 2sin ;2x x x x x n n x n mxx x nx x x x x xx→→→→→→∞-22102320020041arctan (7)lim ;(8)lim ;arcsin(12)sin arcsin 2tan sin cos cos (9)lim ;(10)lim ;sin 1cos 4(12)lim 2sin t x x x x x x x x x x x x x x x x xx x x αβ→→→→→→-----+ 222200;an ln cos ln(sin e )(13)lim ;(14)lim .ln cos ln(e )2x x x x x ax x x bx x x→→+-+-解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx所以00sin limlim .sin x x mx mx mnx nx n→→==00002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x→→→→→→→→=⋅===-=== (4)因为当0x →时,2221ln(1e sin )~e sin 1~2xxx x x +,所以22200002e sin sin lim lim 2e lim 2.12x x x x x x x x x x x→→→→⎛⎫==⋅= ⎪⎝⎭ (5)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xx x →→==.sin sin 22(6)lim 2sin lim lim .222n nn n n n n n nx x x x x x x x →∞→∞→∞=⋅== (7)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=---- (8)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以 2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅. (9)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以 233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (10)因为当0x →时,sin~,sin~2222x x x x αβαβαβαβ++--,所以22002222sinsincos cos 22lim lim 222lim1().2x x x x xx x xx x xxαβαβαβαβαββα→→→+---=+--⋅⋅==-(11)因为当0x →时,arcsin~)~,x x --所以00 1.x x x →→→==-=-(12)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x xx x x x x x x x x x x xx x →→→→→-=++⋅==++==+ (13)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 l n [1(c o s 1)]~c o s 1,l n [1(c o s 1)]a x a xb x b x +--+-- 又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以 22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====-- (14)因为当0x →时,222sin 0,0e exx x x →→ 故 222222sin sin ln ~,ln ~,11e ee e x x xx x xx x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x x x x x x x x x x x x xx x x x xx x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅= 32. 求下列函数在指定点处的左、右极限,并说明在该点处函数的极限是否存在?,0,(1)()10,xx f x xx ⎧≠⎪=⎨⎪=⎩ 在0x =处; 2,2(2)()102x x f x x x +≤⎧⎪=⎨>⎪-⎩ 在2x =处. 解:00(1)lim ()lim lim 1,x x x x xf x x x+++→→→=== 000l i m ()l i m l i m 1x x xxxf x xx---→→→-===- 因为 0lim ()lim ()x x f x f x +-→→≠ 所以0lim ()x f x →不存在.(2)22221lim ()lim ,lim ()lim(2)42x x x x f x f x x x ++--→→→→==+∞=+=-因为2lim ()x f x +→不存在,所以2lim ()x f x →不存在. 33. 研究下列函数的连续性,并画出图形:2,1,,01,(1)()(2)()1,1;2,12;x x x x f x f x x x x≤⎧≤≤⎧==⎨⎨>-<<⎩⎩ 221(3)()lim ;(4)()lim .1x x nx x nn n n n x f x f x x n n x --→∞→∞--==++解:(1)由初等函数的连续性知,()f x 在(0,1),(1,2)内连续, 又21111lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=== 1lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,又,由2lim ()lim 0(0)x x f x x f ++→→===,知()f x 在0x =处右连续,综上所述,函数()f x 在[0,2)内连续. 