蚁群算法详细讲解
蚁群算法内容简介

蚁群算法内容简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点。
蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。
但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。
在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
下面是一些最常用的变异蚁群算法精英蚂蚁系统全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素。
最大最小蚂蚁系统(MMAS)添加的最大和最小的信息素量[ τmax ,τmin ],只有全局最佳或迭代最好的巡逻沉积的信息素。
蚁群算法详细讲解83页PPT

35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54崛起而 读书。 ——周 恩来
蚁群算法详细讲解
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
蚁群算法

蚁群算法报告及代码一、狼群算法狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。
算法采用基于人工狼主体的自下而上的设计方法和基于职责分工的协作式搜索路径结构。
如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。
二、布谷鸟算法布谷鸟算法布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS也采用相关的Levy飞行搜索机制蚁群算法介绍及其源代码。
具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。
应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能三、差分算法差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。
算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。
然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。
如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。
在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。
四、免疫算法免疫算法是一种具有生成+检测的迭代过程的搜索算法。
从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。
五、人工蜂群算法人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。
简要叙述蚁群算法及其优缺点

简要叙述蚁群算法及其优缺点蚁群算法,说白了,就是从蚂蚁们的“工作方式”中汲取灵感,来解决一些复杂的问题。
你想啊,蚂蚁虽然个头小,脑袋也没啥大智慧,可它们集体合作的时候,可真是让人瞠目结舌。
就拿找食物这事儿来说,蚂蚁们通过一种叫做“信息素”的东西,能把食物的方向告诉其他蚂蚁。
你想,成群结队的蚂蚁在地上爬来爬去,气氛可热闹了。
而这些蚂蚁在寻找最短路径的过程中,就是利用这种“信息素”来引导彼此。
哦对,信息素就是一种化学物质,它能吸引其他蚂蚁走自己走过的路,时间久了,大家都能找到最短最优的路线。
这就是蚁群算法的核心,大家通过简单的规则合作起来,居然能找到很复杂问题的解决方案。
听起来是不是有点神奇?但这就是大自然的魅力,真是让人不得不佩服!蚁群算法的好处,简直是数不胜数。
它特别适合处理那些“大而复杂”的问题。
像是找最短路径、优化调度这些问题,用蚁群算法解决起来特别靠谱。
更妙的是,它不需要预先知道问题的具体情况。
就像蚂蚁不需要知道前方有什么危险,只要它们不断地试探,最终总能找到正确的路。
蚁群算法特别“顽强”,它可以通过不断地调整来适应环境变化。
假设前方的路突然有个障碍,蚂蚁们马上就能改变路线,去找另一条更合适的道路。
这种动态适应能力,在现实世界中有着广泛的应用,像物流配送、网络路由、甚至是金融分析等,蚁群算法都能大显身手。
不过话说回来,世上没有十全十美的事儿,蚁群算法也有它的缺点。
首先吧,虽然它能找到“可行的”解,但并不总能找到“最优”的解。
你要知道,这个算法是基于概率的,蚂蚁们在探索路径时是随机的,所以它有可能会走冤枉路,最终找到一个不错但不是最好的答案。
就像你找餐厅,可能你最后选了个味道还不错的地方,但走了好多冤枉路,吃完饭才发现旁边就有个更好吃的店。
所以,有时候蚁群算法可能不是最理想的选择,特别是当问题特别复杂,解空间又大到让你头晕眼花的时候。
再者呢,蚁群算法的计算量也挺大的。
每次要让大量的“蚂蚁”在问题空间中四处乱窜,寻找最佳路径。
蚁群算法最短路径求解

蚁群算法最短路径求解
蚁群算法是一种模拟蚂蚁寻找食物的行为,通过模拟蚂蚁在路径上的行为来寻找最短路径。
蚂蚁在寻找食物时,会释放一种化学物质,其他蚂蚁会跟随这种化学物质,最终找到食物。
这种化学物质被称为信息素,蚂蚁在路径上释放的信息素越多,其他蚂蚁就越容易跟随这条路径。
蚁群算法最短路径求解的过程可以分为以下几个步骤:
1. 初始化信息素:在开始求解之前,需要将所有路径上的信息素初始化为一个较小的值,通常为1/n(n为路径数量)。
2. 蚂蚁选择路径:每只蚂蚁在选择路径时,会根据信息素浓度和路径长度进行选择。
信息素浓度越高的路径,被选择的概率就越大。
同时,路径长度越短的路径,也被选择的概率就越大。
3. 更新信息素:当所有蚂蚁都选择完路径后,需要根据路径长度更新信息素。
路径长度越短的路径,信息素浓度就越高。
4. 重复执行:重复执行步骤2和步骤3,直到达到最大迭代次数或者找到最短路径为止。
5. 输出结果:输出最短路径和路径长度。
蚁群算法最短路径求解的优点是可以处理大规模的问题,同时也能够处理多目标问题。
但是,蚁群算法也存在一些缺点,例如容易陷入局部最优解、收敛速度较慢等问题。
因此,在实际应用中需要根据具体问题进行调整和优化。
(转载)ACO蚁群算法(算法流程,TSP例子解析)

