大学物理(华中科技版)第14章习题答案

合集下载

大学物理第14章思考题解

大学物理第14章思考题解

《大学物理学》(下册)思考题解第14章 电磁感应14-1 在电磁感应定律i d dtΦ=-¶中,负号的含义是什么? 如何根据负号来判断感应电动势的方向?答:电磁感应定律i d dtΦ=-¶中的负号来自于楞次定律。

由于磁通量Φ变化而引起感应电动势i ¶变化、从而产生感应电流,这个电流的磁场将阻碍原磁通量Φ的变化。

例如原磁通量Φ正在增加,所激发的感应电动势的感应电流的感应磁场将阻碍这个Φ增加。

14-2 如题图所示的几种形状的导线回路,假设均匀磁场垂直于纸面向里,且随时渐减小。

试判断这几种形状的导线回路中,感应电流的流向答:14-3 将一磁铁插入一个由导线组成的闭合电路线圈中,一次迅速插入,另一次缓慢插入。

问:(1)两次插入时在线圈中的感生电荷量是否相同? (2)两次手推磁铁的力所做的功是否相同?(3)若将磁铁插入一个不闭合的金属环中,在环中间发生什么变化? 答:始末两态的磁通1Φ、2Φ不变,所以 (1) 感生电荷量12q RΦ-Φ=,与时间、速度无关,仅与始末两态的磁通有关,所以两次插入线圈的感生电荷量相同。

(2)从感应电流作功考虑,W I t =∆¶,定性地判断:两种情况下I t q ∆=不变,12d dttΦ-ΦΦ=∆=-¶分子不变分母有区别,所以两次手推磁铁的力,慢慢插入的作功少,快速插入的作功多。

(3) 若将磁铁插入一个不闭合的金属环中,在环的两端将产生感应电动势。

14-4 让一块很小的磁铁在一根很长的竖直钢管内下落,若不计空气阻力,试定性说明磁铁进入钢管上部、中部和下部的运动情况,并说明理由。

答:把小磁铁看作磁矩为m的磁偶极子,下落至钢管口附近时,由于钢管口所围面积的磁通量发生了变化,管壁将产生感生电动势和感生电流,感生电流将激发感生磁场'1B ,由于磁矩m 自己产生的磁感B 在管口产生的磁通正在增加,根据楞次定律,它所激发的感生磁场'1B 将阻碍这个增加,因此,'1B 与B 反方向。

湖南大学物理(2)第14,15章课后习题参考答案

湖南大学物理(2)第14,15章课后习题参考答案

第14章 稳恒电流的磁场 一、选择题1(B).2(D).3(D).4(B).5(B).6(D).7(B).8(C).9(D).10(A) 二、填空题(1). 最大磁力矩.磁矩 ; (2). R 2c ;(3).)4/(0a I μ; (4).RIπ40μ ;(5).i .沿轴线方向朝右. ; (6). )2/(210R rI πμ. 0 ;(7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正.负.三 计算题1.一无限长圆柱形铜导体(磁导率0).半径为R .通有均匀分布的电流I .今取一矩形平面S (长为1 m.宽为2 R ).位置如右图中画斜线部分所示.求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小.由安培环路定律可得: )(220R r rRIB ≤π=μ因而.穿过导体内画斜线部分平面的磁通1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外.与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而.穿过导体外画斜线部分平面的磁通2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ1 m2. 横截面为矩形的环形螺线管.圆环内外半径分别为R 1和R 2.芯子材料的磁导率为.导线总匝数为N .绕得很密.若线圈通电流I .求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2. )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B d Φr b rNId 2π=μ12ln2R R NIbπ=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流.在导线内部作一平面S .S 的一个边是导线的中心轴线.另一边是S 平面与导线表面的交线.如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0 =4×10-7T ·m/A.铜的相对磁导率r ≈1)解:在距离导线中心轴线为x 与x x d +处.作一个单位长窄条. 其面积为 x S d 1d ⋅=.窄条处的磁感强度 202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x R Ix20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度.设线圈中的电流强度为I .解:如图.CD 、AF 在P 点产生的 B = 0x2EF DE BC AB B B B B B+++=)sin (sin 4120ββμ-π=aIB AB . 方向其中 2/1)2/(sin 2==a a β.0sin 1=β ∴ a I B AB π=240μ. 同理, aI B BC π=240μ.方向.同样 )28/(0a I B B EF DE π==μ.方向⊙.∴ aI B π=2420μaIπ-240μaIπ=820μ 方向.5. 如图所示线框.铜线横截面积S = 2.0 mm 2.其中OA 和DO '两段保持水平不动.ABCD 段是边长为a 的正方形的三边.它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中.B 的方向竖直向上.已知铜的密度 = 8.9×103 kg/m 3.当铜线中的电流I =10 A 时.导线处于平衡状态.AB 段和CD 段与竖直方向的夹角 =15°.求磁感强度B 的大小.解:在平衡的情况下.必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia =31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈.半径分别为R 1、R 2.电流为I 1、I 2.电流的方向相反.求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右.那么有 2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0.则B 方向为沿x 轴正方向.若B < 0.则B的方向为沿x 轴负方向.P7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I .沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c=1.0 cm 、I =1.0 mA 、B =3.0×10-1T.沿b 边两侧的电势差U =6.65 mV.上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数). 解:(1) 根椐洛伦兹力公式:若为正电荷导电.则正电荷堆积在上表面.霍耳电场的方向由上指向下.故上表面电势高.可知是p 型半导体。

