《2.4函数的奇偶性与周期性》 学案
函数的奇偶性和周期性导学案

1、判断下列函数奇偶性:
(1)f(x)= (2) f(x)= (3)f(x)= +
2、如果奇函数 区间[-7,-3]上是()
A、增函数且最小值为-5 B、增函数且最大值为-5
C、减函数且最小值为-5 D、减函数且最大值为-5
3、奇函数 ()
A、 B、 C、 D、
4、已知
5、设 是奇函数,求 的值。
2、根据定义判断函数奇偶性的步骤:
(1)求定义域,看定义域是否关于原点对称
(2)验证 或 对定义域中的任意x是否恒成立。
(3)作结论。
3、f(x)是定义在R上的奇函数,则f(0)=
4、周期性:设函数 的定义域是 ,若存在非零常数 ,使得对任何 ,都有 且 ,则函数 为周期函数, 为 的一个周期。
二、例题讲解
四、课后作业:
1、对 ()
A、 B、 C、 D、
2、已知定义在R上的奇函数 ,则 的值为()
A、-1 B、1 C、0 D、2
3设 为()
A、0.5 B、1.5C、-1.5 D、-0.5
4、已知函数 , 的值为()
A、0.5 B、1 C、1.5 D、-1.5
5、已知 )
A、4 B、6 C、8 D、11
1、判断下列函数的奇偶性
(1) (2)
(3) (4)
(5)
2、设奇函数 的定义域为[-4,4],若当 ,则不等式 的解集是_________________________.
3、已知函数f(x)是定义在R上的奇函数,当 求出函数的解析式并ห้องสมุดไป่ตู้出函数f(x)的图象。
4、已知f(x)是偶函数,且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上的单调性,并证明。
高中数学【配套Word版文档】2.4函数的奇偶性与周期性

§2.4函数的奇偶性和周期性2014高考会这样考 1.判断函数的奇偶性;2.利用函数的奇偶性求参数;3.考查函数的奇偶性、周期性和单调性的综合使用.复习备考要这样做 1.结合函数的图象理解函数的奇偶性、周期性;2.注意函数奇偶性和周期性的综合问题;3.利用函数的性质解决有关问题.1.奇、偶函数的概念一般地,设函数y=f(x)的定义域为A.如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.4.对称性若函数f(x)满足f(a-x)=f(a+x)或f(x)=f(2a-x),则函数f(x)关于直线x=a对称.[难点正本疑点清源]1.函数奇偶性的判断(1)定义域关于原点对称是函数具有奇偶性的必要不充分条件;(2)判断f(x)和f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.2. 函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. (2)若f (x )为偶函数,则f (-x )=f (x )=f (|x |). (3)若奇函数f (x )定义域中含有0,则必有f (0)=0. f (0)=0是f (x )为奇函数的既不充分也不必要条件.(4)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数和一个偶函数的和(或差)”.(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.(6)既奇又偶的函数有无穷多个(如f (x )=0,定义域是关于原点对称的任意一个数集).1. (课本改编题)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案 13分析 由f (x )是偶函数知,f (x )=f (-x ), 即ax 2+bx =a (-x )2-bx ,∴2bx =0,∴b =0. 又f (x )的定义域应关于原点对称, 即(a -1)+2a =0,∴a =13,故a +b =13.2. (2011·广东)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.答案 -9分析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.3. 设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x的取值范围是________. 答案 (-1,0)∪(1,+∞)分析 画草图,由f (x )为奇函数知:f (x )>0的x 的取值范围为 (-1,0)∪(1,+∞).4. 定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断: ①f (x )是周期函数; ②f (x )关于直线x =1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上是减函数; ⑤f (2)=f (0).其中正确判断的序号为________(写出所有正确判断的序号). 答案 ①②⑤分析 由f (x +1)=-f (x )得f (x +2)=f (x +1+1)=-f (x +1)=f (x ), ∴f (x )是周期为2的函数,①正确, f (x )关于直线x =1对称,②正确, ∵f (x )为偶函数,在[-1,0]上是增函数, ∴f (x )在[0,1]上是减函数,[1,2]上为增函数, f (2)=f (0),因此③,④错误,⑤正确. 综上,①②⑤正确.5. (2011·大纲全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 答案 -12分析 ∵f (x )是周期为2的奇函数, ∴f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+2 =f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. 题型一 判断函数的奇偶性例1 判断下列函数的奇偶性:(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1) 1-x1+x; (3)f (x )=4-x 2|x +3|-3.思维启迪:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再验证f (-x )=±f (x )或其等价形式f (-x )±f (x )=0是否成立.解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3.∴f (x )的定义域为{-3,3}. 又f (3)+f (-3)=0,f (3)-f (-3)=0. 即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数. (2)由⎩⎪⎨⎪⎧1-x1+x ≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称. ∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.∴f (x )=4-x 2(x +3)-3=4-x 2x. ∴f (x )=-f (-x ),∴f (x )是奇函数.探究提高 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;(2)判断f (x )和f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立.下列函数:①f (x )=x 3-x ;②f (x )=ln(x +x 2+1);③f (x )=3x -3-x 2;④f (x )=lg 1-x 1+x.其中奇函数的个数是________. 答案 4分析 ①f (x )=x 3-x 的定义域为R , 又f (-x )=(-x )3-(-x )=-(x 3-x )=-f (x ), 则f (x )=x 3-x 是奇函数; ②由x +x 2+1>x +|x |≥0知f (x )=ln(x +x 2+1)的定义域为R ,又f (-x )=ln(-x +(-x )2+1)=ln1x +x 2+1=-ln(x +x 2+1)=-f (x ),则f (x )为奇函数;③f (x )=3x -3-x2的定义域为R ,又f (-x )=3-x -3x 2=-3x -3-x2=-f (x ),则f (x )为奇函数; ④由1-x1+x>0得-1<x <1,f (x )=ln1-x1+x的定义域为(-1,1), 又f (-x )=ln 1+x1-x =ln ⎝ ⎛⎭⎪⎫1-x 1+x -1=-ln 1-x1+x=-f (x ),则f (x )为奇函数,∴奇函数的个数为4.