机械动力学简史教学提纲
《机械原理》(机械类)课程教学大纲

《机械原理》(机械类)课程教学大纲机械原理课程教学大纲引言:机械原理是一门机械工程的基础课程,旨在培养学生对机械原理及其应用的理论知识和实践能力。
本教学大纲旨在通过明确课程目标、内容和教学方法,为学生提供一个全面而结构化的学习指导。
一、课程概述1.1 课程名称:机械原理1.2 课程代码:MEP1011.3 学时分配:理论教学(48学时),实验教学(24学时)1.4 先修课程:近代物理学、高等数学、工程力学二、课程目标2.1 知识目标:- 掌握基本的机械原理理论,了解力学、静力学和动力学的基本概念和原理。
- 理解刚体和弹性体的力学行为,能够应用相关理论解决实际问题。
- 熟悉机械原理的应用领域和现代技术的发展趋势。
2.2 能力目标:- 具备分析和解决机械原理问题的能力,包括力学计算、力学模型建立和实验数据处理等。
- 能够运用机械原理知识进行工程设计和创新实践。
2.3 态度目标:- 培养学生正确的学习态度和科学精神,积极探索和应用机械原理知识。
- 提高学生的合作意识和创新思维,培养解决实际问题的能力。
三、教学内容3.1 理论教学:- 刚体力学:刚体的平衡条件、转动定律、角动量和动能等。
- 弹性体力学:胡克定律、弹性形变、应力应变关系和材料破坏等。
- 静力学:平面定位问题、静摩擦力和斜面问题等。
- 动力学:牛顿运动定律、动能和动量、碰撞和转动惯量等。
3.2 实验教学:- 使用力学实验设备进行实验操作,熟悉实验仪器的使用方法和实验数据的记录与分析。
- 开展机械原理实验,如测量刚体的转动惯量、胡克定律的验证和静力学问题的实验验证等。
四、教学方法4.1 理论教学:- 采用教师讲授、互动讨论和案例分析相结合的教学方法,注重理论与实际问题的结合。
- 利用多媒体技术辅助教学,展示实际应用和案例分析,提高学生的学习兴趣和理解能力。
4.2 实验教学:- 强调实践操作能力培养,引导学生通过实验掌握机械原理的基本原理和应用方法。
机械动力学课程教学大纲

机械动力学课程教学大纲一、课程简介机械动力学是机械工程中的重要基础课程之一,主要研究物体的运动规律和动力学原理。
本课程旨在培养学生对物体运动的分析和动力学理论的理解能力,为学生提供运动学和动力学的基础知识,为他们今后的学习和研究奠定牢固基础。
二、教学目标1. 培养学生对物体运动的观察和分析能力;2. 熟悉运动学和动力学的基本概念和原理;3. 掌握常见的力学定律和公式;4. 培养学生的问题解决能力和实践能力;5. 培养学生的团队合作能力和沟通能力。
三、教学内容1. 运动学基础1.1 位置、位移和速度1.2 加速度和曲线运动 1.3 圆周运动和角速度1.4 相对运动2. 动力学基础2.1 牛顿运动定律2.2 动量和动量守恒2.3 力和加速度2.4 动能和功2.5 能量守恒和机械能3. 静力学3.1 弹簧力和弹性势能 3.2 引力和万有引力定律3.3 惯性力和离心力4. 动力学4.1 圆周运动的力学分析4.2 非惯性系和转动惯量4.3 力矩和角动量4.4 角动量守恒和刚体转动4.5 飞行器的运动学和动力学四、教学方法1. 讲授理论知识:通过课堂讲解、示范等方式,向学生介绍理论知识和基本概念。
2. 实验教学:设计相关实验,让学生进行实验操作和数据分析,提高他们的实践能力。
3. 小组讨论:设置小组活动,让学生在团队中合作解决问题,培养团队合作和沟通能力。
4. 课堂练习:布置课后作业和练习题,加强对知识的巩固和运用能力。
五、考核方式1. 平时表现(20%):包括课堂参与、作业完成情况等。
2. 实验报告(30%):根据实验要求撰写实验报告并提交。
3. 期中考试(20%):考察对课程内容的理解和掌握程度。
4. 期末考试(30%):综合考察整个课程的学习成果。