大学物理答案第14章培训讲学

大学物理答案第14章培训讲学

大学物理答案第14章第十四章波动光学14-1在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明条纹位于图中O处,现将光源S向下移动到图中的S′位置,则()(A)中央明纹向上移动,且条纹间距增大(B)中央明纹向上移动,且条纹间距不变(C)中央明纹向下移动,且条纹间距增大(D)中央明纹向下移动,且条纹间距不变分析与解由S发出的光到达S1、S2的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S移到S′时,由S′到达狭缝S1和S2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O′处.使得由S′沿S1、S2狭缝传到O′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B).题14-1 图14-2如图所示,折射率为n2,厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,且n1<n2,n2>n3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ).14-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题14-3图分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )14-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( )(A ) 3 个 (B ) 4 个 (C ) 5 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹 因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B ).14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,正确答案为(D ).14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) 3I 0/16 (B ) 3I 0/8 (C ) 3I 0/32 (D ) 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为(C ).14-7 自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为( )(A ) 完全线偏振光,且折射角是30°(B ) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C ) 部分偏振光,但须知两种介质的折射率才能确定折射角(D ) 部分偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.故选(D ).14-8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光?分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ.此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故mm 97822.=∆x . 解1 屏上暗纹的位置()212λ+'=k d d x ,把m 102782243-⨯==.,x k 以及d 、d ′值代入,可得λ=632.8 nm ,为红光.解2 屏上相邻暗纹(或明纹)间距'd x d λ∆=,把322.7810m 9x -∆=⨯,以及d 、d ′值代入,可得λ=632.8 nm .14-9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3 m双缝间距: d =d ′λ/Δx =1.34 ×10-4 m14-10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高?分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd()d k D D D h 412sin tan -=≈≈λθθ 取k =1 时,得d D h 4min λ=. 14-11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况.插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色?分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…) 取k =10,得薄膜厚度e 10 =n 210λ=1.4 ×10-6m . 14-15 折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1.40 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小Δl =0.5 mm ,那么劈尖角θ 应是多少?分析 劈尖干涉中相邻条纹的间距l ≈θλn 2,其中θ 为劈尖角,n 是劈尖内介质折射率.由于前后两次劈形膜内介质不同,因而l 不同.则利用l ≈θλn 2和题给条件可求出θ.解 劈形膜内为空气时,θλ2=空l 劈形膜内为液体时,θλn l 2=液则由θλθλnlll22-=-=∆液空,得()rad107112114-⨯=∆-=./lnλθ14-16如图(a)所示的干涉膨胀仪,已知样品的平均高度为3.0 ×10-2m,用λ=589.3 nm的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析温度升高ΔT=T2-T1后,样品因受热膨胀,其高度l的增加量Δl =lαΔT.由于样品表面上移,使在倾角θ不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k级条纹从a 移至a′处,如图(b)所示,移过某一固定观察点的条纹数目N与Δl的关系为2λNl=∆,由上述关系可得出热膨胀系数α.解由题意知,移动的条纹数N=20,从分析可得TlN∆=αλ2则热膨胀系数5105112-⨯=∆=.TlNλα K1-14-17在利用牛顿环测未知单色光波长的实验中,当用已知波长为589.3 nm的钠黄光垂直照射时,测得第一和第四暗环的距离为Δr=4.00 ×10-3 m;当用波长未知的单色光垂直照射时,测得第一和第四暗环的距离为Δr ′=3.85 ×10-3 m ,求该单色光的波长.分析 牛顿环装置产生的干涉暗环半径λkR r =,其中k =0,1,2…,k =0,对应牛顿环中心的暗斑,k =1 和k =4 则对应第一和第四暗环,由它们之间的间距λR r r r =-=∆14,可知λ∝∆r ,据此可按题中的测量方法求出未知波长λ′.解 根据分析有λλ'=∆'∆r r 故未知光波长 λ′=546 nm14 -18 如图所示,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1 μm ,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整的暗环?题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =3.9,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n =1.40 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了7.0 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得()m 101545126-⨯=-=.n N d λ 14-20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代入,可得k =3(2) 由分析可知,半波带数目为7.