函数图形如下:图1-2(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由1111lim ()lim 11,lim ()lim 1,x x x x f x f x x --++→-→-→-→-====-知1lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.又由1111lim ()lim 1,lim ()lim11,x x x x f x x f x --++→→→→==== 及(1)1f =知1lim ()(1)x f x f →=,从而()f x 在x =1处连续,综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:图1-3(3)∵当x <0时,221()lim lim 1,1x x x xx x n n n n n f x n n n --→∞→∞--===-++ 当x =0时,00()lim 0,n n n f x n n →∞-==+ 当x >0时,2222111()limlim lim 1111x xxx x xx n n n xn n n n f x n n n n --→∞→∞→∞---====+++ 1,0,()lim0,0,1,0.x xx xn x n n f x x n n x --→∞-<⎧-⎪∴===⎨+⎪>⎩由初等函数的连续性知()f x 在(,0),(0,)-∞+∞内连续,又由 0lim ()lim11,lim ()lim(1)1x x x x f x f x ++--→→→→===-=- 知0lim ()x f x →不存在,从而()f x 在0x =处间断.综上所述,函数()f x 在(,0),(0,)-∞+∞内连续,在0x =处间断.图形如下:图1-4(4)当|x |=1时,221()lim0,1nnn x f x x x →∞-==+ 当|x |<1时,221()lim,1nnn x f x x x x →∞-==+ 当|x |>1时,2222111()limlim 111nnn nn n x x f x x x x x x →∞→∞⎛⎫- ⎪-⎝⎭==⋅=-+⎛⎫+ ⎪⎝⎭即 ,1,()0,1,, 1.x x f x x x x <⎧⎪==⎨⎪->⎩由初等函数的连续性知()f x 在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-知1lim ()x f x →-不存在,从而()f x 在1x =-处不连续.又由 1111lim ()lim()1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=-== 知1lim ()x f x →不存在,从而()f x 在1x =处不连续.综上所述,()f x 在(-∞,-1),(-1,1),(1,+∞)内连续,在1x =±处间断. 图形如下:图1-534. 下列函数在指定点处间断,说明它们属于哪一类间断点,如果是可去间断点,则补充或改变函数的定义,使它连续:2221(1),1,2;32π(2),π,π,0,1,2,;tan 21(3)cos ,0;x y x x x x x y x k x k k x y x x-===-+===+=±±==1,1,(4) 1.3,1,x x y x x x -≤⎧==⎨->⎩解:22111(1)(1)(1)lim lim 232(1)(2)x x x x x x x x x →→--+==--+-- 2221lim 32x x x x →-=∞-+ 1x ∴=是函数的可去间断点.因为函数在x =1处无定义,若补充定义(1)2f =-,则函数在x =1处连续;x =2是无穷间断点.π0π2(2)lim1,lim 0tan tan x x k x x x x →→+==当0k ≠时,πlimtan x k xx →=∞.π0,π,0,1,2,2x x k k ∴==+=±±为可去间断点,分别补充定义f (0)=1,π(π)02f k +=,可使函数在x =0,及ππ2x k =+处连续.(0,1,2,k =±±);π,0,1,2,x k k k =≠=±±为无穷间断点(3)∵当0x →时,21cosx 呈振荡无极限, ∴x =0是函数的振荡间断点.(第二类间断点).(4)11lim lim(3) 2.x x y x ++→→=-= 11lim lim(1)0x x y x --→→=-= ∴x =1是函数的跳跃间断点.(第一类间断点.)35. 当x =0时,下列函数无定义,试定义(0)f 的值,使其在x =0处连续:1tan 2(1)()(2)();1(3)()sin sin ;(4)()(1).x xf x f x x f x x f x x x ====+解:0003(1)lim ()2x x x f x →→→=== ∴补充定义3(0),2f =可使函数在x =0处连续. 000tan 22(2)lim ()lim lim 2.x x x x xf x x x→→→=== ∴补充定义(0)2,f =可使函数在x =0处连续.1(3)limsin sin0x x x→= ∴补充定义(0)0,f =可使函数在x =0处连续.10(4)lim ()lim(1)e xx x f x x →→=+=∴补充定义(0)e,f =可使函数在x =0处连续. 36. 怎样选取a , b 的值,使f (x )在(-∞,+∞)上连续?π1,,e ,0,2(1)()(2)()π,0;sin ,.2x ax x x f x f x a x x x b x ⎧+<⎪⎧<⎪==⎨⎨+≥⎩⎪+≥⎪⎩解:(1)()f x 在(,0),(0,)-∞+∞上显然连续,而0lim ()lim(),x x f x a x a ++→→=+= 0lim ()lim e 1,xx x f x --→→== 且(0)f a =, ∴当(0)(0)(0)f f f -+==,即1a =时,()f x 在0x =处连续,所以,当1a =时,()f x 在(,)-∞+∞上连续.(2)()f x 在ππ(,),(,)22-∞+∞内显然连续.