六、参考教材1. 赵凤岐,机械动力学,高等教育出版社,2015年。
2. 谢振波,机械力学基础,清华大学出版社,2013年。
七、参考网址无。
八、备注本课程的教学大纲可根据实际教学需求进行调整和补充,以确保教学内容的连贯性和可操作性。
机械动力学简史

机械动力学简史一.动力学简介机械动力学作为机械原理的重要组成部分,主要研究机械在运转过程中的受力,机械中各部分构件的质量和构件之间机械运动的相互关系,是现代机械设计的重要理论基础。
一般来说,机械动力学的研究内容包括六个方面:(1)在已知外力作用下求机械系统的真实运动规律;(2)分析机械运动过程中各构件之间的相互作用力;(3)研究回转构件和机构平衡的理论和方法;(4)研究机械运转过程中能量的平衡和分配关系;(5)机械振动的分析研究;(6)机构分析和机构综合。
其主要研究方向是机械在力的作用下的运动和机械在运动过程中产生的力,并且从力和相互作用的角度对机械进行设计和改进的学科。
二.动力学的前期发展人类的发展过程中,很重要的一个进步特征就是工具的使用和制造。
从石器时代的各种石制工具开始,机械的形式开始发展起来。
从简单的工具形式,到包含各类零件、部件的较为先进的机械,这中间的发展过程经历了不断的改进与反复,也经历了在国家内部与国家之间的传播过程。
机械的发展过程也经历了从人自身的体力,到利用畜力、风力和水力等,材料的类型也从自然中自有的,过渡到简单的人造材料。
整个发展过程最终形成了包含动力、传动和工作等部分的完整机械。
人类从石器时代进入青铜时代、铁器时代,用以吹旺炉火的鼓风器的发展起了重要作用。
有足够强大的鼓风器,才能使冶金炉获得足够高的炉温,才能从矿石中炼得金属。
中国在公元前1000~前900年就已有了冶铸用的鼓风器,并渐从人力鼓风发展到畜力和水力鼓风。
早在公元前,中国已在指南车上应用复杂的齿轮系统。
古希腊已有圆柱齿轮、圆锥齿轮和蜗杆传动的记载。
但是,关于齿轮传动瞬时速比与齿形的关系和齿形曲线的选择,直到17世纪之后方有理论阐述。
手摇把和踏板机构是曲柄连杆机构的先驱,在各文明古国都有悠久历史,但是曲柄连杆机构的形式、运动和动力的确切分析和综合,则是近代机构学的成就。
近代的机械动力学,在动力以及机械结构本身来说,具有各方面的重大突破。
机械动力学教程教案

振动与控制的研究方法主要包括理论分析、实验研究和数值仿真, 通过优化结构和改进控制策略来减小振动和降低噪声。
05 机械动力学的挑战与未来 发展
多体系统动力学
挑战
多体系统动力学涉及到复杂的运动学和动力学建模, 需要解决多体之间的相互作用和协调控制问题。
未来发展
随着机器人技术和航空航天技术的发展,多体系统动 力学在智能制造、空间探测等领域的应用前景广阔。
角动量与角动量守恒定律
总结词
描述物体转动时的转动量变化规律。
VS
详细描述
角动量是物体的转动惯量与角速度的乘积, 表示物体转动的量。角动量守恒定律指出, 在一个封闭系统中,没有外力矩作用时, 系统的总角动量保持不变。公式表示为 L=Iω,其中L表示角动量,I表示物体的转 动惯量,ω表示角速度。
能量守恒定律
牛顿第二定律
总结词
描述物体运动状态变化与作用力之间的关系。
详细描述
牛顿第二定律指出,物体运动的加速度与作用力成正比,与物体的质量成反比。公式表示为F=ma,其中F表示作 用力,m表示物体的质量,a表示加速度。
动量与动量守恒定律
总结词
描述物体运动时的动量变化规律。
详细描述
动量是物体的质量与速度的乘积,表示物体运动的量。动量守恒定律指出,在一个封闭系统中,没有外力 作用时,系统的总动量保持不变。公式表示为p=mv,其中p表示动量,m表示物体的质量,v表示速度。
航天器姿态动力学
01
航天器姿态动力学概述
航天器姿态动力学是研究航天器在空间中的姿态运动和控制的学科,是