题14-20 图14-21 一单色平行光垂直照射于一单缝,若其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比较法来确定波长.对应于同一观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长已知的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得()nm 642812121221.=++=k k λλ14-22 已知单缝宽度b =1.0 ×10-4 m ,透镜焦距f =0.50 m ,用λ1 =400 nm 和λ2 =760 nm 的单色平行光分别垂直照射,求这两种光的第一级明纹离屏中心的距离,以及这两条明纹之间的距离.若用每厘米刻有1000条刻线的光栅代替这个单缝,则这两种单色光的第一级明纹分别距屏中心多远? 这两条明纹之间的距离又是多少?分析 用含有两种不同波长的混合光照射单缝或光栅,每种波长可在屏上独立地产生自己的一组衍射条纹,屏上最终显示出两组衍射条纹的混合图样.因而本题可根据单缝(或光栅)衍射公式分别计算两种波长的k 级条纹的位置x 1和x 2 ,并算出其条纹间距Δx =x 2 -x 1 .通过计算可以发现,使用光栅后,条纹将远离屏中心,条纹间距也变大,这是光栅的特点之一.解 (1) 当光垂直照射单缝时,屏上第k 级明纹的位置()f b k x 212λ+=当λ1 =400 nm 和k =1 时, x 1 =3.0 ×10-3 m当λ2 =760 nm 和k =1 时, x 2 =5.7 ×10-3 m其条纹间距 Δx =x 2 -x 1 =2.7 ×10-3 m(2) 当光垂直照射光栅时,屏上第k 级明纹的位置为f dk x λ=' 而光栅常数 m 10m 1010532--==d 当λ1 =400 nm 和k =1 时, x 1 =2.0 ×10-2 m当λ2 =760 nm 和k =1 时, x 2 =3.8 ×10-2 m其条纹间距 m 1081212-⨯='-'='∆.x x x 14-23 老鹰眼睛的瞳孔直径约为6 mm ,问其最多飞翔多高时可看清地面上身长为5cm 的小鼠? 设光在空气中的波长为600 nm .分析 两物体能否被分辨,取决于两物对光学仪器通光孔(包括鹰眼)的张角θ 和光学仪器的最小分辨角θ0 的关系.当θ≥θ0 时能分辨,其中θ=θ0 为恰能分辨.在本题中D λθ2210.=为一定值,这里D 是鹰的瞳孔直径.而h L /=θ,其中L 为小鼠的身长,h 为老鹰飞翔的高度.恰好看清时θ=θ0.解 由分析可知 L /h =1.22λ/D ,得飞翔高度h =LD /(1.22λ) =409.8 m .14-24 一束平行光垂直入射到某个光栅上,该光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm .实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数.分析 根据光栅衍射方程λϕk d ±=sin ,两种不同波长的谱线,除k =0 中央明纹外,同级明纹在屏上位置是不同的,如果重合,应是它们对应不同级次的明纹在相同衍射角方向上重合.故由d sin φ=k λ1 =k ′λ2 可求解本题.解 由分析可知21sin λλϕk k d '==, 得得 2312///=='λλk k上式表明第一次重合是λ1 的第3 级明纹与λ2 的第2级明纹重合,第二次重合是λ1 的第6 级明纹与λ2 的第4级明纹重合.此时,k =6,k ′=4,φ=60°,则光栅常数μm 05.3m 1005.3/sin 61=⨯==-ϕλk d*14-25 波长为600 nm 的单色光垂直入射在一光栅上,其透光和不透光部分的宽度比为1:3,第二级主极大出现在200sin .=ϕ处.试问(1) 光栅上相邻两缝的间距是多少?(2) 光栅上狭缝的宽度有多大? (3) 在-90°<φ<90°范围内,呈现全部明条纹的级数为哪些.分析 (1) 利用光栅方程()λϕϕk b b d ±='+=sin sin ,即可由题给条件求出光栅常数b b d '+=(即两相邻缝的间距).这里b 和b '是光栅上相邻两缝透光(狭缝)和不透光部分的宽度,在已知两者之比时可求得狭缝的宽度(2) 要求屏上呈现的全部级数,除了要求最大级次k 以外,还必须知道光栅缺级情况.光栅衍射是多缝干涉的结果,也同时可看成是光透过许多平行的单缝衍射的结果.缺级就是按光栅方程计算屏上某些应出现明纹的位置,按各个单缝衍射计算恰是出现暗纹的位置.因此可以利用光栅方程()λϕϕk b b d ='+=sin sin 和单缝衍射暗纹公式'sin b k ϕλ=可以计算屏上缺级的情况,从而求出屏上条纹总数.解 (1)光栅常数 μm 6m 106sin 6=⨯==-ϕk λd (2) 由 ⎪⎩⎪⎨⎧='='+=31μm 6b b b b d 得狭缝的宽度b =1.5 μm .(3) 利用缺级条件()()()⎩⎨⎧±=''=±=='+,...1,0sin ,...1,0sin k k b k k b b λϕλϕ 则(b +b ′)/b =k /k ′=4,则在k =4k ′,即±4, ±8, ±12,…级缺级.又由光栅方程()λϕk b b ±='+sin ,可知屏上呈现条纹最高级次应满足()10='+<λ/b b k ,即k =9,考虑到缺级,实际屏上呈现的级数为:0, ±1, ±2, ±3,±5, ±6, ±7, ±9,共15 条.*14-26 以波长为0.11 nm 的X 射线照射岩盐晶体,实验测得X 射线与晶面夹角为11.5°时获得第一级反射极大.(1) 岩盐晶体原子平面之间的间距d 为多大? (2) 如以另一束待测X 射线照射,测得X 射线与晶面夹角为17.5°时获得第一级反射光极大,求该X 射线的波长.分析 X 射线入射到晶体上时,干涉加强条件为2d sin θ =k λ(k =0,1,2,…)式中d 为晶格常数,即晶体内原子平面之间的间距(如图).解 (1) 由布拉格公式(),...,,210sin 2==k k d λθ第一级反射极大,即k =1.因此,得 nm 276.0sin 211==θλd(2) 同理,由2d sin θ2 =kλ2 ,取k =1,得nm 166.0sin 222==θλd题14-26图14-27 测得一池静水的表面反射出来的太阳光是线偏振光,求此时太阳处在地平线的多大仰角处? (水的折射率为1.33)题14-27 图分析 设太阳光(自然光)以入射角i 入射到水面,则所求仰角i θ-=2π.当反射光起偏时,根据布儒斯特定律,有120arctan n n i i ==(其中n 1 为空气的折射率,n 2 为水的折射率).解 根据以上分析,有120arctan 2πn n θi i =-== 则 o 129.36arctan 2π=-=n n θ 14-28 一束光是自然光和线偏振光的混合,当它通过一偏振片时,发现透射光的强度取决于偏振片的取向,其强度可以变化5 倍,求入射光中两种光的强度各占总入射光强度的几分之几.分析 偏振片的旋转,仅对入射的混合光中的线偏振光部分有影响,在偏振片旋转一周的过程中,当偏振光的振动方向平行于偏振片的偏振化方向时,透射光强最大;而相互垂直时,透射光强最小.分别计算最大透射光强I max 和最小透射光强I min ,按题意用相比的方法即能求解.解 设入射混合光强为I ,其中线偏振光强为xI ,自然光强为(1-x )I .按题意旋转偏振片,则有最大透射光强 ()I x x I ⎥⎦⎤⎢⎣⎡+-=121max 最小透射光强 ()I x I ⎥⎦⎤⎢⎣⎡-=121min按题意5min max =I I /,则有()()x x x -⨯=+-1215121 解得 x =2/3即线偏振光占总入射光强的2/3,自然光占1/3.。