题型二函数的奇偶性和周期性例2设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的分析式;(3)计算f(0)+f(1)+f(2)+…+f(2 013).思维启迪:(1)只需证明f(x+T)=f(x),即可说明f(x)是周期函数;(2)由f(x)在[0,2]上的分析式求得f(x)在[-2,0]上的分析式,进而求f(x)在[2,4]上的分析式;(3)由周期性求和.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)解∵x∈[2,4],∴-x∈[-4,-2],∴4-x∈[0,2],∴f(4-x)=2(4-x)-(4-x)2=-x2+6x-8,又f(4-x)=f(-x)=-f(x),∴-f(x)=-x2+6x-8,即f(x)=x2-6x+8,x∈[2,4].(3)解∵f(0)=0,f(2)=0,f(1)=1,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0.∴f(0)+f(1)+f(2)+…+f(2 013)=f(0)+f(1)=1.探究提高判断函数的周期只需证明f(x+T)=f(x) (T≠0)便可证明函数是周期函数,且``周期为T,函数的周期性常和函数的其他性质综合命题,是高考考查的重点问题.已知f(x)是定义在R上的偶函数,并且f(x+2)=-1f(x),当2≤x≤3时,f(x)=x,则f(105.5)=________.答案 2.5分析 由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.题型三 函数性质的综合使用例3 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象和x 轴所围成图形的面积; (3)写出(-∞,+∞)内函数f (x )的单调区间.思维启迪:可以先确定函数的周期性,求f (π);然后根据函数图象的对称性、周期性画出函数图象,求图形面积、写单调区间. 解 (1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数, ∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π) =-(4-π)=π-4.(2)由f (x )是奇函数和f (x +2)=-f (x ), 得:f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).故知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,f (x )的图象和x 轴围成的图形面积为S , 则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4.(3)函数f (x )的单调递增区间为[4k -1,4k +1] (k ∈Z ), 单调递减区间为[4k +1,4k +3] (k ∈Z ).探究提高 函数性质的综合问题,可以利用函数的周期性、对称性确定函数图象,充分利用已知区间上函数的性质,体现了转化思想.已知函数f (x )是R 上的偶函数,对于x ∈R 都有f (x +6)=f (x )+f (3)成立,当x 1、x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0.给出下列命题:①f (3)=0;②直线x =-6是函数y =f (x )的图象的一条对称轴;③函数y =f (x )在[-9, -6]上为增函数;④函数y =f (x )在[-9,9]上有四个零点.其中所有正确命题的序号为__________. 答案 ①②④分析 ∵f (x +6)=f (x )+f (3),令x =-3得,f (-3+6)=f (-3)+f (3),故f (-3)=0. 又f (x )是R 上的偶函数,所以f (3)=0,即①正确;∴f (x +6)=f (x ),即6是函数f (x )的一个周期,由x 1、x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0知函数f (x )在[0,3]上单调递增,综上可知,可画出函数f (x )在[-9,9]上的简图.由简图可知②④也正确.等价转换要规范典例:(14分)函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D .有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 审题视角 (1)从f (1)联想自变量的值为1,进而想到赋值x 1=x 2=1.(2)判断f (x )的奇偶性,就是研究f (x )、f (-x )的关系.从而想到赋值x 1=-1,x 2=x .即f (-x )=f (-1)+f (x ).(3)就是要出现f (M )<f (N )的形式,再结合单调性转化为M <N 或M >N 的形式求解. 规范解答解 (1)令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0.[2分] (2)f (x )为偶函数,证明如下:[4分] 令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ).∴f (x )为偶函数.[7分] (3)f (4×4)=f (4)+f (4)=2, f (16×4)=f (16)+f (4)=3.[9分] 由f (3x +1)+f (2x -6)≤3, 变形为f [(3x +1)(2x -6)]≤f (64).(*) ∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).[11分] 又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0. 解得-73≤x <-13或-13<x <3或3<x ≤5.∴x 的取值范围是{x |-73≤x <-13或-13<x <3或3<x ≤5}.[14分]温馨提醒 数学解题的过程就是一个转换的过程.解题质量的高低,取决于每步等价转换的规范程度.如果每一步等价转换都是正确的、规范的,那么这个解题过程就一定是规范的.等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M”等价于“N”,“M”变形为“N”.(2)要写明转化的条件.如本例中:∵f(x)为偶函数,∴不等式(*)等价于f[|(3x+1)(2x-6)|]≤f(64).(3)转化的结果要等价.如本例:由于f[|(3x+1)(2x-6)|]≤f(64)⇒|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0.若漏掉(3x+1)(2x-6)≠0,则这个转化就不等价了.方法和技巧1.正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或使用定义的等价形式:f(-x)=±f(x)⇔f(-x)±f(x)=0⇔f(-x) f(x)=±1(f(x)≠0).3.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.失误和防范1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f(x)是奇函数,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0).对于偶函数的判断以此类推.3.分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性.A组专项基础训练(时间:35分钟,满分:62分)一、填空题(每小题5分,共35分)1. (2012·天津改编)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为________.①y =cos 2x ,x ∈R ②y =log 2|x |,x ∈R 且x ≠0③y =e x -e -x 2,x ∈R ④y =x 3+1,x ∈R 答案 ②分析 ①中函数y =cos 2x 在区间⎝⎛⎭⎫0,π2上单调递减,不满足题意; ③中的函数为奇函数;④中的函数为非奇非偶函数,只有②满足.2. (2011·辽宁改编)若函数f (x )=x (2x +1)(x -a )为奇函数,则a =________. 答案 12分析 ∵f (-x )=-f (x ),∴-x (-2x +1)(-x -a )=-x (2x +1)(x -a ), ∴(2a -1)x =0,∴a =12. 3. 设函数f (x )=x (e x +a e -x ) (x ∈R )是偶函数,则实数a =________. 答案 -1分析 由题意得g (x )=e x +a e -x 为奇函数,由g (0)=0,得a =-1.4. 