蚁群优化算法
蚂蚁算法和蚁群算法

蚂蚁算法(Ant Colony Algorithm)和蚁群算法(Ant Colony Optimization)是启发式优化算法,灵感来源于蚂蚁在觅食和建立路径时的行为。
这两种算法都基于模拟蚂蚁的行为,通过模拟蚂蚁的集体智慧来解决组合优化问题。
蚂蚁算法和蚁群算法的基本原理类似,但应用领域和具体实现方式可能有所不同。
下面是对两者的简要介绍:蚂蚁算法:蚂蚁算法主要用于解决图论中的最短路径问题,例如旅行商问题(Traveling Salesman Problem,TSP)。
其基本思想是通过模拟蚂蚁在环境中寻找食物的行为,蚂蚁会通过信息素的释放和感知来寻找最优路径。
蚂蚁算法的核心概念是信息素和启发式规则。
信息素(Pheromone):蚂蚁在路径上释放的一种化学物质,用于传递信息和标记路径的好坏程度。
路径上的信息素浓度受到蚂蚁数量和路径距离的影响。
启发式规则(Heuristic Rule):蚂蚁根据局部信息和启发式规则进行决策。
启发式规则可能包括路径距离、路径上的信息素浓度等信息。
蚂蚁算法通过模拟多个蚂蚁的行为,在搜索过程中不断调整路径上的信息素浓度,从而找到较优的解决方案。
蚁群算法:蚁群算法是一种更通用的优化算法,广泛应用于组合优化问题。
除了解决最短路径问题外,蚁群算法还可应用于调度问题、资源分配、网络路由等领域。
蚁群算法的基本原理与蚂蚁算法类似,也是通过模拟蚂蚁的集体行为来求解问题。
在蚁群算法中,蚂蚁在解决问题的过程中通过信息素和启发式规则进行路径选择,但与蚂蚁算法不同的是,蚁群算法将信息素更新机制和启发式规则的权重设置进行了改进。
蚁群算法通常包含以下关键步骤:初始化:初始化蚂蚁的位置和路径。
路径选择:根据信息素和启发式规则进行路径选择。
信息素更新:蚂蚁在路径上释放信息素,信息素浓度受路径质量和全局最优解的影响。
全局更新:周期性地更新全局最优解的信息素浓度。
终止条件:达到预设的终止条件,结束算法并输出结果。
蚁群优化算法课件

05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强
蚁群算法 加约束条件

蚁群算法加约束条件【原创实用版】目录1.蚁群算法概述2.蚁群算法的约束条件3.蚁群算法的应用实例4.蚁群算法的优缺点正文一、蚁群算法概述蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。
该算法由意大利学者 Dorigo、Gambardella 等人于 1991 年提出,是一种基于种群的随机搜索算法。
蚁群算法借鉴了蚂蚁觅食过程中的信息素更新机制,通过模拟蚂蚁在寻找食物过程中的信息共享和协同搜索策略,从而在解决优化问题上表现出较强的全局搜索能力。
二、蚁群算法的约束条件在蚁群算法中,约束条件通常包括以下两个方面:1.信息素浓度约束:蚁群算法中,信息素的浓度受限于信息素的挥发性和蚂蚁在路径上释放的信息素的数量。
当信息素的浓度超过一定阈值时,算法会采取相应的措施,如降低信息素的浓度或者增加信息素的挥发性。
2.蚂蚁数量约束:蚁群算法中,蚂蚁的数量是固定的。
在算法执行过程中,蚂蚁的数量不会增加或减少。
因此,在解决实际问题时,需要根据问题的规模和复杂度,合理地选择蚂蚁的数量。
三、蚁群算法的应用实例蚁群算法在许多领域都取得了显著的应用成果,例如:1.旅行商问题(Traveling Salesman Problem, TSP):TSP 是蚁群算法的经典应用之一,通过模拟蚂蚁在城市间寻找最短路径的过程,求解TSP 问题。
2.装载问题(Loading Problem):装载问题是指在有限的车辆空间内,合理地安排货物的装载方案,以使运输成本最小化。
蚁群算法在解决装载问题时,表现出了较好的全局搜索能力。
3.蚁群算法在工程设计、生产调度、供应链管理等领域也取得了较好的应用效果。
四、蚁群算法的优缺点蚁群算法作为一种优化算法,具有以下优缺点:优点:1.全局搜索能力较强:蚁群算法在求解优化问题时,具有较强的全局搜索能力,能够较快地找到较优解。
2.适应性强:蚁群算法可以根据问题的特点和规模,灵活地调整算法参数,如信息素浓度、挥发性等,以提高算法的性能。
蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。
蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。
1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。
蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。
通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。
2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。