大学物理 马文蔚 第五版 下册 第十四章 课后答案

大学物理 马文蔚 第五版 下册 第十四章 课后答案

第十四章 相 对 论14 -1 下列说法中(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m·s -1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).14 -2 按照相对论的时空观,判断下列叙述中正确的是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地 (E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δx ,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δx =0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δx ≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δx ′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.14 -3 有一细棒固定在S′系中,它与Ox ′轴的夹角θ′=60°,如果S′系以速度u 沿Ox 方向相对于S系运动,S 系中观察者测得细棒与Ox 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox 正方向运动时大于60°,而当S′系沿Ox 负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).14 -4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A) 21v v +L (B) 12v -v L (C) 2v L (D) ()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C). 讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.14 -5 设S′系以速率v =0.60c 相对于S系沿xx′轴运动,且在t =t ′=0时,x =x ′=0.(1)若有一事件,在S系中发生于t =2.0×10-7s,x =50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,x =10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(x ,y ,z ,t )表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为 s 1025.1/1721211-⨯=--='c x c t t 2v v (2) 同理,第二个事件发生的时刻为s 105.3/1722222-⨯=--='c x c t t 2v v 所以,在S′系中两事件的时间间隔为s 1025.2Δ712-⨯='-'='t t t 14 -6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8 s ,x ′=60m ,y ′=0,z ′=0处若S′系相对于S 系以速率v =0.6c 沿xx′轴运动,问该事件在S系中的时空坐标各为多少?分析 本题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 m 93/12=-'+'=c t x x 2v vy =y′=0z =z′=0s 105.2/1722-⨯=-'+'=c x c t t 2v v 14 -7 一列火车长0.30km(火车上观察者测得),以100km·h -1 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx ′=x ′2 -x ′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1)()()21221212/1cx x c t t t t 2v v ----='-' (2) 将已知条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论, 运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为()s 26.91412212-⨯-='-'='-'x x ct t v 负号说明火车上的观察者测得闪电先击中车头x ′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1 相同的结果.相比之下解1 较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一已知条件.14 -8 在惯性系S中,某事件A 发生在x 1处,经过2.0 ×10-6s后,另一事件B 发生在x 2处,已知x 2-x 1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S 系沿x 轴正向运动,因在S 系中两事件的时空坐标已知,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即x ′2-x ′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果. 解 (1) 令x ′2-x ′1=0,由式(1)可得c t t x 50.0s m 1050.11-8121=⋅⨯=--=2x v (2) 将v 值代入式(2),可得()()()s 1073.1/1/162122121212-⨯=--=----='-'c t t c x x t t t t 222v v c v这表明在S′系中事件A 先发生.14 -9 设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为多少?分析 设对撞机为S系,沿x 轴正向飞行的正电子为S′系.S′系相对S系的速度v =0.90c ,则另一电子相对S系速度u x =-0.90c ,该电子相对S′系(即沿x 轴正向飞行的电子)的速度u′x 即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.解 按分析中所选参考系,电子相对S′系的速度为c u cu u u x x x x 994.012-=-'-='v 式中负号表示该电子沿x′轴负向飞行,正好与正电子相向飞行.讨论 若按照伽利略速度变换,它们之间的相对速度为多少?14 -10 设想有一粒子以0.050c 的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子的速率为0.80c ,电子速度的方向与粒子运动方向相同.试求电子相对实验室参考系的速度.分析 这是相对论的速度变换问题.