(转载)ACO蚁群算法(算法流程,TSP例⼦解析)1. 背景——蚁群的⾃组织⾏为特征⾼度结构化的组织——虽然蚂蚁的个体⾏为极其简单,但由个体组成的蚁群却构成⾼度结构化的社会组织,蚂蚁社会的成员有分⼯,有相互的通信和信息传递。
⾃然优化——蚁群在觅⾷过程中,在没有任何提⽰下总能找到从蚁巢到⾷物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。
信息正反馈——蚂蚁在寻找⾷物时,在其经过的路径上释放信息素(外激素)。
蚂蚁基本没有视觉,但能在⼩范围内察觉同类散发的信息素的轨迹,由此来决定何去何从,并倾向于朝着信息素强度⾼的⽅向移动。
⾃催化⾏为——某条路径上⾛过的蚂蚁越多,留下的信息素也越多(随时间蒸发⼀部分),后来蚂蚁选择该路径的概率也越⾼。
2. 算法基本思想:(1)根据具体问题设置多只蚂蚁,分头并⾏搜索。
(2)每只蚂蚁完成⼀次周游后,在⾏进的路上释放信息素,信息素量与解的质量成正⽐。
(3)蚂蚁路径的选择根据信息素强度⼤⼩(初始信息素量设为相等),同时考虑两点之间的距离,采⽤随机的局部搜索策略。
这使得距离较短的边,其上的信息素量较⼤,后来的蚂蚁选择该边的概率也较⼤。
(4)每只蚂蚁只能⾛合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。
(5)所有蚂蚁都搜索完⼀次就是迭代⼀次,每迭代⼀次就对所有的边做⼀次信息素更新,原来的蚂蚁死掉,新的蚂蚁进⾏新⼀轮搜索。
(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。
(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。
3. 信息素及转移概率的计算:4. 算法步骤算法流程图如下:5. 举例分析我们假设5个城市的TSP问题,然由于某种原因,城市道路均是单⾏道,即A->B和B->A的距离不相同,也就是说这是⼀个不对称的TSP问题。
现在城市距离信息如下表:设置参数:m=5,α=1,β=1,ρ=0.5,τ_ij(0)=2。
蚁群算法——精选推荐