已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________.答案 -2分析 ∵f (x +4)=f (x ),∴f (x )是周期为4的函数,∴f (7)=f (2×4-1)=f (-1),又∵f (x )在R 上是奇函数,∴f (-x )=-f (x ),∴f (-1)=-f (1),而当x ∈(0,2)时,f (x )=2x 2,∴f (1)=2×12=2,∴f (7)=f (-1)=-f (1)=-2.5. 函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 答案 -15分析 ∵f (5)=1f (3)=11f (1)=f (1)=-5, 又∵f (x +2+2)=1f (x +2)=f (x ),∴f (x )的周期为4. ∴f (f (5))=f (-5)=f (-1)=1f (-1+2)=-15. 6. 设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=______.答案 -3分析 因为f (x )是定义在R 上的奇函数,因此f (-x )+f (x )=0.当x =0时,可得f (0)=0,可得b =-1,此时f (x )=2x +2x -1,因此f (1)=3.又f (-1)=-f (1),所以f (-1)=-3.7. 已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数;④函数f (x )为R 上的单调函数.其中真命题的序号为________.答案 ①②③分析 由f (x )=f (x +3)⇒f (x )为周期函数,且T =3,①为真命题;又y =f ⎝⎛⎭⎫x -34关于(0,0)对称,y =f ⎝⎛⎭⎫x -34向左平移34个单位得y =f (x )的图象, 则y =f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②为真命题; 又y =f ⎝⎛⎭⎫x -34为奇函数,∴f ⎝⎛⎭⎫x -34=-f ⎝⎛⎭⎫-x -34,f ⎝⎛⎭⎫x -34-34=-f ⎝⎛⎭⎫34-x -34=-f (-x ), ∴f ⎝⎛⎭⎫x -32=-f (-x ),f (x )=f (x -3)=-f ⎝⎛⎭⎫x -32=f (-x ),∴f (x )为偶函数,不可能为R 上的单调函数.所以③为真命题,④为假命题.二、解答题(共27分)8. (13分)已知函数f (x )=x 2+a x(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.解 (1)当a =0时,f (x )=x 2,f (-x )=f (x ) ,函数是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0), 取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数也不是偶函数.(2)若f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x. 任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(x 21+1x 1)-⎝⎛⎭⎫x 22+1x 2 =(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 1<x 2,∴x 1-x 2<0,x 1+x 2>1x 1x 2, 所以f (x 1)<f (x 2),故f (x )在[2,+∞)上是单调递增函数.9. (14分)已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称.(1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的分析式.(1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ).故f (x +2)=-f (x ).从而f(x+4)=-f(x+2)=f(x),即f(x)是周期为4的周期函数.(2)解由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[-1,0)时,-x∈(0,1],f(x)=-f(-x)=--x.故x∈[-1,0]时,f(x)=--x.x∈[-5,-4]时,x+4∈[-1,0],f(x)=f(x+4)=--x-4.从而,x∈[-5,-4]时,函数f(x)=--x-4.B组专项能力提升(时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1.(2011·安徽改编)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=________.答案-3分析∵f(x)是奇函数,当x≤0时,f(x)=2x2-x,∴f(1)=-f(-1)=-[2×(-1)2-(-1)]=-3.2.已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 013)+f(2 015)的值为________.答案0分析由题意,得g(-x)=f(-x-1),又∵f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,∴g(-x)=-g(x),f(-x)=f(x),∴f(x-1)=-f(x+1),∴f(x)=-f(x+2),∴f(x)=f(x+4),∴f(x)的周期为4,∴f(2 013)=f(1),f(2 015)=f(3)=f(-1),又∵f(1)=f(-1)=g(0)=0,∴f(2 013)+f(2 015)=0.3. 设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3a +1,则a 的取值范围是____________.答案 -1<a ≤23分析 函数f (x )为奇函数,则f (1)=-f (-1).由f (1)=-f (-1)≥1,得f (-1)≤-1;函数的最小正周期T =3,则f (-1)=f (2),由2a -3a +1≤-1,解得-1<a ≤23. 4. (2011·浙江)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.答案 0分析 ∵函数f (x )=x 2-|x +a |为偶函数,∴f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |,∴|-x +a |=|x +a |,∴a =0.5. 已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f (2 015)=________. 答案 14分析 方法一 令x =1,y =0时,4f (1)·f (0)=f (1)+f (1),解得f (0)=12, 令x =1,y =1时,4f (1)·f (1)=f (2)+f (0),解得f (2)=-14, 令x =2,y =1时,4f (2)·f (1)=f (3)+f (1),解得f (3)=-12, 依次求得f (4)=-14,f (5)=14,f (6)=12,f (7)=14, f (8)=-14,f (9)=-12,… 可知f (x )是以6为周期的函数,∴f (2 015)=f (335×6+5)=f (5)=14.方法二 ∵f (1)=14,4f (x )·f (y )=f (x +y )+f (x -y ), ∴构造符合题意的函数f (x )=12cos π3x , ∴f (2 015)=12cos ⎝⎛⎭⎫π3×2 015=14. 6. 设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x ,则①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.其中所有正确命题的序号是________.答案 ①②④分析 由已知条件:f (x +2)=f (x ),则y =f (x )是以2为周期的周期函数,①正确;当-1≤x ≤0时0≤-x ≤1,f (x )=f (-x )=⎝⎛⎭⎫121+x ,函数y =f (x )的图象如图所示:当3<x <4时,-1<x -4<0,f (x )=f (x -4)=⎝⎛⎭⎫12x -3,因此②④正确.③不正确.二、解答题(18分)7. (14分)已知函数f (x )在R 上满足f (2-x )=f (2+x ),f (7-x )=f (7+x )且在闭区间[0,7]上,只有f (1)=f (3)=0,(1)试判断函数y =f (x )的奇偶性;(2)试求方程f (x )=0在闭区间[-2 011,2 011]上根的个数,并证明你的结论.