取实验室为S系,运动粒子为S′系,则S′系相对S系的速度v =0.050c .题中所给的电子速率是电子相对衰变粒子的速率,故u′x =0.80c . 解 根据分析,由洛伦兹速度逆变换式可得电子相对S系的速度为c u cu u x x x 817.012='-+'=v v 14 -11 设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2×108m·s-1 i .同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为1.0×108m·s-1 i .问:(1) 此火箭相对宇航飞船的速度为多少? (2) 如果以激光光束来替代空间火箭,此激光光束相对宇航飞船的速度又为多少? 请将上述结果与伽利略速度变换所得结果相比较,并理解光速是运动体的极限速度.分析 该题仍是相对论速度变换问题.(2)中用激光束来替代火箭,其区别在于激光束是以光速c 相对航天器运动,因此其速度变换结果应该与光速不变原理相一致.解 设宇航飞船为S系, 航天器为S′系, 则S′系相对S系的速度v =1.2 ×108m·s-1 ,空间火箭相对航天器的速度为u ′x =1.0×108m·s-1,激光束相对航天器的速度为光速c .由洛伦兹变换可得:(1) 空间火箭相对S 系的速度为 1-82s m 1094.11⋅⨯='++'=x x x u cu u v v (2) 激光束相对S 系的速度为 c c c c u x =++=21v v 即激光束相对宇航飞船的速度仍为光速c ,这是光速不变原理所预料的.如用伽利略变换,则有u x =c +v >c .这表明对伽利略变换而言,运动物体没有极限速度,但对相对论的洛伦兹变换来说,光速是运动物体的极限速度.14 -12 以速度v 沿x 方向运动的粒子,在y 方向上发射一光子,求地面观察者所测得光子的速度.分析 设地面为S系,运动粒子为S′系.与上题不同之处在于,光子的运动方向与粒子运动方向不一致,因此应先求出光子相对S系速度u 的分量u x 、u y 和u z ,然后才能求u 的大小和方向.根据所设参考系,光子相对S′系的速度分量分别为u ′x =0,u ′y =c ,u ′z =0. 解 由洛伦兹速度的逆变换式可得光子相对S系的速度分量分别为v v v ='++'=x x x u cu u 21 222/11/1c c u cc u u x y y 22v v v -='+-'= 0=z u所以,光子相对S系速度u 的大小为c u u u u z y x =++=222速度u 与x 轴的夹角为vv 22arctan arctan -==c u u θx y讨论 地面观察者所测得光子的速度仍为c ,这也是光速不变原理的必然结果.但在不同惯性参考系中其速度的方向却发生了变化.14 -13 设想地球上有一观察者测得一宇宙飞船以0.60c 的速率向东飞行,5.0s后该飞船将与一个以0.80c 的速率向西飞行的彗星相碰撞.试问:(1) 飞船中的人测得彗星将以多大的速率向它运动? (2) 从飞船中的钟来看,还有多少时间允许它离开航线,以避免与彗星碰撞?分析 (1) 这是一个相对论速度变换问题.取地球为S系,飞船为S′系,向东为x 轴正向.则S′系相对S系的速度v =0.60c ,彗星相对S系的速度u x =-0.80c ,由洛伦兹速度变换可得所求结果.(2) 可从下面两个角度考虑:a.以地球为S系,飞船为S′系.设x 0=x′0 =0 时t 0=t′0=0,飞船与彗星相碰这一事件在S系中的时空坐标为t =5.0s,x =vt .利用洛伦兹时空变换式可求出t′,则Δt′=t′-t′0表示飞船与彗星相碰所经历的时间.b.把t 0=t′0=0 时的飞船状态视为一个事件,把飞船与彗星相碰视为第二个事件.这两个事件都发生在S′系中的同一地点(即飞船上),飞船上的观察者测得这两个事件的时间间隔Δt′为固有时,而地面观察者所测得上述两事件的时间间隔Δt =5.0s比固有时要长,根据时间延缓效应可求出Δt′.解 (1) 由洛伦兹速度变换得彗星相对S′系的速度为 c u cu u x x x 946.012-=--'='v v 即彗星以0.946c 的速率向飞船靠近. (2) 飞船与彗星相碰这一事件在S′系中的时刻为s 0.4/122=--'='c c t t 2v vx即在飞船上看,飞船与彗星相碰发生在时刻t′=4.0s.也可以根据时间延缓效应s 0.5/1ΔΔ2=-'=c t t 2v ,解得Δt′=4.0 s,即从飞船上的钟来看,尚有4.0 s 时间允许它离开原来的航线.14 -14 在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S′中观察到这两个事件的时间间隔为6.0 s ,试问从S′系测量到这两个事件的空间间隔是多少? 设S′系以恒定速率相对S系沿xx′轴运动.分析 这是相对论中同地不同时的两事件的时空转换问题.可以根据时间延缓效应的关系式先求出S′系相对S 系的运动速度v ,进而得到两事件在S′系中的空间间隔Δx′=vΔt′(由洛伦兹时空变换同样可得到此结果).解 由题意知在S系中的时间间隔为固有的,即Δt =4.0s,而Δt′=6.0 s.根据时间延缓效应的关系式2/1ΔΔc tt 2v -=',可得S′系相对S系的速度为c c t t 35ΔΔ12/12=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛'-=v 两事件在S′系中的空间间隔为 m 1034.1ΔΔ9⨯='='t x v14 -15 在惯性系S 中, 有两个事件同时发生在xx′轴上相距为1.0×103m 的两处,从惯性系S′观测到这两个事件相距为2.0×103m ,试问由S′系测得此两事件的时间间隔为多少? 分析 这是同时不同地的两事件之间的时空转换问题.由于本题未给出S′系相对S 系的速度v ,故可由不同参考系中两事件空间间隔之间的关系求得v ,再由两事件时间间隔的关系求出两事件在S′系中的时间间隔.解 设此两事件在S 系中的时空坐标为(x 1 ,0,0,t 1 )和(x 2 ,0,0,t 2 ),且有x 2 -x 1 =1.0×103m , t 2 -t 1 =0.而在S′系中, 此两事件的时空坐标为(x′1 ,0,0,t′1 )和(x′2 ,0,0,t′2 ),且|x′2 -x′1| =2.0×103m ,根据洛伦兹变换,有 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)由式(1)可得()()c c x x x x 2312/1212212=⎥⎦⎤⎢⎣⎡'-'--=v 将v 值代入式(2),可得 s 1077.5612-⨯='-'t t 14 -16 有一固有长度为l0 的棒在S 系中沿x 轴放置,并以速率u 沿xx′轴运动.若有一S′系以速率v 相对S 系沿xx′轴运动,试问从S′系测得此棒的长度为多少?分析 当棒相对观察者(为S′系)存在相对运动时,观察者测得棒的长度要比棒的固有长度l 0短,即220/1c u l l '-=.