2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。
较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。
2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。
通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。
2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。
信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。
蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。
2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。
信息素更新还包括信息素的挥发,以模拟现实中信息的流失。
3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。
3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。
在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。
例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。
3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。
蚁群算法基本原理

蚁群算法基本原理
蚁群算法(Ant Colony Algorithm)是一种基于模拟蚁群行为的优化算法,用于解决复杂的优化问题。
其原理是模拟蚂蚁寻找食物的行为,在寻找过程中通过信息素来引导蚂蚁探索最优解。
基本流程:
1. 初始化:将蚂蚁随机分散在问题空间中,每只蚂蚁都随机选择一个起点。
2. 蚂蚁搜索:每只蚂蚁根据一定的概率选择下一个节点,概率与当前节点的信息素有关,如果信息素较高则该节点被选中的概率较大。
3. 信息素更新:每只蚂蚁在搜索过程中会留下一定的信息素,当搜索完成后,信息素会根据一定的规则进行更新,具体规则可以为:信息素浓度与路径长度成反比例关系,或者信息素挥发速度固定。
4. 最优解记录:当所有蚂蚁完成搜索后,从它们所走过的路径中选择获得最优解,并将该路径上的信息素浓度进行更新。
5. 重复搜索:重复上述所有步骤,直到达到设定的迭代次数或者满足终止条件。
蚁群算法基本原理就是通过模拟蚁群行为,通过信息素的引导来搜索最优解。
在
实际应用中,蚁群算法可以用于解决诸如旅行商问题、作业调度问题、路径规划问题、图像分割问题等优化问题。
蚁群优化算法技术介绍

目录
• 蚁群优化算法概述 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现过程 • 蚁群优化算法的改进与优化 • 蚁群优化算法的案例分析
01 蚁群优化算法概述
定义与原理
定义
蚁群优化算法是一种模拟自然界 中蚂蚁觅食行为的仿生优化算法 。
原理
通过模拟蚂蚁的信息素传递过程 ,利用正反馈机制寻找最优解。
算法特点
分布式计算
蚁群算法中的蚂蚁可以并行地搜索解空间,提高了算法的搜索效 率。
鲁棒性
对初始解和参数选择不敏感,能在多变的搜索空间中寻找到最优 解。
易于实现
算法实现简单,可扩展性强,适用于解决复杂优化问题。
应用领域
路径规划
任务调度
用于解决车辆路径规划、 物流配送等问题。
应用于多核处理器任务 调度、云计算资源分配
蚂蚁的移动规则
随机选择
蚂蚁在移动时,会根据当前位置和目标位置之间的路径上信息素浓度随机选择 下一个移动的节点。
避免重复
为了避免重复访问同一个节点,蚂蚁会根据一定的概率选择新的节点,这个概 率与路径上的信息素浓度成正比。
蚂蚁之间的协作机制
共享信息
蚂蚁通过释放和感知信息素来共享彼此的路径信息和状态,从而在群体中形成一 种协作效应。
网络路由问题求解
总结词
蚁群优化算法在网络路由问题求解中具有较好的应用 效果,能够优化网络路由和提高网络性能。
详细描述
网络路由问题是一个重要的网络通信问题,旨在根据 网络拓扑结构和通信需求,选择最优的路由路径和转 发策略,以实现数据包的可靠传输和网络性能的提升 。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传 递机制来指导搜索过程,能够有效地解决网络路由问 题,优化网络路由和提高网络性能。
蚁群算法原理

蚁群算法原理一、什么是蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种仿生智能算法,它模拟蚂蚁搜索食物的行为,从而解决多种优化问题。
