VMOS场效应管基础知识及检测方法

VMOS场效应管基础知识及检测方法
VMOS场效应管基础知识及检测方法

VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。

众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,其两大结构特点:

第一,金属栅极采用V型槽结构;

第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+ 区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。

下面介绍检测VMOS管的方法。

1.判定栅极G

将万用表拨至R×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。

2.判定源极S、漏极D

由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D 极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极。

3.测量漏-源通态电阻RD S(on)

将G-S极短路,选择万用表的R×1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。

由于测试条件不同,测出的RD S(on)值比手册中给出的典型值要高一些。例如用500型万用表R×1档实测一只IRFPC50型VMOS管,RDS(on)=3.2W,大于0.58W(典型值)。

4.检查跨导

将万用表置于R×1k(或R×100)档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。

注意事项:

(1)VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。对于P沟道管,测量时应交换表笔的位置。

(2)有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。

(3)目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使用。例如美国IR公

司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。

(4)现在市售VNF系列(N沟道)产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W,共源小信号低频跨导gm=2000μS。适用于高速开关电路和广播、通信设备中。

(5)使用VMOS管时必须加合适的散热器后。以VNF306为例,该管子加装140×140×4(mm)的散热器后,最大功率才能达到30W。

(6)多管并联后,由于极间电容和分布电容相应增加,使放大器的高频特性变坏,通过反馈容易引起放大器的高频寄生振荡。为此,并联复合管管子一般不超过4个,而且在每管基极或栅极上串接防寄生振荡电阻。

地基基础工程质量检测的项目、方法和数量

地基基础工程质量检测的项目、方法和数量 基础类型:预制桩 1 检测项目:桩身质量 检测方法:低应变法或高应变法 检测数量: 抽检数量不少于总桩数的20%,且每个柱下承台不得少于1根。桩身完整性检测宜采用两种或多种合适的检测方法进行。 2 检测项目:承载力 检测方法:静载试验或高应变法 检测数量: 1、有下列情况之一的应当采用静载荷试验: (1)地基设计等级为甲级; (2)地质条件复杂、桩施工质量可靠性低; (3)属于本地区采用的新桩型或新工艺; (4)挤土群桩施工产生挤土效应;抽检数量不少于单位工程桩总数的1%,且不少于3根;当单位工程桩总数在50根以内时,不少于2根。 2、除1所列情形之外,当采用高应变法抽检时,抽检数量不低于8%且不少于10根。 基础类型:小直径混凝土灌注桩 1

检测方法:低应变法或高应变法 检测数量: 对于地基基础设计等级为甲级或地质条件复杂、成桩质量可靠性较低的灌注桩,抽检数量不少于桩总数的30%,且不得少于20根; 其它桩基工程,抽检桩数不少于总桩数的20%,且不得少于10根。 除上述规定外,每个柱下承台还不得少于1根。 桩身完整性检测宜采用两种或多种合适的检测方法进行 2 检测项目:承载力 检测方法:静载试验或高应变法 检测数量: 1、有下列情况之一的应当采用静载荷试验: (1)地基设计等级为甲级; (2)地质条件复杂、桩施工质量可靠性低; (3)属于本地区采用的新桩型或新工艺; (4)挤土群桩施工产生挤土效应;抽检数量不少于单位工程桩总数的1%,且不少于3根;当单位工程桩总数在50根以内时,不少于2根。 2、除1所列情形之外,当采用高应变法抽检时,抽检数量不少于单位工程桩总数的5%且不少于5根。 基础类型:大直径(桩径≥800mm)混凝土灌注桩 1