实现航天器稳定运行和精确指向的关键技术。
02
航天器姿态动力学应用
航天器姿态动力学在卫星通信、气象观测、导弹制导等领域有着广泛的
机械动力学教学大纲 - 机电工程学院

机械动力学教学大纲课程编号:S292006课程名称:机械动力学开课院系:机电工程学院任课教师:李顺才先修课程:理论力学、材料力学、机械原理适用学科范围:机械工程学时: 36 学分: 2开课学期:第2 学期开课形式:讲授课程目的和基本要求:本课程是机械工程类专业研究生的一门学位专业课。
其主要任务是使学生了解机械动力学的基本原理和方法,初步掌握转子动力学、机构平衡、凸轮动力学、机械系统动力学、机械振动的基本理论、建模方法与分析计算等方面的具体分析方法,实现一般机械系统的动态分析与设计,并对该学科的发展前沿和研究动向有所了解。
本课程着重培养学生理解机械系统动力学行为并进行相关分析的能力及相关技术工作的适应能力。
课程主要内容:课程主要阐述机械动力学的理论和方法。
除绪论外、还包括机械振动学基础、机械刚体动力学、机械弹性动力学三大部分内容。
机械刚体动力学篇介绍动态静力分析方法、动力分析方法和以这两种分析方法为基础的综合方法。
机械弹性动力学篇介绍各种机构和机械系统的弹性动力分析方法和综合方法。
机械振动学基础既作为学习机械弹性动力学的基础知识,同时它也有着独立的、重要的工程应用价值。
目录绪论第一节学习机械动力学的主要意义第二节机械动力学研究的主要内容第一章刚性构件组成的机械系统动力学第一节曲柄连杆构动力学分析第二节差动轮系动力学分析第三节五杆机构动力学分析第二章简谐振动与频谱分析第一节简谐振动的表示方法第二节周期振动的频谱分析方法第三节非周期振动的频谱分析方法第三章单自由度系统的振动第一节概述第二节单自由度系统的振动第三节等效力等模型第四节隔振原理第五节等效黏性阻尼第六节非简谐周期激励的响应第七节单位脉冲的响应第八节任意激励的响应第九节任意支承激励的响应第四章多自由系统的振动第一节多自由系统的自由振动第二节动力减振器第三节多自由度系统的模态分析方法第四节确定系统固有频率与主振型的方法第五章连续系统的振动第一节弦的振动第二节杆的轴向振动第三节圆轴的扭转振动第四节梁的横向振动第五节连续系统固有频率的其他求解方法第六章弹性构件组成的机构系统力学第一节轴与轴系的振动第二节凸轮机构动力学第三节齿轮传动系统力学第四节带动传动系统动力学第七章非线性振动基础第一节非线性振动特性第二节非线性振动实例第三节相平面第四节平衡的稳定性及奇点的性质第五节相轨线课程主要教材:[1] 张策. 机械动力学。
《机械动力学》教学大纲

机械动力学》教学大纲大纲说明课程代码: 333048总学时: 40 学时(讲课 36 学时,实验 4 学时)总学分: 2.5 学分 课程类别:考试 适用专业:机械设计制造及其自动化专业(本科) 预修要求:《工程力学》 一、课程的性质、目的、任务: 机械动力学是机械设计制造及自动化专业的主干技术基础课之一。
本课程主要讨论机械振动的基本理 论,建模方法与分析计算方法。
旨在培养学生分析、解决一般机械系统和工程结构振动的能力。
通过本课 程的学习,要求学生掌握机械系统振动的基本理论,并能分析和解决工程有关振动的问题。
二、关于教学方法和教学手段的建议:本课程的教学中,可采用工程应用软件对系统进行仿真,进行多媒体教学,帮助学生理解。