而ππ22ππ22lim ()lim (sin )1,πlim ()lim (1)1,2π()1,2x x x x f x x b b f x ax a f b ++--→→→→=+=+=+=+=+ ∴当π112b a +=+,即π2b a =时,()f x 在π2x =处连续,因而()f x 在(,)-∞+∞上连续.37. 试证:方程21xx ⋅=至少有一个小于1的正根.证:令()21xf x x =⋅-,则()f x 在[0,1]上连续,且(0)10,(1)10f f =-<=>,由零点定理,(0,1)ξ∃∈使()0f ξ=即210ξξ⋅-=即方程21xx ⋅=有一个小于1的正根.38. 试证:方程sin x a x b =+至少有一个不超过a b +的正根,其中0,0a b >>. 证:令()sin f x x a x b =--,则()f x 在[0,]a b +上连续, 且 (0)0,()(1sin )0f b f a b a x =-<+=-≥, 若()0f a b +=,则a b +就是方程sin x a x b =+的根. 若()0f a b +>,则由零点定理得.(0,)a b ξ∃∈+,使()0f ξ=即sin 0a b ξξ--=即sin a b ξξ=+,即ξ是方程s i n x a x b =+的根,综上所述,方程sin x a x b =+至少有一个不超过a b +的正根.39. 设()f x 在[0,2]a 上连续,且(0)(2)f f a =,证明:方程()()f x f x a =+在[0,a ]内至少有一根.证:令()()()F x f x f x a =-+,由()f x 在[0,2]a 上连续知,()F x 在[0,]a 上连续,且(0)(0)(),()()(2)()(0)F f f a F a f a f a f a f =-=-=-若(0)()(2),f f a f a ==则0,x x a ==都是方程()()f x f x a =+的根,若(0)()f f a ≠,则(0)()0F F a <,由零点定理知,至少(0,)a ξ∃∈,使()0F ξ=,即()()f f a ξξ=+,即ξ是方程()()f x f x a =+的根,综上所述,方程()()f x f x a =+在[0,]a 内至少有一根.40.设()f x 在[0,1]上连续,且0()1f x ≤≤,证明:至少存在一点[0,1]ξ∈,使()f ξξ=. 证:令()()F x f x x =-,则()F x 在[0,1]上连续,且(0)(0)0,(1)(1)10,F f F f =≥=-≤ 若(0)0f =,则0,ξ=若(1)1f =,则1ξ=,若(0)0,(1)1f f ><,则(0)(1)0F F ⋅<,由零点定理,至少存在一点(0,1)ξ∈,使()0F ξ=即()f ξξ=.综上所述,至少存在一点[0,1]ξ∈,使()f ξξ=. 41. 若()f x 在[,]a b 上连续,12n a x x x b <<<<<,证明:在1[,]n x x 中必有ξ,使12()()()()n f x f x f x f nξ+++=.证: 由题设知()f x 在1[,]n x x 上连续,则()f x 在1[,]n x x 上有最大值M 和最小值m ,于是12()()()n f x f x f x m M n+++≤≤,由介值定理知,必有1[,]n x x ξ∈,使12()()()()n f x f x f x f nξ+++=.习题二1. 设212s gt =,求2d d t s t =. 解:d d sgt t =,故2d 2d t s g t ==. 2.(1) 设1()f x x=,求00()(0);f x x '≠解:0021()().x x f x f x x =''==-(2) 设()(1)(2)(),f x x x x x n =--⋅⋅-求(0).f '解:00()(0)(0)limlim(1)(2)()0(1)!x x n f x f f x x x n x n →→-'==--⋅⋅--=-3.下列各题中均假定0()f x '存在,按照导数定义观察下列极限,指出A 表示什么.(1) 000()()lim ;x f x x f x A x∆→-∆-=∆解:0000000()()()()lim lim ()x x f x x f x f x x f x f x x x∆→∆→-∆--∆-'=-=-∆-∆故0()A f x '=- (2) 000()()0,lim;x x f x f x A x x→==- 解:00000()()limlim ()x x x x f x f x f x x x x x →→'=-=---故0()A f x '=- (3) 000()()lim.h f x h f x h A h→+--=解:00000000000000000()()()()()()limlim ()()()()lim lim()()2()h h h h f x h f x h f x h f x f x h f x h h h f x h f x f x h f x h h f x f xf x →→→→+--+---⎡⎤=-⎢⎥⎣⎦+---=+-'''=+= 故02().A f x '= 4.讨论函数y =0x =点处的连续性和可导性.解:00(0)x f →==,故函数在0x =处连续.又2300lim x x x -→→==∞,故函数在0x =处不可导. 5.设函数2,1,(),1.x x f x ax b x ⎧≤=⎨+>⎩ 为了使函数()f x 在1x =点处连续且可导,,a b 应取什么值?解:因211lim ()lim 1(1)x x f x x f --→→===。

高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案

高等数学(经管类)下、林伟初  郭安学主编、复旦大学出版社、课后习题答案

1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。

2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) cos ax 3 P1P2 14
cos ay 1 P1P2 14
cos az 2 .