蚁群算法⼀、蚁群算法简介 蚁群算法(AG)是⼀种模拟蚂蚁觅⾷⾏为的模拟优化算法,它是由意⼤利学者Dorigo M等⼈于1991年⾸先提出,并⾸先使⽤在解决TSP(旅⾏商问题)上。
之后,⼜系统研究了蚁群算法的基本原理和数学模型.⼆、蚁群算法原理1、蚂蚁在路径上释放信息素。
2、碰到还没⾛过的路⼝,就随机挑选⼀条路⾛。
同时,释放与路径长度有关的信息素。
3、信息素浓度与路径长度成反⽐。
后来的蚂蚁再次碰到该路⼝时,就选择信息素浓度较⾼路径。
4、最优路径上的信息素浓度越来越⼤。
5、最终蚁群找到最优寻⾷路径。
三、蚁群算法流程图四、实例应⽤基于TSP问题的基本蚁群算法原理讲解参考⽼师上课讲解的PPT不做过多粘贴1.源代码:%% 旅⾏商问题(TSP)优化%% 清空环境变量clear allclc%% 导⼊数据citys = ceil(rand(50,2)*50000)%load newcitys.mat%% 计算城市间相互距离fprintf('Computing Distance Matrix... \n');n = size(citys,1);D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));elseD(i,j) = 1e-4;endendend%% 初始化参数fprintf('Initializing Parameters... \n');m = 50; % 蚂蚁数量alpha = 1; % 信息素重要程度因⼦beta = 5; % 启发函数重要程度因⼦rho = 0.05; % 信息素挥发因⼦Q = 1; % 常系数Eta = 1./D; % 启发函数Tau = ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 150; % 最⼤迭代次数Route_best = zeros(iter_max,n); % 各代最佳路径Length_best = zeros(iter_max,1); % 各代最佳路径的长度Length_ave = zeros(iter_max,1); % 各代路径的平均长度%% 迭代寻找最佳路径figure;while iter <= iter_maxfprintf('迭代第%d次\n',iter);% 随机产⽣各个蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start;% 构建解空间citys_index = 1:n;% 逐个蚂蚁路径选择for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)allow_index = ~ismember(citys_index,tabu);allow = citys_index(allow_index); % 待访问的城市集合P = allow;% 计算城市间转移概率for k = 1:length(allow)P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta; endP = P/sum(P);% 轮盘赌法选择下⼀个访问城市Pc = cumsum(P);target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = Table(i,:);for j = 1:(n - 1)Length(i) = Length(i) + D(Route(j),Route(j + 1));endLength(i) = Length(i) + D(Route(n),Route(1));end% 计算最短路径距离及平均距离if iter == 1[min_Length,min_index] = min(Length);Length_best(iter) = min_Length;Length_ave(iter) = mean(Length);Route_best(iter,:) = Table(min_index,:);else[min_Length,min_index] = min(Length);Length_best(iter) = min(Length_best(iter - 1),min_Length);Length_ave(iter) = mean(Length);if Length_best(iter) == min_LengthRoute_best(iter,:) = Table(min_index,:);elseRoute_best(iter,:) = Route_best((iter-1),:);endend% 更新信息素Delta_Tau = zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算for j = 1:(n - 1)Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i); endDelta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i); endTau = (1-rho) * Tau + Delta_Tau;% 迭代次数加1,清空路径记录表% figure;%最佳路径的迭代变化过程[Shortest_Length,index] = min(Length_best(1:iter));Shortest_Route = Route_best(index,:);plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');pause(0.3);iter = iter + 1;Table = zeros(m,n);% endend%% 结果显⽰[Shortest_Length,index] = min(Length_best);Shortest_Route = Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%% 绘图figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i = 1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对⽐')运⾏结果:利⽤函数citys = ceil(rand(50,2)*50000) 随机产⽣五⼗个城市坐标2.研究信息素重要程度因⼦alpha, 启发函数重要程度因⼦beta,信息素挥发因⼦rho对结果的影响为了保证变量唯⼀我重新设置五⼗个城市信息进⾏实验在原来设值运⾏结果:实验结果可知当迭代到120次趋于稳定2.1 alpha值对实验结果影响(1)当alpha=4时运⾏结果实验结果可知当迭代到48次左右趋于稳定(2)当alpha=8时运⾏结果:有图可知迭代40次左右趋于稳定,搜索性较⼩(3)当alpha= 0.5运⾏结果:有图可知迭代到140次左右趋于稳定(4)当alpha=0.2时运⾏结果:结果趋于110次左右稳定所以如果信息素因⼦值设置过⼤,则容易使随机搜索性减弱;其值过⼩容易过早陷⼊局部最优2.2 beta值对实验影响(1)当 beta=8时运⾏结果结果迭代75次左右趋于稳定(2)当 beta=1时运⾏结果:结果迭代130次左右趋于稳定所以beta如果值设置过⼤,虽然收敛速度加快,但是易陷⼊局部最优;其值过⼩,蚁群易陷⼊纯粹的随机搜索,很难找到最优解2.3 rho值对实验结果影响(1)当rho=3时运⾏结果:结果迭代75次左右趋于稳定(2)当rho=0.05运⾏结果:结果迭代125次左右趋于稳定所以如果rho取值过⼤时,容易影响随机性和全局最优性;反之,收敛速度降低总结:蚁群算法对于参数的敏感程度较⾼,参数设置的好,算法的结果也就好,参数设置的不好则运⾏结果也就不好,所以通常得到的只是局部最优解。
蚁群算法ppt课件

4 蚁群算法与TSP问题
蚂蚁向下一个目标的运动是通过一 个随机原则来实现的,也就是运用当前 所在节点存储的信息,计算出下一步可 达节点的概率,并按此概率实现一步移 动,逐此往复,越来越接近最优解。
蚂蚁在寻找过程中,或者找到一个解 后,会评估该解或解的一部分的优化程 度,并把评价信息保存在相关连接的信 息素中。
在STEP 3中,蚁群永远记忆到目前为止的最优解。
20
图的蚁群系统(GBAS)
四个城市的非对称TSP问题,距离矩阵和城市图示如下:
0 1 0.5 1
D
(dij
)
1
1ቤተ መጻሕፍቲ ባይዱ5
0 5
1 0
1
1
1 1 1 0
21
5 初始的蚁群优化算法—基于图的蚁群 系统(GBAS)
假设共4只蚂蚁,所有蚂蚁都从城市A出发,挥发因子
19
5初始的蚁群优化算法—基于图的蚁群 系统(GBAS)
以上算法中,在蚂蚁的搜寻过程中,以信息素的概率分布来决定从城市 i到城市j的转移。
算法中包括信息素更新的过程 1 信息素挥发(evaporation) 信息素痕迹的挥发过程是每个连接上
的信息素痕迹的浓度自动逐渐减弱的过程,由 (1k)ij (k) 表示,这
个挥发过程主要用于避免算法过快地向局部最优区域集中,有助于搜索区 域的扩展。
2 信息素增强(reinforcement)增强过程是蚁群优化算法中可选的部 分,称为离线更新方式(还有在线更新方式)。这种方式可以实现由单个 蚂蚁无法实现的集中行动。也就是说,增强过程体现在观察蚁群(m只蚂 蚁)中每只蚂蚁所找到的路径,并选择其中最优路径上的弧进行信息素的 增强,挥发过程是所有弧都进行的,不与蚂蚁数量相关。这种增强过程中 进行的信息素更新称为离线的信息素更新。