式中u′是棒相对观察者的速度,而不要误认为一定是S′系和S 系之间的相对速度v .在本题中,棒并非静止于S系,因而S′系与S 系之间的相对速度v 并不是棒与S′系之间的相对速度u′.所以本题应首先根据洛伦兹速度变换式求u ′,再代入长度收缩公式求l .解 根据分析,有21cu u uv v --=' (1) 220/1c u l l '-= (2)解上述两式,可得()()[]2/1222202v v ---=c u c u c l l14 -17 若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少? (以光速c 表示)解 设宇宙飞船的固有长度为l 0 ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为2/0l ,根据洛伦兹长度收缩公式,有200/12/c l l 2v -=可解得v =0.866c14 -18 一固有长度为4.0 m 的物体,若以速率0.60c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?解 由洛伦兹长度收缩公式m 2.3/120=-=c l l 2v*14 -19 设一宇航飞船以a =9.8 m·s-2 的恒加速度,沿地球径向背离地球而去,试估计由于谱线的红移,经多少时间,飞船的宇航员用肉眼观察不到地球上的霓虹灯发出的红色信号.分析 霓虹灯发出的红色信号所对应的红光波长范围一般为620nm ~760 nm ,当飞船远离地球而去时,由光的多普勒效应可知,宇航员肉眼观察到的信号频率ν <ν0 ,即λ>λ0 ,其中ν0 和λ0 为霓虹灯的发光频率和波长.很显然,当λ0=620 nm ,而对应的红限波长λ=760 nm 时,霓虹灯发出的红色信号,其波长刚好全部进入非可见光范围,即宇航员用肉眼观察不到红色信号.因此,将上述波长的临界值代入多普勒频移公式,即可求得宇航员观察不到红色信号时飞船的最小速率v ,再由运动学关系,可求得飞船到达此速率所需的时间t .解 当光源和观察者背向运动时,由光的多普勒效应频率公式 2/10⎪⎭⎫ ⎝⎛+-=v v v v c c得波长公式 2/10⎪⎭⎫ ⎝⎛-+=v v c c λλ式中v 为飞船相对地球的速率.令λ0 =620 nm ,λ=760 nm ,得宇航员用肉眼观察不到地球上红色信号时飞船的最小速率为1-8202202s m 1060.0⋅⨯=+-=λλλλv 飞船达此速率所需的时间为a 0.20s 101.66≈⨯==at v 14 -20 若一电子的总能量为5.0MeV ,求该电子的静能、动能、动量和速率. 分析 粒子静能E 0 是指粒子在相对静止的参考系中的能量,200c m E =,式中为粒子在相对静止的参考系中的质量.就确定粒子来说,E 0 和m 0均为常数(对于电子,有m 0 =9.1 ×10-31kg,E 0=0.512 MeV).本题中由于电子总能量E >E 0 ,因此,该电子相对观察者所在的参考系还应具有动能,也就具有相应的动量和速率.由相对论动能定义、动量与能量关系式以及质能关系式,即可解出结果.解 电子静能为 MeV 512.0200==c m E电子动能为 E K =E -E 0 =4.488 MeV由20222E c p E +=,得电子动量为 ()1-212/1202s m kg 1066.21⋅⋅⨯=-=-E E c p 由2/12201-⎪⎪⎭⎫ ⎝⎛-=c E E v 可得电子速率为c E E E c 995.02/12202=⎪⎪⎭⎫ ⎝⎛-=v14 -21 一被加速器加速的电子,其能量为3.00 ×109eV.试问:(1) 这个电子的质量是其静质量的多少倍? (2) 这个电子的速率为多少?解 (1) 由相对论质能关系2mc E =和200c m E =可得电子的动质量m 与静质量m 0之比为 320001086.5⨯===cm E E E m m (2) 由相对论质速关系式2/12201-⎪⎪⎭⎫ ⎝⎛-=c m m v 可解得c c m m 999999985.012/120=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-v可见此时的电子速率已十分接近光速了. 14 -22 在电子偶的湮没过程中,一个电子和一个正电子相碰撞而消失,并产生电磁辐射.假定正负电子在湮没前均静止,由此估算辐射的总能量E .分析 在相对论中,粒子的相互作用过程仍满足能量守恒定律,因此辐射总能量应等于电子偶湮没前两电子总能之和.按题意电子偶湮没前的总能只是它们的静能之和.解 由分析可知,辐射总能量为MeV 1.02J 1064.121320=⨯==-c m E14 -23 若把能量0.50 ×106 eV 给予电子,让电子垂直于磁场运动,其运动径迹是半径为2.0cm 的圆.问:(1) 该磁场的磁感强度B 有多大? (2) 这电子的动质量为静质量的多少倍?分析 (1) 电子在匀强磁场中作匀速圆周运动时,其向心力为洛伦兹力F =evB ,在轨道半径R 确定时,B =B (p ),即磁感强度是电子动量的函数.又由相对论的动能公式和动量与能量的关系可知电子动量p =p (E 0 ,E K ),题中给予电子的能量即电子的动能E K ,在电子静能20c m E =已知的情况下,由上述关系可解得结果.(2) 由相对论的质能关系可得动质量和静质量之比.本题中电子的动能E K =0.50 MeV 与静能E 0=0.512 MeV 接近,已不能用经典力学的方法计算电子的动量或速度,而必须用相对论力学.事实上当E K =0.50 E 0 时,用经典力学处理已出现不可忽略的误差.解 (1) 根据分析,有E =E 0 +E K (1)22202c p E E += (2)Rv m vB 2=e (3) 联立求解上述三式,可得eRcE E E B k k 002+=(2) 由相对论质能关系,可得 98.11000=+==E E E E m m k 本题也可以先求得电子速率v 和电子动质量m ,但求解过程较繁.14 -24 如果将电子由静止加速到速率为0.10c ,需对它作多少功? 如将电子由速率为0.80c 加速到0.90c ,又需对它作多少功?分析 在相对论力学中,动能定理仍然成立,即12ΔΔk k k E E E W -==,但需注意动能E K 不能用2v m 21表示. 解 由相对论性的动能表达式和质速关系可得当电子速率从v1 增加到v2时,电子动能的增量为()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---=-=--2/1222/12220202120221211ΔΔc c c m c m c m c m c m E E E k k k v v根据动能定理,当v 1 =0,v 2 =0.10c 时,外力所作的功为eV 1058.2Δ3⨯==k E W当v 1 =0.80 c ,v 2=0.90 c 时,外力所作的功为eV 1021.3Δ5⨯='='kE W 由计算结果可知,虽然同样将速率提高0.1 c ,但后者所作的功比前者要大得多,这是因为随着速率的增大,电子的质量也增大.。