大纲正文第一章 绪论第一节 机械动力学的研究内容 第二节 工程中的机械动力学问题 第三节机械动力学的研究方法 要点 :机械动力学的研究内容 重点 :机械动力学的正问题和逆问题 难点 :结构动态分析学时: 4 学时(讲课 4 学时)第一节 振动的分类 第二节 振动的表示方法 第三节简谐振动的基本性质 第四节 周期振动的谐波分析 第五节机械振动系统的动力学模型要点 : 机械振动的分类及其表示方法和性质 重点: 机械系统的三大要素即三大动力学模型难点: 机械振动的各种表示方法学时: 2 学时(讲课 2 学时)第二章 机械振动基础第三章 单自由度线性系统的自由振动 第一节 振动系统的简化及其模型第二节 单自由度线性系统的运动微分方程 第三节 无阻尼自由振动 第四节 阻尼自由振动 要点 :动力学运动方程重点 :单自由度线性系统的运动方程及其计算固有频率的常用方法 难点 :系统动力学方程的建立及其固有频率计算第三章 单自由度线性系统的强迫振动学时: 7 学时(讲课 5 学时,实验 2 学时)第一节 简谐激励下的强迫振动 第二节 周期强迫振动 第三节 非周期强迫振动要点 :单自由度线性系统在各种激励下的响应 重点 :单自由度线性系统在各种激励下的响应特点 难点 :系统响应的求解方法第五章 两自由度系统的振动第一节 引言第二节 二自由度系统的运动微分方程 第三节 无阻尼自由振动第四节 两自由度系统在谐波激励下的强迫振动 要点 :无阻尼自由振动重点 :两自由度系统的固有频率和振型 难点 :固有频率和振型的理解第三节 动力响应分析第四节动力响应分析中的变换方法要点 : 固有频率和振型、动力响应分析 重点: 固有频率和振型、展开定理 难点: 动力响应分析第七章 随机振动基础第一节 随机过程及基本概念学时: 3 学时(讲课 3 学时)学时: 5 学时(讲课 5 学时)学时: 6 学时(讲课 6 学时)第六章 多自由度系统的振动第一节 多自由度系统的运动微分方程 第二节 固有频率和振型学时: 9 学时(讲课 7 学时,实验 2学时)第二节线性振动系统在单一随机激励下的响应要点:随机过程的基本概念重点:线性振动系统在单一随机激励下的响应难点:线性振动系统在随机激励下的响应第八章振动的抑制与利用学时:4学时(讲课4学时)第一节隔振技术第二节减振技术第三节振动的控制第四节振动的利用要点:隔振与减振技术重点:隔振技术难点:振动控制的方法课时数分配表、期终闭卷考核。
机械原理教学大纲

机械原理教学大纲
一、机械原理的基本概念和分类
1. 机械原理的概念和基本特征
2. 机械原理的分类及其特点
二、刚体运动学
1. 刚体运动学的基本概念
2. 刚体平面运动学
3. 刚体空间运动学
4. 坐标系的选择和变换
三、力的作用
1. 力的概念和性质
2. 重力和惯性力
3. 弹性力和摩擦力
4. 合力和分力
四、平衡分析
1. 平衡概念和条件
2. 刚体平衡
3. 力的平衡
4. 物体稳定性
五、动力学基础
1. 牛顿第二定律及其应用
2. 牛顿第三定律及其应用
3. 机械功和机械能
4. 牛顿万有引力定律
六、机械系统的运动学和动力学分析
1. 机械系统运动学的概念和方法
2. 机械系统动力学的概念和方法
3. 机械系统的能量和动量守恒
七、机构的结构、运动和分析
1. 机构的概念和分类
2. 常见机构的结构、运动和分析
3. 常见机构的应用
八、机械传动的基础理论和分析
1. 机械传动的基本原理
2. 常见机械传动方式的结构和特点
3. 机械传动的分析和设计
九、其他机械原理相关知识
1. 流体力学基础
2. 热力学基础
3. 控制理论基础
4. 机械原理在工程设计中的应用
以上是机械原理教学大纲的主要内容,通过系统学习以上知识,学生能够深入了解机械原理的基本概念、基本原理和基本方法,可以有效提高学生的机械原理理论素质和应用能力。
机械系统动力学课程简介及大纲

课程内容简介课程中文名称:机械系统动力学课程英文名称:Dynamics of mechanical system开课单位:机电工程学院任课教师及职称(3名以上):开课学期:学分:总学时:适用专业:机械制造及其自动化课程内容简介(400字以内):本课程介绍机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,讲述刚性机械系统的动力学分析与设计;机构惯性力平衡的原理与方法;含弹性构件的机械系统的动力学;含柔性转子机械的平衡原理与方法;含间隙副机械的动力学;含变质量机械系统动力学以及机械动力学数值仿真数学基础以及相关软件的仿真实例讲解。