地基基础检测试卷A卷

地基基础检测试卷A卷

t 2L t L t 3L 成都交大工程项目管理有限公司检测一所 地基基础检测内部培训考核试卷(A) (满分100分,闭卷考试,时间90分钟) 姓 名 : 分数: 选择题(每题1分,共100题) 1、变形模量是在现场进行的载荷试验在( )条件下求得的。 a 、无侧限 b 、有侧限 c 、半侧限 d 、无要求 2、低应变设备检定试验的检定时间一般为( )。 a 、3个月 b 、1年 c 、2年 d 、3年 3、低应变试验中,对于灌注桩和预制桩,激振点一般选在桩头的( )部位。 a 、1/4桩径处 b 、3/4桩径处 c 、桩心位置 d 、距桩边10cm 处 4、桩身混凝土纵波波速C 的公式为( )。 a 、C =2L/T b 、C = c 、C = d 、C = 5、一块试样,在天然状态下的体积为210cm 3,重量为350g ,烘干后的重量为310g ,设土粒比重Gs 为2.67.(选做2道小题) (1)该试样的密度ρ=( )。 a 、1.67 b 、1.48 c 、1.90 d 、1.76 (2)含水率ω为( )。

a、Ⅰ类桩 b、Ⅱ类桩 c、Ⅲ类桩 d、Ⅳ类桩 12、对于中密以上的碎石土,宜选用()圆锥动力触探试验进行试验。 a、轻型 b、重型 c、中型 d、超重型 13、土的三相基本物理指标是()。 a、孔隙比、含水量和饱和度 b、天然密度、含水量和相对密度 c、孔隙率、相对密度和密度 d、相对密度、饱和度和密度 14、与砂土的相对密实度无关的是()。 a、含水量 b、孔隙比 c、最大孔隙比 d、最小孔隙比 15、地基常见破坏形式中不含下列选择中的()。 a、整体剪切破坏 b、局部剪切破坏 c、拉裂破坏 d、冲剪破坏 16、地基整体剪切破坏过程中一般不经过下列()阶段。 a、压密阶段 b、体积膨胀阶段 c、剪切阶段 d、破坏阶段 17、地基土达到整体剪切破坏时的最小压力称为()。 a、极限荷载 b、塑性荷载 c、临塑荷载 d、临界荷载 18、平板载荷试验适用于()。 a、浅层硬土 b、深层软土 c、浅层各类土 d、深层各类土 19、天然地基平板载荷试验圆形压板的面积一般采用()。 a、0.1~0.2m2 b、0.25~0.5m2 c、0.5~1.0m2 d、1.0~2.0m2 20、平板载荷试验资料P~S曲线上有明显的直线段时,可以取()作为承载

MOS管基础知识

MOS管基础知识 MOS管场效应管 知识要点: 场效应管原理、场效应管的小信号模型及其参数 场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有N沟道器件和P沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。 1.1 1.1.1 MOS场效应管 MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 根据图3-1,N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P 型半导体称为衬底,用符号B表示。 图3-1 N 沟道增强型EMOS管结构示意 一、工作原理 1.沟道形成原理 当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。 当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加VGS,当VGS>VGS(th)时( VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟 1 线性电子电路教案 道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。 gm 的量纲为mA/V,所以gm也称为跨导。 跨导的定义式如下: constDS==VGSDVIgmΔΔ (单位mS) 2. VDS对沟道导电能力的控制 当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图3-2所示。根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS

建设工程质量检测人员(地基基础—低应变法、声波透射法).

建设工程质量检测人员(地基基础—低应变法、声波透射法) 现场操作技能考核实施细则 (2014年) 一、考核人员范围 参加2014年建筑工程质量检测人员,地基基础培训班学习并且理论考试合格人员。2012年以来,参加地基基础培训考试合格,已取得理论开始成绩合格证书,需要增加现场操作科目的人员。 二、考核目的 通过现场操作技能考核,对参考人员现场相关信息收集能力、仪器设备操作技能、分析处理结论的判断能力进行检验。 三、相关要求 1、参考人员带身份证及照片三张。 2、自备检测仪器设备。 ⑴低应变:检测仪主机、电源充电器、传感器、力锤、耦合剂、卫生纸、笔记本电脑、打印机、打印纸等。 ⑵声波透射:声波检测仪、换能器、三脚架、钢卷尺、声测管口拉线轮等。 3、所有检测数据的采集、数据分析及打印需参考人员独立完成。 四、流程:

(一)现场报到 1、应考人员到达长沙后,及时向考核组报告,以便确认其参考并安排考试。 2、考生持本人身份证进行身份信息审核后进入待考区,领取个人现场考核表并按要求在考核表上填写编号。 (二)现场采集数据(限时30分钟) 凭现场考核表、携带仪器设备,依次进入场地,老师和监考人员对仪器设备是否数据清零进行检查后,考生开始实操采集数据。 (三)进入室内数据分析、打印(限时15分钟) 独立完成分析、打印。 提交检测结果资料 1、提交实测曲线的分析。 2、结论及判据。 (四)现场基本技能提问(限时10分钟) (五)考试要求及纪律 1、考生通过身份核验进入待考区后,关闭通讯工具和移动网络工具,违者考试做零分处理。 2、考试从工作人员处领取考生编号,并按要求在考核表上填写编号,不得在考核表上填写与编号、考试内容无关的任何个人信息,如姓名、性别、单位、身份证号码等,违者考试做零分处理。

地基基础检测试题

地基基础检测内部培训考核试卷 (满分100分,闭卷考试,时间90分钟) 姓名:分数: 一、填空题(每题2分,共10题) 1、影响桩土荷载传递的因素有桩侧土和桩端土的性质,砼强度和长径比。 2、当采用低应变法或声波透射法检测桩身完整性时,受检桩的混凝土强度至少达到设计强度的70%且不少于15MPa。 3、建筑基桩检测技术规范中,对桩身完整性类别分为4 类,如桩身存在明显缺陷,对桩身结构承载力有影响的为Ⅲ类 4、用瞬态激振检验基桩桩身完整性通常使用力锤或力棒,根据所需要的带宽和能量要求,可选择不同轻型、重型的激振设备。 5、声波透射法中的声时值应由仪器测值t i扣除仪器系统延迟时间(即仪器零读数)t0及声波在水及两声测管中的传播时间t,。 6、声波透射法以超声波的声速值和波幅值为主,PSD值、主频值为辅来判断混凝土的质量。 7、基桩竖向静载荷试验时,应满足同一地质条件下不少于 3 根且不宜少于总桩数1%。当工程桩总数在50根以内时,不应少于 2 根。 8、单桩竖向抗压静载试验反力装置有(1)锚桩反力装置、(2)堆载反力装置、(3)堆锚结合反力装置。 9、当采用钻芯法检测桩身完整性时,当桩长为10-30m时,每孔截取3组芯样;当桩长小于10m时,可取2组,当桩长大于30m时,不少于4组。 10、对水泥土搅拌桩或旋喷桩复合地基,进行复合地基静载荷试验确定承载力时,可取s/b 或s/d等于0.006 所对应的压力(s为载荷试验承压板的沉降量;b和d分别为承压板宽度和直径,当其值大于2m时,按2m计算)。

1、一根桩径为φ377mm长为18m的沉管桩,低应变动测在时域曲线中反映的桩底反射为12ms,其桩身混凝土平均波速值为。 (A)3200m/s (B)3000m/s (B)1500m/s 2、当采用频域分析时,若信号中的最高频率分量为1000Hz,则采样频率至少应设置为___ ___。 (A)1000Hz (B)1500Hz (C)2000Hz 3、一根Φ为377mm长18m的沉管桩,(同上2题工地桩)对实测曲线分析发现有二处等距同相反射,进行频率分析后发现幅频曲线谐振峰间频差为250Hz,其缺陷部位在。(A)4m (B)6m (C)8m 4、应力波在桩身中的传播速度取决于。 (A)桩长(B)锤击能量(C)桩身材质 5、低应变检测中一般采用速度传感器和加速传感器,加速度传感器的频响特性优于速度传感器,其频响范围一般为。 (A)0-1 kHz (B)0-2kHz (C)0-5kHz 6、浙江省《建筑地基基础设计规范(DB33-10016-2003)》规定:“加载反力系统一般采用支座桩或支墩横梁反力架装置,该装置能提供的反力应不小于预估最大试验荷载的倍。”(A)1.2 (B)1.5 (C)2.0 7、浙江省《建筑地基基础设计规范(DB33-10016-2003)》规定,单桩竖向抗拔静载荷试验中,当试桩累计上拔量超过后,可终止加载。” (A)50mm (B)80mm (C)100mm 8、单桩水平静载试验规定,试桩至支座桩最小中心距为D,D为桩的最大边长(或直径)。 (A)2 (B)3 (C)4 9、声波透射法中测得的桩身混凝土声速是声波在无限大固体介质中传播的声速。对同一根混凝土桩,声波透射法测出的声速应低应变法测量出的声速。 (A)大于(B)小于(C)等于 10、当钻芯孔为一个时,宜在距桩中心的位置开孔。 (A)0~5cm (B)5~10cm (C)10~15cm