湖南大学物理(2)第14,15章课后习题参考答案资料讲解

湖南大学物理(2)第14,15章课后习题参考答案资料讲解

湖南大学物理(2)第14,15章课后习题参考答案第14章 稳恒电流的磁场 一、选择题1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负.三 计算题1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r rRIB ≤π=μ 因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r R I Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ 因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40Iμ2ln 20π+Iμ2. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得 NI r B μ=π⋅2, )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=S S B d Φr b r NId 2π=μ12ln 2R R NIb π=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑i I02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与x x d +处,作一个单位长窄条,其面积为 x S d 1d ⋅=.窄条处的磁感强度202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x RIx20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .解:如图,CD 、AF 在P 点产生的 B = 0EF DE BC AB B B B B B+++=)sin (sin 4120ββμ-π=aIB AB , 方向⊗ 其中 2/1)2/(sin 2==a a β,0sin 1=β ∴ a I B AB π=240μ, 同理, aIB BC π=240μ,方向⊗.同样 )28/(0a I B B EF DE π==μ,方向⊙. ∴ aI B π=2420μaIπ-240μaIπ=820μ 方向⊗.5. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅=SRxd x2a2aaaIPIP AB C D E IIIO BA D C O 'α α Bαρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)? (2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

大学物理 下册 9-15章 (彭志华 付茂林 著) 华中科技大学出版社 课后答案 12章节习题 课后答案【khdaw_lxywy

大学物理 下册 9-15章 (彭志华 付茂林 著) 华中科技大学出版社 课后答案 12章节习题 课后答案【khdaw_lxywy

12-4 一导线 ac 弯成如图所示形状,且 ab=bc=10cm,若使导线在磁感应强度 B= 问 ac 间电势差多大?哪一端 2 5 10-2 T 的均匀磁场中,以速度 v 1.5 cm·s-1 向右运动。 电势高? 解:
w.
C 端电势高。
Hale Waihona Puke kh Bvbc sin 30 0
1.88×10-5 (V)
A B A B
D
D
C
v
A
D
C v I l 0 Idl 0 Idl 1 1 v 0 [ ] B 2 ( a vt ) 2 (b vt ) 2 a vt b vt
实际上, 某 t 时刻线簇内的电动势就等于 AD 和 BC 两段导线在:时刻切割磁力线产生的电动 势之差,因此也可以直接写出
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
Ii
(2)在 2 秒内通过线圈 A 的感应电量为
q

t2 t1
12-2 一条铜棒长为 L = 0.5m,水平放置,可绕距离 A 端为 L/5 处和棒垂直的轴 OO` 在水平面内旋转,每秒转动一周。铜棒置于竖直向上的匀强磁场中,如习题图 12-2 所示, O` 磁感应强度 B = 1.0×10-4T。求: (1)A、B 两端的电势差; (2)A、B 两 B 端哪一点电势高? ω A B 解:设想一个半径为 R 的金属棒绕一端做匀速圆周运动,角速度为 L/5 ω,经过时间 dt 后转过的角度为 O dθ = ωdt 习题 12-2 图 扫过的面积为 dS = R2dθ/2 切割的磁通量为 L dΦ = BdS = BR2dθ/2 ω l 动生电动势的大小为 dθ o ε = dΦ/dt = ωBR2/2 R 根据右手螺旋法则,圆周上端点的电势高。 AO 和 BO 段的动生电动势大小分别为

大学物理第14章学习题答案

大学物理第14章学习题答案

习题十四14-1 自然光是否一定不是单色光?线偏振光是否一定是单色光?答:自然光不能说一定不是单色光.因为它只强调存在大量的、各个方向的光矢量,并未要求各方向光矢量的频率不一样.线偏振光也不一定是单色光.因为它只要求光的振动方向同一,并未要求各光矢的频率相同.14-2 用哪些方法可以获得线偏振光?怎样用实验来检验线偏振光、部分偏振光和自然光? 答:略.14-3 一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,试说明这束光是怎样入射的?其偏振状态如何?答:这束光是以布儒斯特角入射的.其偏振态为平行入射面的线偏振光. 14-4 什么是光轴、主截面和主平面?什么是寻常光线和非常光线?它们的振动方向和各自的主平面有何关系? 答:略.14-5 在单轴晶体中,e 光是否总是以e n c /的速率传播?哪个方向以0/n c 的速率传播? 答:e 光沿不同方向传播速率不等,并不是以0/n c 的速率传播.沿光轴方向以0/n c 的速率传播.14-6是否只有自然光入射晶体时才能产生O 光和e 光?答:否.线偏振光不沿光轴入射晶体时,也能产生O 光和e 光.14-7投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍? 解:由马吕斯定律有0o 2018330cos 2I I I ==0ο2024145cos 2I I I ==0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍. 14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少?解:由马吕斯定律ο20160cos 2I I =80I = 32930cos 30cos 20ο2ο20I I I ==∴25.2491==I I14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少? 解:(1) max 120131cos 2I I I ==α 又 2max I I =∴ ,61I I =故 'ο11124454,33cos ,31cos===ααα. (2) 0220231cos 2I I I ==α ∴ 'ο221635,32cos ==αα 14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少? 解:(1),140.1tan 0=i ∴'ο02854=i (2) 'ο0ο323590=-=i y14-11 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率. 解:由158tan οn=,故60.1=n 14-12 光由空气射入折射率为n 的玻璃.在题14-12图所示的各种情况中,用黑点和短线把反射光和折射光的振动方向表示出来,并标明是线偏振光还是部分偏振光.图中.arctan ,00n i i i =≠题图14-12解:见图.题解14-12图题14-13图*14-13如果一个二分之一波片或四分之一波片的光轴与起偏器的偏振化方向成30°角,试问从二分之一波片还是从四分之一波片透射出来的光将是:(1)线偏振光?(2)圆偏振光?(3)椭圆偏振光?为什么?解:从偏振片出射的线偏振光进入晶(波)片后分解为e o ,光,仍沿原方向前进,但振方向相互垂直(o 光矢垂直光轴,e 光矢平行光轴).设入射波片的线偏振光振幅为A ,则有A.2130sin ,A 2330cos οο====A A A A o e ∴ e o A A ≠e o , 光虽沿同一方向前进,但传播速度不同,因此两光通过晶片后有光程差.若为二分之一波片,e o ,光通过它后有光程差2λ=∆,位相差πϕ=∆,所以透射的是线偏振光.因为由相互垂直振动的合成得ϕϕ∆=∆-+22222sin cos 2eo eoA A xyA y A x ∴ 0)(2=+eo A yA x 即 x A A y oe-= 若为四分之一波片,则e o ,光的,4λ=∆位相差2πϕ=∆,此时1sin ,0cos =∆=∆ϕϕ∴12222=+eoA y A x即透射光是椭圆偏振光.*14-14 将厚度为1mm 且垂直于光轴切出的石英晶片,放在两平行的偏振片之间,对某一波长的光波,经过晶片后振动面旋转了20°.问石英晶片的厚度变为多少时,该波长的光将完全不能通过?解:通过晶片的振动面旋转的角度ϕ与晶片厚度d 成正比.要使该波长的光完全不能通过第二偏振片,必须使通过晶片的光矢量的振动面旋转ο90. ∴ 1212::d d =ϕϕmm 5.412090οο1122=⨯==d d ϕϕ。

大学物理课后习题答案(上下册全)武汉大学出版社-习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社-习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J+ B. 02)(ωR m J J + C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题(第14章)
14—1 有一单缝,宽mm a 10.0=,在缝后放一焦距为cm 50的会聚透镜。

用平行绿光
(nm 0.546=λ)垂直照射单缝,试求位于透镜焦平面处的屏幕上的中央明条纹及第二级明纹宽度。

解:中央明纹的宽度为f na
x λ2=∆ 空气中,1=n ,所以
33
10
1046.510
10.01054605.02---⨯=⨯⨯⨯⨯=∆x m 第二级明纹的宽度
m f na
x 31073.2-⨯==
∆λ
14—2 一单色平行光束垂直照射在宽为mm 0.1的单缝上。