通过本课程的学习,使学生能从系统的角度和动力学的观点了解机械产品动态设计的基础知识,掌握当前机械动力学分析的基本方法,学会运用机械多刚体动力学进行复杂机构的动力学分析与综合运用机械弹性动力学和多柔体系统动力学方法对各类典型机构进行弹性动力分析及综合,具备分析和解决工程实际问题的能力。
教材及主要参考书目:1.杨义勇.机械系统动力学.北京: 清华大学出版社,2009.2.陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.3.徐业宜.高等学校试用教材.北京:机械工业出版社,1991.4.蒋伟.机械动力学分析.北京:中国传媒大学出版社,2005.5.邵忍平. 机械系统动力学.北京:机械工业出版社,20056.唐锡宽,金德闻.机械动力学.北京:高等教育出版社,1983.课程教学大纲课程中文名称:机械系统动力学课程英文名称:Dynamics of mechanical system学分和学时分配:教学目的:本课程着重培养学生对复杂机械系统动力学建模及分析的能力。
通过本课程学习,要求学生掌握当前机械动力学分析的基本方法,学会运用机械多刚体动力学进行复杂机构的动力学分析与综合运用机械弹性动力学和多柔体系统动力学方法对各类典型机构进行弹性动力分析及综合,具备分析和解决工程实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械动力学简史机械动力学简史一.动力学简介机械动力学作为机械原理的重要组成部分,主要研究机械在运转过程中的受力,机械中各部分构件的质量和构件之间机械运动的相互关系,是现代机械设计的重要理论基础。
一般来说,机械动力学的研究内容包括六个方面:(1)在已知外力作用下求机械系统的真实运动规律;(2)分析机械运动过程中各构件之间的相互作用力;(3)研究回转构件和机构平衡的理论和方法;(4)研究机械运转过程中能量的平衡和分配关系;(5)机械振动的分析研究;(6)机构分析和机构综合。
其主要研究方向是机械在力的作用下的运动和机械在运动过程中产生的力,并且从力和相互作用的角度对机械进行设计和改进的学科。
二.动力学的前期发展人类的发展过程中,很重要的一个进步特征就是工具的使用和制造。
从石器时代的各种石制工具开始,机械的形式开始发展起来。
从简单的工具形式,到包含各类零件、部件的较为先进的机械,这中间的发展过程经历了不断的改进与反复,也经历了在国家内部与国家之间的传播过程。
机械的发展过程也经历了从人自身的体力,到利用畜力、风力和水力等,材料的类型也从自然中自有的,过渡到简单的人造材料。
整个发展过程最终形成了包含动力、传动和工作等部分的完整机械。
人类从石器时代进入青铜时代、铁器时代,用以吹旺炉火的鼓风器的发展起了重要作用。
有足够强大的鼓风器,才能使冶金炉获得足够高的炉温,才能从矿石中炼得金属。
中国在公元前1000~前900年就已有了冶铸用的鼓风器,并渐从人力鼓风发展到畜力和水力鼓风。
早在公元前,中国已在指南车上应用复杂的齿轮系统。
古希腊已有圆柱齿轮、圆锥齿轮和蜗杆传动的记载。
但是,关于齿轮传动瞬时速比与齿形的关系和齿形曲线的选择,直到17世纪之后方有理论阐述。
手摇把和踏板机构是曲柄连杆机构的先驱,在各文明古国都有悠久历史,但是曲柄连杆机构的形式、运动和动力的确切分析和综合,则是近代机构学的成就。
近代的机械动力学,在动力以及机械结构本身来说,具有各方面的重大突破。
动力在整个生产过程中占据关键地位。