场效应管对照表

场效应管对照表(分2页介绍了世界上场效应管的生产厂家和相关参数) 本手册由"场效应管对照表"和"外形与管脚排列图"两部分组成。 在场效应管对照表中,收编了美国、日本及欧洲等近百家半导体厂家生产的结型场效应晶体管(JFET)、金属氧化物半导体场次晶体管(MOSFET)、肖特基势垒控制栅场效应晶体管(SB)、金属半导体场效应晶体管(MES)、高电子迁移率晶体管(HEMT)、静电感应晶体管(SIT)、绝缘栅双极晶体管(IGBT)等属于场效应晶体管系列的单管、对管及组件等,型号达数万种之多。每种型号的场效应晶体管都示出其主要生产厂家、材料与极性、外型与管脚排列、用途与主要特性参数。同时还在备注栏列出世界各国可供代换的场效应晶体管型号,其中含国产场效应晶体管型号。 1."型号"栏 表中所列各种场效应晶体管型号按英文字母和阿拉伯数字顺序排列。同一类型的场效应晶体型号编为一组,处于同一格子内,不用细线分开。2."厂家"栏 为了节省篇幅,仅列入主要厂家,且厂家名称采用缩写的形式表示。) 所到厂家的英文缩写与中文全称对照如下: ADV 美国先进半导体公司 AEG 美国AEG公司 AEI 英国联合电子工业公司 AEL 英、德半导体器件股份公司 ALE 美国ALEGROMICRO 公司ALP 美国ALPHA INDNSTRLES 公司AME 挪威微电子技术公司 AMP 美国安派克斯电子公司 AMS 美国微系统公司 APT 美国先进功率技术公司 ATE 意大利米兰ATES公司 ATT 美国电话电报公司 AVA 美、德先进技术公司 BEN 美国本迪克斯有限公司 BHA 印度BHARAT电子有限公司CAL 美国CALOGIC公司 CDI 印度大陆器件公司 CEN 美国中央半导体公司 CLV 美国CLEVITE晶体管公司 COL 美国COLLMER公司 CRI 美国克里姆森半导体公司 CTR 美国通信晶体管公司 CSA 美国CSA工业公司 DIC 美国狄克逊电子公司 DIO 美国二极管公司 DIR 美国DIRECTED ENERGR公司LUC 英、德LUCCAS电气股份公司MAC 美国M/A康姆半导体产品公司MAR 英国马可尼电子器件公司 MAL 美国MALLORY国际公司DIT 德国DITRATHERM公司ETC 美国电子晶体管公司 FCH 美国范恰得公司 FER 英、德费兰蒂有限公司 FJD 日本富士电机公司 FRE 美国FEDERICK公司 FUI 日本富士通公司 FUM 美国富士通微电子公司 GEC 美国詹特朗公司 GEN 美国通用电气公司 GEU 加拿大GENNUM公司 GPD 美国锗功率器件公司 HAR 美国哈里斯半导体公司 HFO 德国VHB联合企业 HIT 日本日立公司 HSC 美国HELLOS半导体公司 IDI 美国国际器件公司 INJ 日本国际器件公司 INR 美、德国际整流器件公司 INT 美国INTER FET 公司 IPR 罗、德I P R S BANEASA公司ISI 英国英特锡尔公司 ITT 德国楞茨标准电气公司 IXY 美国电报公司半导体体部KOR 韩国电子公司 KYO 日本东光股份公司 LTT 法国电话公司 SEM 美国半导体公司 SES 法国巴黎斯公司 SGS 法、意电子元件股份公司