在缝后放一焦距为m 0.2的会聚透镜。

已知位于透镜焦平面上的中央明条纹宽度为mm 5.2。

求入射光波长。

解:中央明纹的宽度为
f na
x λ2
=∆
nm
mm f a 500105400615
.0868.04=⨯=⨯⨯==

故入射光的波长为500nm.
14—3 在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长
nm 600=λ的单色光的第2级明纹位置重合,求这光波的波长。

解:据单逢衍射明纹条件
2
600
1222
)
132(2
)12(sin )
(则有
未知
+⨯=+⨯+±=λλ
θk a
得未知波长为428.5nm.
14—4 用波长nm 4001=λ和nm 7002=λ的混合光垂直照射单缝。

在衍射图样中,1λ的第
1k 级明纹中心位置恰与2λ的第2k 级暗纹中心位置重合,求1k 和2k 。

试问1λ的暗纹中心位
置能否与2λ的暗纹中心位置重合? 解:据题意有
(1)
2
121221
1457002400
)12(2)
12(k k k k k k ==+⨯=+⨯λλ
即nm 7002=λ的第4,8,12等4的整数倍级明纹与nm 4001=λ的第5,10,15等5的整数倍级明纹重叠。

(2)置于两衍射图样中的暗纹中心位置能否重合,则由暗纹条件
2
122114
7k k k k ==λλ
即nm 7002=λ的第4,8,12等4的整数倍级暗纹与nm 4001=λ的第7,14,21等7的整数倍级暗纹重叠。

14—5 一光栅,宽为cm 0.2,共有6000条缝。

如利用钠光(nm 3.589)垂直入射,在哪些角度出现光强极大?如钠光与光栅的法线方向成
30入射,试问:光栅光谱线将有什么变化?
解:(1)根据光栅方程,即光栅衍射明纹条件
现光强极大
等整数时对应的角度出,,,取3210)
1767.0arcsin(3.589sin 6000
102sin )(7
k k k k b a =⨯=⨯=+θθλθ
(2)当钠光与光栅法线成30度入射时,由于在入射光栅之前以引入了附加光程差,
λ
θλθ)
30sin (sin )30sin )(sin (
±±
==±+d k k b a 即斜入射时,零级谱线不在屏中心,而移到了
30=θ的角
位置。

14—6 某单色光垂直入射到一每厘米刻有6000条刻线的光栅上,如果第一级谱线的偏角为
20,试问入射光的波长如何?它的第二级谱线将在何处?
解:据已给条件及光栅方程有
nm
k b a 57020sin 6000
101sin )(7=⨯==+
λλ
θ 对于二级谱线有684
.0arcsin 684.0570106000
2)(2sin sin )(7
==⨯⨯=+=
=+θλθλ
θb a k b a 14—7 波长为nm 600=λ的单色光垂直入射在一光栅上。

第二级明条纹出现在
20.0sin =θ,第四级缺级,试问:(1)光栅上相邻两缝的间距)(b a +有多大?
(2)光栅上狭缝可能的最小宽度a 有多大?(3)按上述选定的a 、b 值,试问在光屏上可能观察到的全部级数是多少? 解:(1)(2)根据缺级条件
(a + b )/a = k/k`, 由题意得k` = 1,k = 4或2(即第2,第4,第6等级缺级).解得b = 3a 或b=a .再根据光栅方程
(a + b )sin θ = kλ,
可得狭缝的宽度为
a = kλ/4sin θ,或θλsin 2/k a =
将k = 2,sin θ = 0.2,可得
a = 1500(nm).或3000(nm) 最小取1500(nm)
则刻痕的宽度为
b = 3a = 4500(nm),
光栅常数为
a +
b = 6000(nm).
(3)在光栅方程中
(a + b )sin θ = kλ,
令sin θ =1,得
k =(a + b )/λ = 10.
由于θ = 90°的条纹是观察不到的,所以明条纹的最高级数为9.又由于缺了4和8级明条纹,所以在屏上能够观察到2×7+1 = 15条明纹.
14—8 在夫琅禾费圆孔衍射中,设圆孔半径为mm 10.0,透镜焦距为cm 50,所用单色光波长为
A 5000,求在透镜焦平面处屏幕上呈现的艾里斑半径。

如圆孔半径改为mm 0.1,其他条件不变,艾里斑的半径变为多少? 解:(1)由爱里斑的半角宽度
47
105.302
.010500022.122.1--⨯=⨯⨯==D λ
θ
∴ 爱里斑半径
5.1105.30500tan 2
4=⨯⨯=≈=-θθf f d
mm
(2)如果圆孔半径改为1mm ,则艾里斑半径变为
mm f f d
75.01025.15500tan 2
4=⨯⨯=≈=-θθ
14—9在迎面驶来的汽车上,两盏前灯相距cm 120,设夜间人眼睛瞳孔直径为mm 0.5,入射光波长为
A 5000,问汽车离人多远的地方,人眼可恰能分辨这两盏灯?
解:人眼的最小分辨角为
θ0 = 1.22λ/D =
)(1022.110
55000
22.147
rad -⨯=⨯⨯ 当车很远时θ0 = w/l ,所以距离为
l = w /θ0 = )(983610
22.12
.14
m =⨯- 人眼恰能分辨这两盏灯
14—10 已知天空中两颗星相对于一望远镜的角距离为rad 6
1084.4-⨯,它们都发出波长为
A 5500的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?
解:由最小分辨角公式
D
λ
θ22
.1=
∴ 86.131084.4105.522.122.16
5
=⨯⨯⨯
==--θλD cm
14—11 我们比较两条单色的X 射线的谱线时注意到,谱线A 在与一个晶体的光滑面成
30的掠射角处给出第一级反射极大。

已知谱线B 的波长为
A 97.0,这谱线
B 在与同一晶体的同一光滑面成
60的掠射角处,给出第三级的反射极大,试求谱线A 的波长。

解:由布喇格公式
A d A d
B k d B A A
B 68.12
/32
/197.0360sin 30sin 330sin 2360sin 2sin 2=⨯⨯=⨯====λλλλλϕ即有有
对于谱线有对于谱线。

相关文档
最新文档