解 (1)若y =f (x )为偶函数,则f (-x )=f (2-(x +2))=f (2+(x +2))=f (4+x )=f (x ),∴f (7)=f (3)=0,这和f (x )在闭区间[0,7]上,只有f (1)=f (3)=0矛盾;因此f (x )不是偶函数.若y =f (x )为奇函数,则f (0)=f (-0)=-f (0),∴f (0)=0,这和f (x )在闭区间[0,7]上,只有f (1)=f (3)=0矛盾;因此f (x )不是奇函数.综上可知:函数f (x )既不是奇函数也不是偶函数.(2)∵f (x )=f [2+(x -2)]=f [2-(x -2)]=f (4-x ),f (x )=f [7+(x -7)]=f (7-(x -7))=f (14-x ),∴f (14-x )=f (4-x ),即f [10+(4-x )]=f (4-x )∴f (x +10)=f (x ),即函数f (x )的周期为10.又∵f (1)=f (3)=0,∴f (1)=f (1+10n )=0(n ∈Z ),f (3)=f (3+10n )=0(n ∈Z ),即x =1+10n 和x =3+10n (n ∈Z )均是方程f (x )=0的根.由-2 011≤1+10n ≤2 011及n ∈Z 可得n =0,±1,±2,±3,…,±201,共403个; 由-2 011≤3+10n ≤2 011及n ∈Z 可得n =0,±1,±2,±3,…,±200,-201,共402个;所以方程f (x )=0在闭区间[-2 011,2 011]上的根共有805个.8. (14分)函数y =f (x )是定义域为R 的奇函数,且对任意的x ∈R ,均有f (x +4)=f (x )成立.当x ∈(0,2]时,f (x )=-x 2+2x +1.(1)当x ∈[4k -2,4k +2] (k ∈Z )时,求函数f (x )的表达式;(2)求不等式f (x )>32的解集. 解 (1)当x =0时,∵f (0)=-f (0),∴f (0)=0,当x ∈[-2,0)时,-x ∈(0,2],f (x )=-f (-x )=-(-x 2-2x +1)=x 2+2x -1,由f (x +4)=f (x ),知f (x )为周期函数,且周期T =4.当x ∈[4k -2,4k ) (k ∈Z )时,x -4k ∈[-2,0), ∴f (x )=f (x -4k )=(x -4k )2+2(x -4k )-1. 当x ∈(4k,4k +2] (k ∈Z )时,x -4k ∈(0,2], ∴f (x )=f (x -4k )=-(x -4k )2+2(x -4k )+1, 当x =4k 时,f (x )=f (4k )=f (0)=0,故当x ∈[4k -2,4k +2] (k ∈Z )时,f (x )的表达式为f (x )=⎩⎪⎨⎪⎧ (x -4k )2+2(x -4k )-1 x ∈[4k -2,4k ),0 x =4k ,-(x -4k )2+2(x -4k )+1 x ∈(4k ,4k +2].(2)当x ∈[-2,2]时,由f (x )>32得 ⎩⎪⎨⎪⎧ -2≤x <0x 2+2x -1>32或⎩⎪⎨⎪⎧0<x ≤2-x 2+2x +1>32, 解得1-22<x <1+22. ∵f (x )是以4为周期的周期函数,∴f (x )>32的解集为{x |4k +1-22<x <4k +1+22}.。
高三数学一轮复习 7.函数的奇偶性与周期性学案

【学习目标】1.了解奇函数、偶函数的定义,并能运用奇偶性的定义判断一些简单函数的奇偶性.,并熟练地利用对称性解决函数的综合问题.预习案1.奇函数、偶函数、奇偶性对于函数f(x),其定义域关于原点对称:(1)如果对于函数定义域内任意一个x,都有,那么函数f(x)就是奇函数;(2)如果对于函数定义域内任意一个x,都有,那么函数f(x)就是偶函数;(3)如果一个函数是奇函数(或偶函数),那么称这个函数在其定义域内具有奇偶性.2.证明函数奇偶性的方法步骤(1)确定函数定义域关于对称;(2)判定f(-x)=-f(x)(或f(-x)=f(x)),从而证得函数是奇(偶)函数.3.奇偶函数的性质(1)奇函数图像关于对称,偶函数图像关于对称;(2)若奇函数f(x)在x=0处有意义,则f(0)=;(3)若奇函数在关于原点对称的两个区间上分别单调,则其单调性;若偶函数在关于原点对称的两个区间上分别单调,则其单调性.(4)若函数f(x)为偶函数,则f(x)=f(|x|),反之也成立.4.一些重要类型的奇偶函数(1)函数f(x)=a x+a-x为函数,函数f(x)=a x-a-x为函数;(2)函数f(x)=a x-a-xa x+a-x=a2x-1a2x+1(a>0且a≠1)为函数;(3)函数f(x)=log a 1-x1+x为函数;(4)函数f(x)=log a(x+x2+1)为函数.5.周期函数若f(x)对于定义域中任意x均有(T为不等于0的常数),则f(x)为周期函数.6.函数的对称性若f(x)对于定义域中任意x,均有f(x)=f(2a-x),或f(a+x)=f(a-x),则函数f(x)关于对称.【预习自测】1.(课本改编题)下列函数中,所有奇函数的序号是_______.①f(x)=2x4+3x2;②f(x)=x3-2x;③f(x)=x2+1x;④f(x)=x3+1.2.下列函数为偶函数的是( )A.y=sin x B.y=x3C.y=e x D.y=ln x2+13.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.4.若函数y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在函数y=f(x)图像上的()A.(a,-f(a)) B.(-a,-f(a))C.(-a,-f(-a)) D.(a,f(-a))5.(2013·某某调研卷)设定义在R上的函数f(x)满足f(x)·f(x+2)=13,若f(1)=2,则f(99)=________.探究案题型一判断函数的奇偶性例1.判断下列函数的奇偶性,并说明理由.(1)f(x)=x2-|x|+1 x∈[-1,4];(2)f(x)=(x-1)1+x1-xx∈(-1,1);(3)f(x)=1a x-1+12(a>0,a≠1).探究1.判断下列函数的奇偶性.(1)f(x)=ln 2-x2+x;(2)g(x)=x2+|x-a|;(3)f(x)=⎩⎪⎨⎪⎧x2-2x x≥0,x2+2x x<0.题型二奇偶性的应用例2.(1)已知函数f(x)为奇函数且定义域为R,x>0时,f(x)=x+1,f(x)的解析式为.(2)f(x)是定义在(-1,1)上的奇函数,且x∈[0,1]时f(x)为增函数,则不等式f(x)+f(x-1)<0的解集为.2(3)函数f(x+1)为偶函数,则函数f(x)的图像的对称轴方程为.探究2.(1)若函数f(x)是R上的偶函数,且在[0,+∞)上是减函数,满足f(π)<f(a)的实数a的取值X围是________.(2)函数y=f(x-2)为奇函数,则函数y=f(x)的图像的对称中心为__________.题型三函数的周期性例3.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)证明:函数f(x)为周期函数;(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.探究3.(1)f(x)的定义域为R的奇函数,且图像关于直线x=1对称,试判断f(x)的周期性.(2)f(x)是定义在R上的函数,对任意x∈R均满足f(x)=-1f x+1,试判断函数f(x)的周期性.例4.已知f(x)为偶函数,且f(-1-x)=f(1-x),当x∈[0,1]时,f(x)=-x+1,求x∈[5,7]时,f(x)的解析式.探究4.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).我的学习总结:(1)我对知识的总结.(2)我对数学思想及方法的总结。
高考数学一轮复习 2.4 函数的奇偶性与周期性课件

奇函
如果对于函数f(x)的定义域内任意一个x 都有__f_(_-__x_)=__-__f_(_x_) ____,那么函数f(x)是
关于_原__点__
数
对称
奇函数
2.函数的周期性 (1)周期的定义 一般地,对于函数f(x),如果存在一个非零常数T,使得当x取 定义域内的每一个值时,都有_f_(_x_+__T_)_=__f(_x_)__,则称函数f(x) 为周期函数,非零常数T称为函数f(x)的周期. (2)最小正周期 对于一个周期函数f(x),如果在它所有的周期中存在一个最小 的正数,那么这个最小正数叫做f(x)的__最__小__正__周__期___.