随着机械的改进,对于金属和矿石的需求量增加,人类开始在原有的人力和畜力的基础上,利用水力和风力对机械进行驱动,但是这也造成了很多工厂的选址的限制,并不具有很大的推广性。
而后来稍晚出现的纽科门大气式蒸汽机,虽然也可以驱使一些机械,但是其燃料的利用率很低,对于燃料的需求量太大,这也使得这种蒸汽机只能应用于煤矿附近。
瓦特发明的具有分开的凝汽器的蒸汽机以及具有回转力的蒸汽机,不仅降低了燃料的消耗量,也很大程度上扩大了蒸汽机的应用范围。
蒸汽机的发明和发展,使矿业和工业生产、铁路和航运都得以机械动力化。
蒸汽机几乎是19世纪唯一的动力源。
但蒸汽机及其锅炉、凝汽器、冷却水系统等体积庞大、笨重,应用很不方便。
19世纪末,电力供应系统和电动机开始发展和推广。
20世纪初,电动机已在工业生产中取代了蒸汽机,成为驱动各种工作机械的基本动力。
生产的机械化已离不开电气化,而电气化则通过机械化才对生产发挥作用。
发电站初期应用蒸汽机为原动机。
20世纪初期,出现了高效率、高转速、大功率的汽轮机,也出现了适应各种水力资源的大、小功率的水轮机,促进了电力供应系统的蓬勃发展。
19世纪后期发明的内燃机经过逐年改进,成为轻而小、效率高、易于操纵、并可随时启动的原动机。
它先被fuqu用以驱动没有电力供应的陆上工作机械,以后又用于汽车、移动机械(如拖拉机、挖掘机械等)和轮船,到20世纪中期开始用于铁路机车。
蒸汽机在汽轮机和内燃机的排挤下,已不再是重要的动力机械。
内燃机和以后发明的燃气涡轮发动机、喷气发动机的发展,还是飞机、航天器等成功发展的基础技术因素之一。
三.机械动力学的发展过程经典力学的创立为机械动力学的发展奠定了理论基础,两次工业革命对机械动力学提出了要求,以及机械振动学和机械动力学理论的早期发展。
经典力学是机械学科中很重要的理论基础,同时也是机械运动学和动力学的基础。
经典力学理论体系的创立和发展,在机械动力学的发展方面做出了巨大的贡献,另一方面,机械学和机械动力学的发展直接相关的数学理论的发展也起到了极其重要的推动作用。
经典力学、分析力学以及弹性力学等力学理论的进一步发展,在机械的动力以及结构发展起到了很大的促进作用。
而微积分、微分方程理论、变分法、矩阵论和概率论等数学理论的发展更是将机械动力学推上了新的高度。
19 世纪英国数学家汉密尔顿用变分原理推导出汉密尔顿正则方程,此方程是以广义坐标和广义动量为变量,用汉密尔顿函数来表示的一阶方程组,其形式是对称的。
用正则方程描述运动所形成的体系,称为汉密尔顿体系或汉密尔顿动力学,它是经典统计力学的基础,又是量子力学借鉴的范例。
汉密尔顿体系适用于摄动理论,例如天体力学的摄动问题,并对理解复杂力学系统运动的一般性质起重要作用。
拉格朗日动力学和汉密尔顿动力学所依据的力学原理与牛顿的力学原理,在经典力学的范畴内是等价的,但它们研究的途径或方法则不相同。
直接运用牛顿方程的力学体系有时称为矢量力学;拉格朗日和汉密尔顿的动力学则称为分析力学。
动力学的基本内容动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。
以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学等。
质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。
求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力;求解第二类问题时需要求解质点运动微分方程或求积分。
而两次工业革命也对于机械工业和机械科学的发展,尤其是机构学和动力学的发展有很大的推动作用。
第一次工业革命中蒸汽机车的发明和改进以及当时的机械发明,第二次工业革命的电气时代中的汽轮机的诞生与发明,内燃机的发明与进步,一方面既是机械动力学的发展成果,另一方面也推动了自己学科的进步。