常用全系列场效应管MOS管型号参数封装资料

场效应管分类型号简介封装DISCRETE MOS FET 2N7000 60V,0.115A TO-92 DISCRETE MOS FET 2N7002 60V,0.2A SOT-23 DISCRETE MOS FET IRF510A 100V,5.6A TO-220 DISCRETE MOS FET IRF520A 100V,9.2A TO-220 DISCRETE MOS FET IRF530A 100V,14A TO-220 DISCRETE MOS FET IRF540A 100V,28A TO-220 DISCRETE MOS FET IRF610A 200V,3.3A TO-220 DISCRETE MOS FET IRF620A 200V,5A TO-220 DISCRETE MOS FET IRF630A 200V,9A TO-220 DISCRETE MOS FET IRF634A 250V,8.1A TO-220 DISCRETE MOS FET IRF640A 200V,18A TO-220 DISCRETE MOS FET IRF644A 250V,14A TO-220 DISCRETE MOS FET IRF650A 200V,28A TO-220 DISCRETE MOS FET IRF654A 250V,21A TO-220 DISCRETE MOS FET IRF720A 400V,3.3A TO-220 DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE

mos管基础知识

MOS管的基础知识 什么是场效应管呢?场效应管式是利用输入回路的电场效应来控制输出回路 电流的一种半导体器件,并以此命名。由于它是靠半导体中的多数载流子导电,又称单极性晶体管。它区别晶体管,晶体管是利用基极的小电流可以控制大的集电极电流。又称双极性晶体管。 一, MOS管的种类,符号。 1JFET结型场效应管----利用PN结反向电压对耗尽层厚度的控制来改变导电沟道的宽度,从而控制漏极电流的大小。结型场效应管一般是耗尽型的。 耗尽型的特点: a,PN结反向电压,这个怎么理解,就是栅极G,到漏极D和源极s有个PN吉, b,未加栅压的时候,器件已经导通。要施加一定的负压才能使器件关闭。 C,从原理上讲,漏极D和源极S不区分,即漏极也可作源极,源极也可以做 漏极。漏源之间有导通电阻。 2IGFET绝缘栅极场效应管----利用栅源电压的大小来改变半导体表面感生电荷

的多少,从而控制漏极电流的大小。 增强型效应管特点: A, 栅极和源极电压为0时,漏极电流为0的管子是增强型的。 B, 栅源电压,这个之间是个绝缘层,绝缘栅型一般用的是 SIO 2绝缘层。 耗尽 型绝缘栅场效应晶体管 的性能特点是:当栅极电压U 0 =0时有一定的漏 极电流。对于N 沟道耗尽型绝缘栅场效应晶体管,漏极加正电压,栅极电压从 0 逐渐上升时漏极电流逐渐增大,栅极电压从 0逐渐下降时漏极电流逐渐减小直至 截 止。对于P 沟道耗尽型绝缘栅场效应晶体管,漏极加负电压,栅极电压从 0逐 渐下降时漏极电流逐渐增大,栅极电压从 0逐渐上升时漏极电流逐渐减小直至截 绝缘栅型场效应 管: N 沟道增强型,P 沟道增强型,N 沟道耗尽型,P 沟道耗 尽型 MOSFET 増强型 N 沟道 二,用数字万用表测量MO 管的方法 用数字万用表判断MOS 的管脚定义。 1, 判断结型场效应管的 栅极的判断, 我们以N 沟道为例,大家知道,结型场效应管在 VGS 之间不施加反向电压 的 话,DS 之间是导通的,(沟道是以N 型半导体为导电沟道),有一定的 阻值,所以止0 1, 2, 按功率分类: A, 小信号管,一般指的是耗尽型场效应管。主要用于信号电路的控制。 B, 功率管,一般指的是增强型的场效应管,只要在电力开关电路,驱动 电路等。 按结构分类: 结型场效应管: 型) 增强型, 耗尽型 N 沟道结型场效应管 P 沟道结型场效应管(一般是耗尽 ZU 耗尽型 ZK7 工4

MOS管基础知识

MOS管(MOSFET)基础知识:结构,特性驱动电路及应用 MOS管(MOSFET)基础知识:结构,特性驱动电路及应用分析 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。 上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。 MOS管的驱动电路及其损失,可以参考Microchip公司的AN799Matching MOSFET Drivers to MOSFETs。讲述得很详细,所以不打算多写了。 5,MOS管应用电路 MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。现在的MOS驱动,有几个特别的需求, 1,低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 2,宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。