f(-1)=f(5)=-1,f(0)=f(6)=0,f(1)=1,f(2)=2,
所以在一个周期内有f(1)+f(2)+…+f(6)=1+2-1+0-1+0
=1,所以f(1)+f(2)+…+f(2 012)=f(1)+f(2)+335×1=1+2
【思路分析】 可从定义域入手,在定义域关于原点对称情
况下,考查f(-x)与f(x)的关系.
【解】 (1)函数的定义域:(-∞,0)∪(0,+∞)关于原点对称,
且 f(x)=lg(x2·x12)=0(x≠0). ∴f(x)既是奇函数又是偶函数. (2)此函数的定义域为{x|x>0},由于定义域关于原点不对称, 故 f(x)既不是奇函数也不是偶函数. (3)当 x<0 时,-x>0, 则 f(-x)=-(-x)2-x=-(x2+x)=-f(x); 当 x>0 时,-x<0, 则 f(-x)=(-x)2-x=x2-x=-f(x). 综上,对 x∈(-∞,0)∪(0,+∞), 都有 f(-x)=-f(x). ∴f(x)为奇函数.
函数的奇偶性与周期性教学案

函数的奇偶性与周期性教学案 1一、 三维教学目标1.知识目标: 了解函数奇偶性的概念,掌握判断一些简单函数的奇偶性的方法掌握函数的奇偶性的定义及图象特征;2.能力目标:能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题3.情感目标:进一步强化学生努力探索的能力;二、考试目标 主词填空1.f(x)是奇函数的充要条件是任取__,必有____且_____,奇函数的图像关于_______成______对称.2.f(x)是偶函数的充要条件是任取____,必有____且___, 偶函数的图像关于______成轴对称.3.奇函数之和是______.偶函数之和是__________4.对于函数y =f (x ),且x ∈A ,当此函数满足条件______,T 是非零常数且_________时,称y =f (x )是A 上的周期函数.三 题型示例 归纳点拨1、判断函数奇偶性的步骤与方法 1 .判断下列函数的奇偶性:(1)x x x x f -+-=11)1()( (2)2|2|)1lg()(22---=x x x f (3)⎪⎩⎪⎨⎧>+-<+=00)(22x xx x x x x f ,(4) f (x )=x x x x --+-7777; 2. 对于定义域为R 的任意奇函数)(x f 都有( ) A.0)()(=--x f x f B.0)()(≤--x f x fC.0)()(≤-x f x f D.0)()(>-x f x f3.若)(x f y =在),0[+∞∈x 时的表达式)1(x x y -=且)(x f 为奇函数,则 ]0,(-∞∈x 时,)(x f =( )A.)1(x x -- B.)1(x x + C.)1(x x +- D.)1(-x x4.设)()1221()(x f x F x -+=是偶函数,且0)(≠x f ,则)(x f 奇偶性为 . 5.已知2)(7+-=bx ax x f ,且17)5(=-f ,则=)5(f .6.已知b a bx ax x f +++=3)(2是偶函数,且定义域为[]a a 2,1-,则a = ,b =7. 已知)0)(21121()(≠+-=x x x f x . (1)判断)(x f 的奇偶性;(2)证明0)(>x f .8. 已知)(x f 是以π2为周期的奇函数,且1)2(-=-πf , 那么=)25(πf . 9. (天津卷)设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称,则 )5()4()3()2()1(f f f f f ++++=_________.7. 已知函数)(x f y =满足)()(2)()(y f x f y x f y x f =-++),(R y R x ∈∈且 0)0(≠f ,证明 )(x f 为偶函数.四、对应训练 分阶提升1.若f (x )在[-a ,a ](a >0)上是单调奇函数,且f(2a )>f(3a ),则下列各式一定成立的是 A.f(-4a )>f(-5a ) B.f(-4a )<f(-5a ) C.f(0)<f(-2a ) D.(2a )>f(a) 2.已知f(x)=a 0+a 1x+a 2x 2+…a 2004x 2004,若f (1)=100,则f (-1)= ( )A.100B.-100C.20D.-203.f (x )是奇函数,当x ∈R +时,f(x)∈(]m ,∞-(m<0),则f (x )的值域可能是A.[m ,-m ]B.(]m ,∞-C.[)+∞-,mD.(]m ,∞-∪[)+∞-,m4.设y =f (x )是R 上的奇函数,一定在y =f (x )的图像上的点是 ( )A.(a ,f(-a))B.(-a ,-f(a))C.(-a ,-f(-a))D.(a 1,-f (a 1)) 5.如果奇函数f (x )当1≤x ≤4时的解析式为f (x )=x 2-4x +5,则当-4≤x ≤-1时,f (x )的最大值为 ( ) A.5 B.-5 C.-2 D.-16.设f (x )是R 上的奇函数,且x ∈R +时,f (x )=log 2(2x +1),则当x ∈R - 时,f (x )= ( )A.log 2(2x +1)B.-log 2(2x +1)C.log 2(1-2x )D.-log 2(1-2x )7.已知奇函数f (x )在区间[-b ,-a ]上单调减且最小值为2004,则g (x )=-|f (x )|在[a ,b ]上 ( )A.单调减且最大值为-2004B.单调增且最小值为-2004 C.单调减且最小值为-2004 D.单调增且最大值为-20048.已知f (x )=x 3+bx 2+c x 是R 上的奇函数,动点P (b ,c )描绘的图形是A.椭圆B.抛物线C.直线D.双曲线9.偶函数f (x )在[0,3]上单调增,则下列各式成立的是 ( )A.f (-1)<f (2)<f (3)B.f (2)<f (3)<f (1)C.f (2)<f (-1)<f (3)D.f (-1)<f (3)<f (2) 10.若y =g(x )是偶函数,那么f 1(x )=g(x )-1和f 2(x )=g (x -1) ( )A.都不是偶函数B.都不是奇函数C.都是偶函数D.只有一个是偶函数五、总结与反思1.要从数和形两个角度函数的奇偶性,充分利用)(x f 与)(x f -之间的转化和图象特征解决有关问题;解题中注意以下性质的运用:①)(x f 为偶函数⇔|)(|)(x f x f =,②若奇函数)(x f 的定义域含0,则0)0(=f .2.利用函数的周期性,可转化为求函数值的问题;3.判断函数奇偶性时首先要看定义域是否关于原点对称.函数的奇偶性与周期性教学案同步测试 21、若)(x f )(R x ∈是奇函数,则下列各点中,在曲线)(x f y =上的点是(A )))(,(a f a - (B )))sin (,sin (α--α-f (C )))1(lg ,lg (af a -- (D )))(,(a f a --2、已知)(x f 是定义在R 上的奇函数,且为周期函数,若它的最小正周期为T ,则=-)2(T f (A )0 (B )2T (C )T (D )2T - 3、已知)()()(y f x f y x f +=+对任意实数y x ,都成立,则函数)(x f 是(A )奇函数 (B )偶函数(C )可以是奇函数也可以是偶函数 (D )不能判定奇偶性4、(05福建卷))(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间(0,6)内解的个数的最小值是A .5B .4C .3D .25、 (05山东卷)下列函数既是奇函数,又在区间[]1,1-上单调递减的是(A )()sin f x x =(B )()1f x x =-+(C )()1()2x x f x a a -=+(D )2()ln 2x f x x -=+ 6、(04年全国卷一.理2)已知函数=-=+-=)(.)(.11lg)(a f b a f xx x f 则若 A .b B .-b C .b 1 D .-b 1 7、(04年福建卷.理11)定义在R 上的偶函数f(x)满足f(x)=f(x+2),当x ∈[3,5]时,f(x)=2-|x-4|,则(A )f(sin6π)<f(cos 6π) (B )f(sin1)>f(cos1) (C )f(cos 32π)<f(sin 32π) (D )f(cos2)>f(sin2) 8、(97理科)定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b); ③f(a)-f(-b)>g(b)-g(-a); ④(a)-f(-b)<g(b)-g(-a), 其中成立的是(A)①与④ (B)②与③ (C)①与③ (D)②与④9、已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0<x 时,)(x f 的解析式为_______________10、定义在)1,1(-上的奇函数1)(2+++=nx x m x x f ,则常数=m ____,=n _____ 11、下列函数的奇偶性为 (1) ;(2) .(1)x e x f x -+=)1ln()(2 (2)⎩⎨⎧<+≥-=)0()1()0()1()(x x x x x x x f12、已知)21121()(+-=x x x f ,(1)判断)(x f 的奇偶性;(2)证明:0)(>x f 13、定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若0)54()1(2>-+--a f a a f ,求实数a 的范围.14、设)(x f 是定义在R 上的偶函数,其图象关于直线1=x 对称,对任意]21,0[,21∈x x ,都有)()()(2121x f x f x x f =+. (I)设2)1(=f ,求)41(),21(f f ; (II)证明)(x f 是周期函数.。