该算法旨在建立蚂蚁在搜索空间中的路径,并在这些路径上传播信息,从而使蚂蚁在搜索空间中最终能够找到最优解的路径。
二、蚁群算法的原理1、蚁群算法的基本原理蚁群算法建立在模拟生物天性的基础上,它的基本原理如下:蚂蚁在搜索过程中会搜索出一系列可能的路径,当它们回到搜索起点时,会把它们走过的路线信息传给其它蚂蚁,然后其它蚂蚁据此搜索出其它可能的路线,此过程一直持续,所有蚂蚁在搜索空间中随机探索,把自己走过的路线都留下越多的信息,这样就把多条路线的信息逐渐累积,最终能够找到最优解的路径,从而解决优化问题。
2、蚁群算法的过程(1)协作首先,许多蚂蚁在搜索空间中进行协作,它们在这个空间中进行随机搜索,并尝试找到最优解的路径。
(2)共嗅搜索过程中,蚂蚁会随机尝试搜索各种可能的路径,并在路径上沿途留下一些信息,这些信息就是蚂蚁在搜索过程中搜集到的数据,以这些数据为基础,一方面蚂蚁能够自动判断路径上的优劣,另一方面其它蚂蚁也可以共享这些信息,从而改进和优化搜索效率。
(3)路径搜索蚂蚁在搜索过程中会随机尝试搜索所有可能的路径,它们也会把自己走过的最好的路径留下,这个路径就是最后需要搜索的最优路径,当蚂蚁搜索完毕时,就能够把这条最优路径传给其它蚂蚁,从而解决优化问题。
三、蚁群算法的优势1、收敛性好蚁群算法拥有良好的收敛性,它可以较快地找到最优解。
2、实现简单蚁群算法实现简单,只需要定义蚂蚁在寻找最优路径时的行为模型即可,无需定义较多的参数,因此能够大大减少计算量。
3、鲁棒性高蚁群算法的鲁棒性很高,它可以有效地避免局部最优路径,从而更容易达到全局最优路径。
四、蚁群算法的应用1、旅行商问题蚁群算法可以用来解决旅行商问题,即给定一组城市,求解访问相关城市的最优路径。
群智能优化算法及其应用

群智能优化算法及其应用一、引言群智能优化算法作为一种模拟生物群体行为的算法,近年来在优化问题的解决中得到越来越广泛的应用。
群智能优化算法通过模拟自然界中生物个体的行为,以群体智慧的方式来解决复杂的优化问题。
本文将介绍群智能优化算法的基本原理,同时探讨其在实际问题中的应用。
二、群智能优化算法的基本原理群智能优化算法的基本原理来源于自然界中各种生物的群体行为。
通过模拟个体之间的相互作用和信息交流,算法能够自主地进行搜索和优化。
主要的群智能优化算法包括粒子群优化算法(PSO)、蚁群优化算法(ACO)、鱼群算法(FA)和火流鸟觅食算法(CSA)等。
1. 粒子群优化算法(PSO)粒子群优化算法是一种模拟鸟群飞行行为的算法。
在算法中,解空间中的每个解被表示为一个粒子,由位置和速度两个属性组成。
每个粒子根据其自身的位置和历史最优位置进行搜索,并通过学习或者合作来优化问题。
算法通过不断调整速度和位置,使粒子向着全局最优解逼近。
2. 蚁群优化算法(ACO)蚁群优化算法是模拟蚂蚁寻找食物的行为。
在算法中,解空间中的搜索问题被转化为蚂蚁在路径上释放信息素的过程。
蚂蚁根据路径上的信息素浓度来选择路径,并且释放信息素来引导其他蚂蚁。
通过信息素的正反馈作用,蚂蚁群体逐渐找到最优解。
3. 鱼群算法(FA)鱼群算法是模拟鱼群觅食行为的算法。
在算法中,解空间中的每个解被看作是一条鱼,而目标函数则被看作是食物的分布。
鱼群通过觅食行为来寻找最优解。
每条鱼根据当前的解和其他鱼的信息来调整自身的位置和速度,以便找到更好的解。
4. 火流鸟觅食算法(CSA)火流鸟觅食算法是模拟鸟群觅食行为的算法。
在算法中,解空间中的解被看作是食物的分布,而解的质量则根据目标函数来评估。
鸟群通过觅食和觅食行为调整和优化解。
火流鸟觅食算法通过仿真鸟群觅食时的行为和信息交流来搜索解空间。
三、群智能优化算法的应用群智能优化算法在各个领域都得到了广泛的应用,下面我们将以几个常见领域为例进行探讨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 蚂蚁系统理论
AS算法(蚂蚁圈版本)对TSP的求解流程主要有两大步骤:路径构建和信息素更新
1.路径构建
定义5.1 AS中的随机比例规则:对每只蚂蚁k,路径记忆向量R K 按照访问 顺序记录了所有k已经经过的城市序号。设蚂蚁k当前所在的城市为i,则其选择 城市j作为下一个访问对象的概率为:
(i, j) (i, j) , j Jk i Pijk (i, j) (i, u) (i, u) uJ k i 其他 0,
两种构建方式,对于蚂蚁系统来说是等价的,因为他们都 没有明显地改变算法的行为特征。对于其他ACO算法而言 这两种方法就不等价了,例如:ACS算法。
3.1 精华蚂蚁系统
提出背景:
当城市的规模较大时,问题的复杂度呈指数级增长,仅靠AS系统 中这样一个基础单一的信息素更新机制引导搜索偏向,搜索效率有瓶 颈。能否用一张“额外手段”强化某些最可能成为最有路径的边,让 蚂蚁搜索的范围更快、更正确地收敛呢?