P1P2 14
(4)
e0
P1P2 P1P2
{
3, 14
1 , 2 } 14 14
3 i 14
1 j 14
2 k. 14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余 弦. 解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
习题七
1. 在空间直角坐标系中,定出下列各点的位置:
A(1,2,3); B(-2,3,4); C(2,-3,-4);
D(3,4,0); E(0,4,3); F(3,0,0).
解:点 A 在第Ⅰ卦限;点 B 在第Ⅱ卦限;点 C 在第Ⅷ卦限;
点 D 在 xOy 面上;点 E 在 yOz 面上;点 F 在 x 轴上.
8. 验证: (a b) c a (b c) .
证明:利用三角形法则得证.见图 7-1
图 7-1
9. 设 u a b 2c, v a 3b c. 试用 a, b, c 表示 2u 3v.
解:
2u 3v 2(a b 2c) 3(a 3b c) 2a 2b 4c 3a 9b 3c 5a 11b 7c
z 轴上的点,x=y=0.
4. 求下列各对点之间的距离:
(1) (0,0,0),(2,3,4);
(2) (0,0,0), (2,-3,-4);
(3) (-2,3,-4),(1,0,3);
(4) (4,-2,3), (-2,1,3).
解:(1) s 22 32 42 29
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到 x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).

x
轴上的投影
ax=13,在
y
轴上分向量为
7j.
17.解:设 a {ax , ay , az} 则有
cos
3
a i ai
ax( a
1,
i
1)
求得 ax
1 2
.
设 a 在 xoy 面上的投影向量为 b 则有 b {ax , ay , 0}
则 cos
a b
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
21
21
21
15. 求出向量 a= i +j+k, b=2i-3j+5k 和 c =-2i-j+2k 的模,并分别用单位向量 ea , eb , ec 来表达
向量 a, b, c.
解: | a | 12 12 12 3
故 s0 42 (3)2 52 5 2
sx (4 4)2 (3 0)2 (5 0)2 34
sy 42 (3 3)2 52 41
sz 42 (3)2 (5 5)2 5 .
6. 在 z 轴上,求与两点 A(-4,1,7)和 B(3,5,-2)等距离的点. 解:设此点为 M(0,0,z),则
| b | 22 (3)2 52 38
| c | (2)2 (ห้องสมุดไป่ตู้)2 22 3
a 3ea , b 38eb , c 3ec.
16. 设 m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量 a=4m+3n-p 在 x 轴上的投影及在 y 轴上的
分向量.
解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k
(4)2 12 (7 z)2 32 52 (2 z)2 解得 z 14
9 即所求点为 M(0,0, 14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角 三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形.
BD1 BD2 BD3 BD4
c c c c
1a 5 2a 5 3a 5 4 a. 5
11. 设向量 OM 的模是 4,它与投影轴的夹角是 60°,求这向量在该轴上的投影.
解:设 M 的投影为 M ,则
Pr
ju OM
OM
cos 60
4
1 2
2.
12. 一向量的终点为点 B(2,-1,7),它在三坐标轴上的投影依次是 4,-4 和 7,求这向量
的起点 A 的坐标.
解:设此向量的起点 A 的坐标 A(x, y, z),则
AB {4, 4, 7} {2 x, 1 y, 7 z}
解得 x=-2, y=3, z=0 故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢?
答: 在 xOy 面上的点,z=0;
在 yOz 面上的点,x=0;
在 zOx 面上的点,y=0.
3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢?
答:x 轴上的点,y=z=0;
y 轴上的点,x=z=0;
10. 把△ABC 的 BC 边分成五等份,设分点依次为 D1,D2,D3,D4,再把各分点与 A 连接,
试以 AB c , BC a 表示向量 D1A , D2 A , D3 A 和 D4 A .
解:
D1 A D2 A D3 A D4 A
BA BA BA BA
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
az Pr jz P1P2 2.
(2) P1P2 (7 4)2 (1 0)2 (3 5)2 14
相关文档
最新文档