高考数学一轮复习学案函数的奇偶性和周期性

函数的奇偶性和周期性一、知识回顾:1、函数的奇偶性:(1)对于函数)(x f ,其定义域关于原点对称.........: 如果______________________________________,那么函数)(x f 为奇函数;如果______________________________________,那么函数)(x f 为偶函数.(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称.(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 .2、函数的周期性对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,则)(x f 为周期函数,T 为这个函数的周期.二、基本训练:1、以下五个函数:(1))0(1≠=x xy ;(2)14+=x y ;(3)x y 2=;(4)x y 2log =; (5))1(log 22++=x x y ,其中奇函数是______,偶函数是______,非奇非偶函数是 _________变题:已知函数()f x 对一切实数,x y 都有()()()f x y f x f y +=+,则()f x 的奇偶性如何?2、函数c bx ax y ++=2是偶函数的充要条件是___________3、已知5)(357++++=dx cx bx ax x f ,其中d c b a ,,,为常数,若7)7(-=-f ,则=)7(f _______4、若函数)(x f 是定义在R 上的奇函数,则函数)()()(x f x f x F +=的图象关于( )(A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )以上均不对5、函数)0)(()1221()(≠-+=x x f x F x 是偶函数,且)(x f 不恒等于零,则)(x f ( ) (A )是奇函数 (B )是偶函数(C )可能是奇函数也可能是偶函数 (D )不是奇函数也不是偶函数三、例题分析:例1、(1)如果定义在区间]5,3[a -上的函数)(x f 为奇函数,则a =_____(2)若a x f x x lg 22)(--=为奇函数,则实数=a _____(3)若函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,那么当)0,(-∞∈x 时,)(x f =_______(4)设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则)5.47(f 等于( )(A )0.5 (B )5.0- (C )1.5 (D )5.1-例2、判断下列函数的奇偶性(1)2|2|1)(2-+-=x x x f ; (2)221()lg lg f x x x =+; (3)x x x x f -+-=11)1()(例3、设)(x f 是定义在实数集R 上的函数,且满足)()1()2(x f x f x f -+=+,如果23lg )1(=f ,15lg )2(=f ,求)2001(f例4、设)(x f 是定义在R 上的奇函数,且)()2(x f x f -=+,又当11≤≤-x 时,3)(x x f =,(1)证明:直线1=x 是函数)(x f 图象的一条对称轴:(2)当]5,1[∈x 时,求)(x f 的解析式。
2_4函数的奇偶性与周期性

§2.4 函数的奇偶性与周期性2014高考会这样考 1.判断函数的奇偶性;2.利用函数的奇偶性求参数;3.考查函数的奇偶性、周期性和单调性的综合应用. 复习备考要这样做 1.结合函数的图象理解函数的奇偶性、周期性;2.注意函数奇偶性和周期性的综合问题;3.利用函数的性质解决相关问题.1. 奇、偶函数的概念一般地,设函数y =f (x )的定义域为A .假如对于任意的x ∈A ,都有f (-x )=f (x ),那么称函数y =f (x )是偶函数.假如对于任意的x ∈A ,都有f (-x )=-f (x ),那么称函数y =f (x )是奇函数.奇函数的图象关于原点对称;偶函数的图象关于y 轴对称.2. 奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.3. 周期性(1)周期函数:对于函数y =f (x ),假如存有一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:假如在周期函数f (x )的所有周期中存有一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.4. 对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线x =a 对称.一.自测1. (课本改编题)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.2. (2011·广东)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.3. 设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.4. (2011·大纲全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________.二.典型例题题型一 判断函数的奇偶性1.判断以下函数的奇偶性:(1)f (x )=9-x 2+x 2-9;(2)f (x )=(x +1)1-x 1+x; (3)f (x )=4-x 2|x +3|-3.变式.以下函数:①f (x )=x 3-x ;②f (x )=ln(x +x 2+1);③f (x )=3x -3-x 2;④f (x )=lg 1-x 1+x . 其中奇函数的个数是________.题型二 函数的奇偶性与周期性2.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 013).变式。
高考数学一轮复习 专题2.4 函数奇偶性与周期性(讲)

第04节 函数奇偶性与周期性【考纲解读】【知识清单】1.函数的奇偶性对点练习【2017陕西西安铁中月考】下列函数为奇函数的是( ) A.y =x B.y =e xC.y =cos xD.y =e x-e -x【答案】D【解析】A ,B 中显然为非奇非偶函数;C 中cos y x =为偶函数. D 中函数定义域为R ,又()()()x x x xf x e e e e f x ---=-=--=-,∴x xy e e -=-为奇函数. 2.函数的周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 对点练习设()f x 是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________. 【答案】1【考点深度剖析】函数的奇偶性、周期性,通常与抽象函数以及函数的单调性结合考查,往往以选择题或填空题的形式出现.其中函数的周期性,浙江卷常通过三角函数加以考查.【重点难点突破】考点1 函数奇偶性的判断【1-1】【2017浙江杭州质检】下列函数中,既不是奇函数,也不是偶函数的是( ) A.y =x +sin 2x B.y =x 2-cos x C.y =2x+12xD.y =x 2+sin x【答案】D【解析】对于A ,定义域为R ,()()() ) 2(2f x x sin x x sin x f x -=-+-=-+=-,为奇函数;对于B ,定义域为R ,()22()()()f x x cos x x cosx f x -=---=-=,为偶函数;对于C ,定义域为R ,()2(12)122x xx xf x f x ---=+=+=,为偶函数;2y x sinx =+既不是偶函数也不是奇函数,故选D.