用场效应管参数大全.pdf2

用场效应管参数大全 宏瑞电子|家电维修|电子技术|家电维修技术2009-12-0620:30:24作者:zhangzi来源:文字大小:[大][中][小] 型号材料管脚用途参数 3DJ6NJ低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS开关600V11A150W0.36 2SJ117PMOS GDS音频功放开关400V2A40W 2SJ118PMOS GDS高速功放开关140V8A100W50/70nS0.5 2SJ122PMOS GDS高速功放开关60V10A50W60/100nS0.15 2SJ136PMOS GDS高速功放开关60V12A40W70/165nS0.3 2SJ143PMOS GDS功放开关60V16A35W90/180nS0.035 2SJ172PMOS GDS激励60V10A40W73/275nS0.18 2SJ175PMOS GDS激励60V10A25W73/275nS0.18 2SJ177PMOS GDS激励60V20A35W140/580nS0.085 2SJ201PMOS n 2SJ306PMOS GDS激励60V14A40W30/120nS0.12 2SJ312PMOS GDS激励60V14A40W30/120nS0.12 2SK30NJ SDG低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108NJ SGD音频激励开关50V1-12mA0.3W701DB 2SK118NJ SGD音频话筒放大50V0.01A0.1W0.5dB 2SK168NJ GSD高频放大30V0.01A0.2W100MHz1.7dB 2SK192NJ DSG高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193NJ GSD高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214NMOS GSD高频高速开关160V0.5A30W 2SK241NMOS DSG高频放大20V0.03A0.2W100MHz1.7dB 2SK304NJ GSD音频功放30V0.6-12mA0.15W 2SK385NMOS GDS高速开关400V10A120W100/140nS0.6 2SK386NMOS GDS高速开关450V10A120W100/140nS0.7 2SK413NMOS GDS高速功放开关140V8A100W0.5(2SJ118) 2SK423NMOS SDG高速开关100V0.5A0.9W4.5 2SK428NMOS GDS高速开关60V10A50W45/65NS0.15

场效应管知识点

场效应管工作原理 场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS 场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。 为解释MOS 场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

场效应管的基础知识

场效应管的基础知识 英文名称:MOSFET(简写:MOS) 中文名称:功率场效应晶体管(简称:场效应管) 场效应晶体管简称场效应管,它是由半导体材料构成的。 与普通双极型相比,场效应管具有很多特点。 场效应管是一种单极型半导体(内部只有一种载流子—多子) 分四类: N沟通增强型;P沟通增强型; N沟通耗尽型;P沟通耗尽型。 增强型MOS管的特性曲线 场效应管有四个电极,栅极G、漏极D、源极S和衬底B,通常字内部将衬底B与源极S相连。 这样,场效应管在外型上是一个三端电路元件场效管是一种 压控电流源器件,即流入的漏极电流ID栅源电压UGS控制。 1、转移特性曲线: 应注意: ①转移特性曲线反映控制电压VGS与电流ID之间的关系。 ②当VGS很小时,ID基本为零,管子截止;当VGS大于某一个电压VTN时ID随VGS的变化而变化,VTN称为开启电压,约为2V。 ③无论是在VGS 2、输出特性曲线:输出特性是在给顶VGS的条件下,ID与VDS之间的关系。可分三个区域。 ①夹断区:VGS ②可变电阻区:VGS>VTN且VDS值较小。VGS值越大,则曲线越陡,D、S极之间的等效电阻RDS值就越小。 ③恒流区:VGS>VTN且VDS值较大。这时ID只取于VGS,而与VDS无关。 3、MOS管开关条件和特点:管型状态,N-MOS,P-MOS特点 截止VTN,RDS非常大,相当与开关断开 导通VGS≥VTN,VGS≤VTN,RON很小,相当于开关闭合 4、MOS场效应管的主要参数 ①直流参数 a、开启电压VTN,当VGS>UTN时,增强型NMOS管通道。 b、输入电阻RGS,一般RGS值为109~1012Ω高值 ②极限参数 最大漏极电流IDSM击穿电压V(RB)GS,V(RB)DS 最大允许耗散功率PDSM 5、场效应的电极判别 用R×1K挡,将黑表笔接管子的一个电极,用红表笔分别接另外两个电极,如两次测得的结果阻值都很小,则黑表笔所接的电极就是栅极(G),另外两极为源(S)、漏(D)极,而且是N型沟场效应管。 在测量过程中,如出现阻值相差太大,可改换电极再测量,直到出现两阻值都很大或都小为止。 如果是P沟道场效应管,则将表笔改为红表笔,重复上述方法测量。 6、结型场效应管的性能测量 将万用表拨在R×1K或R×10K挡上,测P型沟道时,将红表笔接源极或漏极,黑表笔接栅极,测出的电阻值应很大,交换表笔测时,阻值应该很小,表明管子是好的。