此后机械动力学的发展趋势,逐渐朝着机械和机械和运载工具的高速化和大功率化、机械的精密化、机械的轻量化、机械的自动化方向发展。
机械机构学和机构运动学的发展,包括了震动理论的建立和发展,其中包括了线性理论和非线性理论等。
转子动力学的起步,包含刚性转子平衡技术、轴承转子系统动力学的发展也是这一时期的重要理论进步。
而机构学的建立,特别是理论运动学的发展,在机构学的德国学派和俄苏学派中也有了长足的进步。
在机构的演进和传动机构的演进中,凸轮机构、连杆机构、间歇运动机构的演进,齿轮传动、蜗杆传动、链传动和带传动、传动系统的复杂化都为机械动力学的发展提供了条件。
第二次世界大战后科技的大发展为机械动力学的进一步发展提供了指导思想、方法和技术手段,机械工业的巨大进步向机械动力学提出了新的要求,机械动力学在纵向形成为包括建模、分析、仿真、动力学设计与控制的综合学科,在横向形成了机构动力学、机械传动动力学、转子动力学、机器人动力学、机床动力学和车辆动力学等多个分支领域。
系统论、控制论、和信息论的诞生,为机械动力学的发展提供了新的指导思想、理论和方法。
电子计算机的发明,以及基于计算机的数值方法的进步,为机械动力学提供了全新的技术手段和数学工具。
非线性科学的诞生和非线性振动理论的发展,强烈地影响到机械动力学的各个领域,从线性理论提升理论是一个质的飞跃。
基于计算机计算的多体动力学的出现,为复杂系统的动力学建模与分析提供了新的理论和工具。
信号分析理论和方法的进步是机械振动测试手段、状态监测技术以及故障诊断技术发展的基础。
从横向的研究对象看,机械动力学中发展出机构动力学、机械传动动力学、转子动力学、机器人动力学、车辆动力学、机床动力学等分析领域;从动力学的研究内容看,机械动力学发展为动力学建模、动力学分析、动力学仿真、动力学设计、减振与动力学控制,以及状态监测和故障诊断等一系列领域的内容丰富的综合学科;从动力学建模的对象看,Newton研究的事单质点,Euler研究了单刚体,Lagrange启动了多刚体系统的研究,而今天的机械动力学已发展到多弹性体系统、多柔性体系统的研究。
从动力学的数学工具看,Newton在力学研究中发明了微积分,Lagrange使用了变分法,众多学者在微分方程的定性分析和求解方面做出了贡献。
二战后,动力学的计算逐步地、完全地实现了计算机化;同时各种复杂的微分方程,包括袋鼠微分方程,刚性微分方程的数值方法也取得迅速发展。
此外,机械动力学的发展也离不开各类建模方法的多样化。
其中包含了多刚体系统的建模方法:Newton-Euler的矢量力学方法、Lagrange的分析力学方法和Kane的多体动力学方法;微幅振动弹性系统的建模方法:动态子结构方法和传递矩阵法;验建模方法;柔体系统动力学的建模方法:弹性动力分析方法。
机械系统动力学建模的精细化则有,精细地估计系统的刚度、阻尼和摩擦计入材料非线性计入几何非线性关于冲击振动的研究复杂机械系统中多种物理场的耦合。
运动学以及运动学软件的发展也至关重要,其中有ADAMS软件和其他的有限元分析软件,而虚拟样机技术也起到了极大的作用。
四.动力学的未来展望近代机械发展的一个显著特点是,自动调节和控制装置日益成为机械不可缺少的组成部分。
机械动力学的研究对象已扩展到包括不同特性的动力机和控制调节装置在内的整个机械系统,控制理论已渗入到机械动力学的研究领域。
在高速、精密机械设计中,为了保证机械的精确度和稳定性,构件的弹性效应已成为设计中不容忽视的因素。
一门把机构学、机械振动和弹性理论结合起来的新的学科——运动弹性体动力学正在形成,并在高速连杆机构和凸轮机构的研究中取得了一些成果。
在某些机械的设计中,已提出变质量的机械动力学问题。
各种模拟理论和方法以及运动和动力参数的测试方法,日益成为机械动力学研究的重要手段。