【1-2】已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A.-13B.13C.12D.-12【答案】B【解析】依题意0b =,且(2)1a a =--,∴13a =,则13a b +=. 【领悟技法】判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断()f x 与()f x -是否具有相等关系或者相反关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式()0()f x f x +-= (奇函数)或()0()f x f x --= (偶函数)是否成立.【触类旁通】【变式一】已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+,则()f x 为( )A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数 【答案】B【变式二】【2017北京,理5】已知函数1()3()3x xf x =-,则()f x (A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A. 考点2 函数奇偶性的性质及应用【2-1】【2017课标1,理5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】【2-2】【2017广东梅州模拟】若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()x f x g x e -=,则有( )A .()()()230f f g <<B .()()()032g f f <<C .()()()203f g f <<D .()()()023g f f << 【答案】D【解析】由题意,得()()()()xxf xg x ef xg x e-⎧-=⎪⎨--=⎪⎩ 解得()()22x xx xe ef x e eg x --⎧-=⎪⎪⎨-⎪=-⎪⎩故(0)1g =-,()f x 为R 上的增函数,()()023f f <<,故()()()023g f f <<. 【2-3】【2017浙江台州中学月考】偶函数()y f x =在区间[0,4]上单调递减,则有( ) A.(1)()()3f f f ππ->>-B.()(1)()3f f f ππ>->-C.()(1)()3f f f ππ->->D.(1)()()3f f f ππ->->【答案】A.【解析】由题意得,014(1)(1)()()()33f f f f f πππππ<<<<⇒-=>>=-,故选A.【领悟技法】1.已知函数的奇偶性求函数的解析式.抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 【触类旁通】【变式一】【2017贵州遵义四中模拟】已知函数()()2,0{,0x x f x g x x >=<是偶函数,则()2f -=( ) A. B.12 C. D. 1-2【答案】C【变式二】若函数f (x )=ln(x x 为偶函数,则a = 【答案】1【解析】由题知ln(y x =是奇函数,所以ln(ln(x x +- =22ln()ln 0a x x a +-==,解得a =1. 考点3 函数周期性及综合应用【3-1】设定义在R 上的函数()f x 满足()()22012f x f x ⋅+=,若()12f =,则()99________f =. 【答案】1006【解析】∵()()22012f x f x ⋅+=,∴()()242012f x f x +⋅+=,∴()()4f x f x =+,∴()f x 是一个周期为4的周期函数,∴()99(4251)(1)f f f =⨯-=-.∵(1)(12)2012f f --+=,∴()99f =2012(1)f =1006. 【3-2】已知()f x 是R 上的奇函数,对x R ∈都有(4)()(2)f x f x f +=+成立,若(1)2f -=-,则(2013)f 等于( )A .2B .﹣2C .﹣1D .2013【答案】A【3-3】已知f (x )是定义在R 上的偶函数,且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则()105.5f =______. 【答案】2.5【解析】()[(2)]42f x f x +=++=-()()12f x f x =+.故函数的周期为4.∴()()105.5427 2.()(5 2.5 2.5)f f f f ⨯=-=-=.∵2 2.53≤≤,由题意,得()2.5 2.5f =.∴()105.5 2.5f =. 【领悟技法】1.求函数周期的方法求一般函数周期常用递推法和换元法,形如y =Asin(ωx +φ),用公式T =2π|ω|计算.递推法:若f(x +a)=-f(x),则f(x +2a)=f[(x +a)+a]=-f(x +a)=f(x),所以周期T =2a.换元法:若f(x +a)=f(x -a),令x -a =t ,x =t +a ,则f(t)=f(t +2a),所以周期T =2a .2.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.3.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.4.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想. 【触类旁通】【变式一】【2017湖南统一考试】已知定义域为R 的奇函数()f x 满足()()30f x f x -+=,且当3,02x ⎛⎫∈-⎪⎝⎭时, ()()2log 27f x x =+,则()2017f =( ) A. -2 B. 2log 3 C. 3 D. 2log 5- 【答案】D【变式二】已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 017)+f (2 019)的值为( ) A.-1 B.1C.0D.2【答案】C【解析】由题意,得(()1)g x f x -=--,又∵()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,∴()()g x g x -=-,()()f x f x -=,∴()11()f x f x -=-+,即1((10))f x f x -++=.∴()()2 017 2 019 2 0()()181 2 01810f f f f +=-++=.【易错试题常警惕】易错典例1:若函数f (x )=k -2x 1+k ·2x 在定义域上为奇函数,则实数k =________.易错分析:解题中忽视函数f(x)的定义域,直接通过计算f(0)=0得k =1.正确解析:∵221()122x x x x k k f x k k---⋅--==+⋅+,∴(2)(2)(21)(12)()()(12)(2)x x x x x x k k k k f x f x k k -++⋅-+⋅-+=+⋅+22(1)(21)(12)(2)x x xk k k -+=+⋅+,由()()0f x f x -+=可得21k =,∴1k =±. 温馨提醒:已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.易错典例2:定义在R 上的函数f(x)既是奇函数,又是周期函数,T 是它的一个正周期.若将方程f(x)=0在闭区间[-T ,T]上的根的个数记为n ,则n 可能为 ( )A .0B .1C .3D .5易错分析:没有经过严密的逻辑分析,直接根据()()()00f T f T f =-==,就想当然地认为方程的根的个数就只有3个.温馨提醒:对于抽象函数要善于找具体的“函数模型”,联想其性质去推证欲证的函数性质,但不能用具体函数代替去解决问题;解决“抽象函数”问题一般采用赋值法,本题可联系y=sinx的图象和性质类比解题.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习过程
一、复习预习
1、复习单调性的概念
2、复习初中的轴对称和中心对称
3、预习奇偶性的概念
4、预习奇偶性的应用
二、知识讲解
考点1 函数的奇偶性
[探究] 1.奇函数、偶函数的定义域具有什么特点?它是函数具有奇偶性的什么条件?