地基基础检测方案(模板)

****项目钻孔灌注桩基桩检测方案 编制: 审核: *********************** 二O一九年十月十四日

目录 1、工程概况 (2) 2、检测目的 (2) 3、检测依据及抽检原则 (2) 4、检测工作量 (3) 5、检测方法及原理 (4) 6、施工组织方案 (7) 7、委托方责任和义务 (7) 8、质量保证体系 (8) 9、文明施工及安全措施 (8) 10、工期安排 (9) 11、服务承诺 (9) 12、联系方式及其它说明 (9)

****项目钻孔灌注桩和浅层平板试验 检测方案 1、工程概况 拟建锦绣苑项目(建筑)位于****************,项目由*********有限责任公司开发建设,工程占地面积13334m2,建筑面积35308.3m2,由3栋主楼和1个地下室组成。主楼基础拟采用钻孔灌注桩基础,地下室基础拟采用天然基础。 本工程主楼拟采用的钻孔灌注桩桩径为800mm,有效桩长约37m,桩端持力层为第6层中风化灰岩,设计单桩承载力为5500kN;地下室拟采用天然基础,持力层为第4层粉质黏土层,承载力特征值为360kPa。 2、检测目的 1、单桩竖向抗压静载荷试验:采用单桩竖向抗压静载试验,确定单桩竖向抗压承载力特征值,为设计和工程验收提供依据。 2、单桩竖向抗拔静载试验:采用单桩竖向抗拔静载荷试验,确定单桩竖向抗拔承载力为设计和工程验收提供依据。 3、低应变反射波法:采用低应变反射波法测桩,确定混凝土桩的桩身完整性,判定桩身完整性类别与缺陷位置,为工程桩验收提供依据。 4、浅层平板载荷试验:采用浅层平板载荷试验,确定承压板下地基土应力主要影响范围内的承载力,为设计和工程验收提供依据。 3、检测依据及抽检原则 3.1、检测依据: (1)《建筑桩基技术规范》JGJ 94-2008 (2)《建筑地基基础设计规范》GB 50007-2011

常用场效应管参数大全 (2)

型号材料管脚用途参数 IRFP9140 PMOS GDS 开关 100V19A150W100/70nS0.2 IRFP9150 PMOS GDS 开关 100V25A150W160/70nS0.2 IRFP9240 PMOS GDS 开关 200V12A150W68/57nS0.5 IRFPF40 NMOS GDS 开关 900V4.7A150W2.5 IRFPG42 NMOS GDS 开关 1000V3.9A150W4.2 IRFPZ44 NMOS GDS 开关 1000V3.9A150W4.2 ******* IRFU020 NMOS GDS 开关 50V15A42W83/39nS0.1 IXGH20N60ANMOS GDS 600V20A150W IXGFH26N50NMOS GDS 500V26A300W0.3 IXGH30N60ANMOS GDS 600V30A200W IXGH60N60ANMOS GDS 600V60A250W IXTP2P50 PMOS GDS 开关 500V2A75W5.5 代J117 J177 PMOS SDG 开关 M75N06 NMOS GDS 音频开关 60V75A120W MTH8N100 NMOS GDS 开关 1000V8A180W175/180nS1.8 MTH10N80 NMOS GDS 开关 800V10A150W MTM30N50 NMOS 开关 (铁)500V30A250W MTM55N10 NMOS GDS 开关 (铁)100V55A250W350/400nS0.04 MTP27N10 NMOS GDS 开关 100V27A125W0.05 MTP2955 PMOS GDS 开关 60V12A75W75/50nS0.3 MTP3055 NMOS GDS 开关 60V12A75W75/50nS0.3