2.3 蚂蚁系统理论
2.信息素更新
初始化时: =m / C
0 nn
i, j (1 ) i, j k i, j
k 1
1 C k i, j k 0
m
i , j R k
否则
m是蚂蚁的个数, C nn是由贪婪算法构造的路径的长度。 是信息素的蒸发率,规定 0 1 通常设置为 =0.5 i, j 是第k只蚂蚁在它经过的边上释放的信息素量; Ck 表示路径的长度,它是 R 中所有边的长度和。
Q / Lk,第k只蚂蚁从城市i访问城市j k ii 0, 其他
2.蚂蚁数量
Q / dij,第k只蚂蚁从城市i访问城市j 0, 其他 3.蚂蚁密度
k ii
Q,第k只蚂蚁从城市i访问城市j k ii 0, 其他 其中,Q为常数,表示蚂蚁循环一次所释放的信息素总量; L为第k只蚂蚁经过路径的长度。d为城市间的距离。
2
信息素挥发因子较小,算法具有较高的全 局搜索能力,但是由于每个路径的信息素 浓度差距拉大较慢,算法收敛速度较慢。
3
=0.5 ;基于排列的蚂蚁系 对于AS和EAS, 统, =0.02 ;ACS, =0.1 ,算法 =0.1 ;MMAS, 的综合性能提高。
2.3 蚂蚁系统理论
参数设置
3.2 基于排列蚂蚁系统
提出背景:
在EAS提出后,有没有更好的一种信息素更新方式,它同样使 T 各边的信息浓度得到加强,且对其余各边的信息素更新机制亦有改善?
b b
基于排列的蚂蚁系统就是这样的一种改进版本,在每一轮所有蚂蚁 构建完路径后,将按照所得路径的长度进行排名,只有生成了至今 最优路径的蚂蚁和排名在前(w-1)的蚂蚁才允许释放信息素,蚂 蚁在边(i,j)上释放的信息素的权值由蚂蚁的排名决定。
2
蚂蚁数目过少时,算法的探索能力变差, 容易出现早熟现象。特别是当问题的规模 很大时,算法的全局寻优能力会十分糟糕
3
在用蚂蚁系统、精华蚂蚁系统、基于排列 的蚂蚁系统和最大最小蚂蚁系统求解TSP 时,m取值等于城市数目时有较好性能。
2.3 蚂蚁系统理论
参数设置
1
信 息 素 挥 发 因 子
信息素挥发因子较大,信息素挥发速率大 ,从未被蚂蚁选择过的边上信息素急剧减 少到接近0,降低算法的全局探索能力。
1.1 基本原理
(1)蚂蚁没有发育完全的视 A 觉感知系统,其在寻找食物的 过程中是如何选择路径的呢? (2)蚂蚁往往像军队般有纪 律、有秩序地搬运食物,它们 通过什么方式进行群体间的交 流协作呢?
信息素
信息素是一种化学物质,由蚂蚁自身释放,是实现蚁群内 间接通信的物质。蚂蚁随机选择路径,但是能感知当前地 面上的信息素浓度,并倾向于往信息素浓度高的方向前进。
k
k
2.3 蚂蚁系统理论
参数设置
参数 参数的意义
蚂蚁数目m
影响着算法的搜素能力和计算量
信息素挥发因子
影响蚂蚁个体之间相互影响的强弱,关系到算 法的全局搜索能力和收敛速度
初始信息素量 0
决定算法在初始化阶段的探索能力,影响算法 的收敛速度
2.3 蚂蚁系统理论
参数设置
1 蚂 蚁 数 目
蚂蚁数目过多,迭代的计算量大且被搜索 过的路径上信息素变化比较平均,此时全 局搜索能力增强,但收敛速度减慢
其中, J i 表示从城市i可以直接到达的且又不在蚂蚁访问过的城市序列 i, j 是一个启发式信息,通常由 i, j =1/ d 直接计算。 R 中的城市集合。 i, j 表示边 i, j 上的信息量
k
k ij
2.3 蚂蚁系统理论
1.路径构建
(i, j) (i, j) , j Jk i Pijk (i, j) (i, u) (i, u) uJ k i 其他 0,
1
初 始 信 息 素 量
初始信息素量太小,未被蚂蚁选择过的边 上信息素太少,蚂蚁很快就全部集中在一 条局部最优的路径上,算法易早熟。
2
初始信息素太大,信息素对搜索方向的引 导能力增长十分缓慢,算法收敛慢。
3