提示:定义域关于原点对称,必要不充分条件.
2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢?
提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1.
3.是否存在既是奇函数又是偶函数的函数?若有,有多少个?
提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.
考点2 周期性
(1)周期函数:
对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:
如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
三、例题精析
【例题1】
【题干】判断下列函数的奇偶性
(1)f(x)=lg 1-x
1+x
;(2)f(x)=
⎩
⎨
⎧x2+x(x>0),
x2-x(x<0);
(3)f(x)=
lg(1-x2)
|x2-2|-2
.
【解析】(1)由1-x 1+x
>0⇒-1<x <1, 定义域关于原点对称.
又f (-x )=lg 1+x 1-x =lg ⎝ ⎛⎭
⎪⎫1-x 1+x -1=-lg 1-x 1+x =-f (x ), 故原函数是奇函数.
(2)函数定义域为(-∞,0)∪(0,+∞),关于原点对称,
又当x >0时,f (x )=x 2+x ,则当x <0时,
-x >0,故f (-x )=x 2-x =f (x );
当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数.
(3)由⎩⎨⎧
1-x 2>0,|x 2-2|-2≠0,得定义域为(-1,0)∪(0,1),关于原点对称,∴f (x )=lg (1-x 2)-(x 2-2)-2=-lg (1-x 2)x 2. ∵f (-x )=-lg[1-(-x )2](-x )2
=-lg (1-x 2)x 2=f (x ),∴f (x )为偶函数.
【例题2】
【题干】(1)设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=() A.-3B.-1
C.1D.3
(2)已知函数f(x)在区间[-5,5]上是奇函数,在区间[0,5]上是单调函数,且f(3)<f(1),则()
A.f(-1)<f(-3) B.f(0)>f(-1)
C.f(-1)<f(1) D.f(-3)>f(-5)
【答案】A、A
【解析】(1)选A因为f(x)为定义在R上的奇函数,
所以f(0)=20+2×0+b=0,解得b=-1.
所以当x≥0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3.
(2)选A函数f(x)在区间[0,5]上是单调函数,又3>1,且f(3)<f(1),故此函数在区间[0,5]上是减函数.由已知条件及奇函数性质,知函数f(x)在区间[-5,5]上是减函数.
选项A中,-3<-1,故f(-3)>f(-1).
选项B中,0>-1,故f(0)<f(-1).
同理选项C中f(-1)>f(1),选项D中f(-3)<f(-5).
【例题3】
【题干】(1)已知函数f (x )是定义在R 上的奇函数,且是以2为周期的周期函数.若当x ∈[0,1)时,f (x )=2x -1,则f ⎝⎛⎭⎫log 12
6的值为( )
A .-52
B .-5
C .-12
D .-6
(2)已知函数f (x )是定义域为R 的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上是减函数,那么f (x )在[1,3]上是(
) A .增函数 B .减函数
C .先增后减的函数
D .先减后增的函数
【答案】(1)选C (2)选D
【解析】(1)选C∵-3<log
1
26<-2,∴-1<log
1
2
6+2<0,即-1<log
1
2
3
2<0.∵f(x)是周期为2的奇函数,
∴f(log
1
26)=f
⎝
⎛
⎭
⎪
⎫
log
1
2
3
2=-f⎝
⎛
⎭
⎪
⎫
-log
1
2
3
2=-f⎝
⎛
⎭
⎪
⎫
log2
3
2=-⎝
⎛
⎭
⎫
22
3
log
2-1=-
1
2.
(2)选D由f(x)在[-1,0]上是减函数,又f(x)是R上的偶函数,所以f(x)在[0,1]上是增函数.由f(x+1)=-f(x),得f(x+2)=f[(x+1)+1]=-f(x+1)=f(x),故2是函数f(x)的一个周期.结合以上性质,模拟画出f(x)部分图象的变化趋势,如下图.
由图象可以观察出,f(x)在[1,2]上为减函数,在[2,3]上为增函数.
四、课堂运用
【基础】
1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为() A.y=x+1B.y=-x3
C.y=1
x D.y=x|x|
2.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式fx+f-x
x>0的解集为()
A.(-2,0)∪(2,+∞) B.(-∞,-2)∪(0,2) C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(0,2)
3.(2013·广州模拟)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则() A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11)
【巩固】
4.若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________.
2a-1 a+1,则a的取值范围是________.
5.(2013·徐州模拟)设函数f(x)是定义在R上周期为3的奇函数,若f(1)<1,f(2)=
【拔高】
6.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()
A.6 B.7
C.8 D.9
7.已知函数f(x)=x2+a
x(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[2,+∞)上为增函数,求实数a的取值范围.
课程小结。