场效应管基础知识资料

场效应管基础知识 一、场效应管的分类 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数 1、I DSS —饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏

源电流。 2、UP —夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。 3、UT —开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、gM —跨导。是表示栅源电压U GS —对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。 5、BUDS —漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。 6、PDSM —最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。 7、IDSM —最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM 几种常用的场效应三极管的主要参数 四、场效应管的作用 2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。 3、场效应管可以用作可变电阻。

地基基础工程质量检测技术指引教学教材

附件 地基基础工程质量检测技术指引 为保证地基基础质量检测的规范性、准确性和公正性,根据国家、行业、省的相关技术规范、标准,结合我市实际制定本指引。 一、地基基础工程的检测项目、方法及数量 地基基础检测应符合地基基础工程质量检测的项目、方法和数量表(详见附表)以及下列规定: (一)地基基础工程质量检测抽检应按单位工程计算。 (二)同一单位工程采用不同地基基础类型时,应分别确定检测方法和抽检数量;同一单位工程中采用不同桩型或不同地基处理方法时,按相关规定分别确定检测方法和抽检数量。 (三)地基基础设计等级为丙级,且各单位工程的桩总数少于30根或复合地基处理面积小于300m2,可将地质条件相近,施工工艺相同的若干个单位工程合并起来,确定抽检数量,但应对每个单位工程进行承载力抽检。对每个单位工程的承载力抽检数量为:当采用静载试验时不得少于1根、当采用高应变法时不得少于2根、当采用平板载荷试验时不得少于2点。 (四)采用声波透射法、低应变法、高应变、钻芯法等对桩身质量进行检测,当检测结果不能对整桩桩身质量进行评定或难于判定其整桩的质量类别时,应采用钻芯法等适当的方法进行复检。 (五)桩身质量检测采用两种及以上方法的,抽测数量按实际检测的桩的数量计算,不得重复计算。 (六)工程桩的检测宜先进行桩身完整性检测,后进行承载力检测;当基础埋深较

大时,桩身完整性检测宜在基坑开挖至基底标高后进行。 二、验证检测 当对检测结果有异议时,应在原试验点附近重新选点进行试验或在原受检桩上进行验证检测,验证检测的抽检数量宜根据实际情况确定,可以采用以下方法:(一)可采用平板载荷试验,结合标准贯入试验、静力触探试验、圆锥动力触探试验、十字板剪切试验等方法,对地基基础承载力是否符合设计要求进行综合分析评价; (二)桩身浅部缺陷可采用开挖验证; (三)桩身存在缺陷的预制桩可采用高应变法进行验证,必要时还应进行水平荷载试验或竖向抗拔静载试验; (四)可根据实际情况采用静载法、钻芯法、高应变法、开挖等方法验证低应变法检测结果; (五)对于声波透射法检测结果有异议的,可重新用声波透射法检测,或在同一根桩用钻芯法检测; (六)可在同一根桩增加钻孔验证钻芯法检测结果; (七)可采用单桩竖向抗压静载试验验证高应变法所测单桩承载力检测结果。 三、扩大抽检 当检测结果不满足原设计要求时,应进行扩大抽检。扩大抽检应采用原来的检测方法或准确度更高的检测方法。当因未埋设声测管而不能采用声波透射法扩大抽检时,应采用钻芯法。扩大抽检的数量应符合下列规定: (一)当平板载荷试验、锚杆、单桩承载力检测或钻芯法检测结果不满足设计要求时,应按不满足设计要求的数量加倍扩大抽检。 (二)当采用低应变法抽检桩身质量所发现的Ⅲ、Ⅳ类桩之和大于抽检桩数的20%时,应按原抽检比例扩大抽检,当两次抽检的Ⅲ、Ⅳ类桩之和仍大于抽检桩数的20%时,

相关文档
最新文档