=(e+m) / C ; 对于AS =m / C ;EAS, AS , =0.5r(r-1) / C ; MMAS, =1/ C ;ACS, =1/ n C
(b)两条分支具有不同长度
路径探索
1.1 基本理论
双桥实验
30分钟后
蚁穴
食物源
1.实验最终结果:除了极少的 蚂蚁选择较短的分支以外, 整个群体几乎都困在较长的 分支上。 2.长分支上的信息素浓度高, 而信息素的蒸发速度过于缓 慢。
(c)30分钟后添加短分支
1.1基本理论
1
选择路径是一个概率随机过程,启发式 信息多以及信息浓度大的路径被选中概 率更大。
2.1 TSP问题
问题简述:
已知有 n 个城市的集合 C c , c ,L , c ,任意两个城市之间均有 d i, j 1,2,L , n 路径连接, 表示城市与之间的距离。旅行商问题就是需 要寻找这样的一中周游方案:周游路线从某个城市出发,经过每个城 市一次且仅一次,最终回到出发城市,使得周游的路线总长度最短。
双 桥 实 验 总 结
2
信息素会不断的蒸发。
3
路径探索也是必需的,否则容易陷入 局部最优。
1.1基本理论
蚁群觅食现象和蚁群优化算法的基本定义对照表
蚁群觅食现象 蚁群 觅食空间 信息素 蚁巢到食物的一条路径 找到的最短路 蚁群优化算法 搜索空间的一组有效解(种群规模m) 问题的搜索空间(问题的规模、解的维数n) 信息素浓度变量 一个有效解 问题的最优解
k 1
1 Ck k i, j 0 1 Cb b i, j 0
m
i , j R k
否则
i, j 在路径Tb上
否则
参数e作为 b i, j 的权值, Cb 是算法开始至今最优路 径的长度,其中搜索到至今最优路径用Tb 表示。
连续蚁群(CACO)2000年 超立方体AS(HC-ACO)2001年 连续正交蚁群(COAC)2008年
蚁群系统(ACS) 1997年
基于排列蚂蚁系统 AS 1997年
rank
1.2 研究进展
理论进展
总结 1.收敛性证明。一些性能优越的ACO算法(MMAS和ACS) 不管有没有使用局部搜素,都是值收敛的。 2.将ACO纳入了基于模型的搜索框架中。
精华蚂蚁系统是对基础AS的第一次改进,它在原AS信息 素更新原则上增加了一个对至今最优路径的强化手段。
蚁群优化算法
一 二
蚁群优化算法简介
蚂蚁系统
三
四
蚁群优化算法的改进版本
蚁群优化算法相关应用
3.1 精华蚂蚁系统
信息素的更新:
i, j (1 ) i, j k i, j e b i, j
3.2 基于排列蚂蚁系统
信息素的更新:
i, j (1 ) i, j k k i, j b i, j
将最大循环数设定为500、1000、5000,或者最 大的函数评估次数,等等。
2
也可以使用算法求解到一个可接受的解作为终止 条件。
3
当算法在很长一段迭代中没有得到任何改善时。
2.4 蚂蚁系统算法
构建方式
并行构建
所有蚂蚁都从当前城市移动到 下一个城市。
顺序构建
当一只蚂蚁完成一轮完整的构 建并返回到初始城市之后,下 一只蚂蚁才开始构建
蚁群优化算法
Ant Colony Optimization
蚁群优化算法
一 二
蚁群优化算法简介
蚂蚁系统
三
四
蚁群优化算法的改进版本
蚁群优化算法相关应用
1.1 基本原理
提 出
蚁群优化算法(ACO)由Dorigo(多里格) 等人于1991年提出,是模拟自然界真实蚂蚁 觅食过程的一种随机搜素算法。
性质
ACO是一种全局最优化搜索方法,解决典型组 合优化问题具有明显的优越性,具有鲁棒性 强、全局搜索、并行分布式计算、易于其他 算法结合的优点。
趋势
1.利用ACO算法去解决更为复杂的优化问题,例如: 动态问题、随机问题、多目标问题。 2、ACO算法的高效并行执行。 3.更理论化的理解和刻画ACO算法在求解问题时的行为。 4.与其他算法结合(粒子群算法)。
蚁群优化算法
一 二
蚁群优化算法简介
蚂蚁系统
三
四
蚁群优化算法的改进版本
蚁群优化算法相关应用