西安交大第二学期末高数考试题

合集下载

【精选试卷】西安交通大学第二附属中学南校区数学高二下期末经典测试题

【精选试卷】西安交通大学第二附属中学南校区数学高二下期末经典测试题

一、选择题1.(0分)[ID :13884]如图,,,,A B C D 是平面上的任意四点,下列式子中正确的是( )A .AB CD BC DA +=+ B .AC BD BC AD +=+ C .AC DB DC BA +=+ D .AB DA AC DB +=+ 2.(0分)[ID :13860](1+tan 17°)(1+tan 28°)的值是( )A .-1B .0C .1D .23.(0分)[ID :13857]在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,若1a n =+,b n =,1c n =-,n ∈+N ,且2A C =,则ABC ∆的最小角的余弦值为( )A .25B .35C .12D .344.(0分)[ID :13849]将函数sin()cos()22y x x ϕϕ=++的图象沿x 轴向右平移8π个单位后,得到一个偶函数的图象,则ϕ的取值不可能是( )A .54π-B .4π-C .4πD .34π 5.(0分)[ID :13896]ABC ∆中,M 是AC 边上的点,2AM MC =,N 是边的中点,设1AB e =,2AC e =,则MN 可以用1e ,2e 表示为( )A .121126e e - B .121126e e -+ C .121126e e + D .121726e e + 6.(0分)[ID :13893]已知,αβ为锐角,且,5sin 13α=,则cos β的值为( ) A .5665B .3365C .1665D .63657.(0分)[ID :13887]将函数()()()()sin 23cos 20f x x x ϕϕϕπ=++<<的图象向左平移4π个单位后,得到函数的图象关于点,02π⎛⎫⎪⎝⎭对称,则ϕ等于( )A .6π-B .6π C .4π D .3π 8.(0分)[ID :13869]已知关于x 的方程22cos cos 2sin 02Cx x A B -+=的两根之和等于两根之积的一半,则ABC 一定是( ) A .直角三角形B .等腰三角形C .钝角三角形D .等边三角形9.(0分)[ID :13868]已知2sin2α=1+cos2α,则tan2α=( ) A .43-B .43C .43-或0 D .43或0 10.(0分)[ID :13839]设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,a ⊥c ,|a |=|c |,则|b ⋅c |的值一定等于 ( ) A .以a ,b 为邻边的平行四边形的面积 B .以b ,c 为两边的三角形面积 C .a ,b 为两边的三角形面积 D .以b ,c 为邻边的平行四边形的面积 11.(0分)[ID :13921]若02πα<<,02πβ-<<,1cos 43πα⎛⎫+= ⎪⎝⎭,cos 423πβ⎛⎫-=⎪⎝⎭,则cos 2βα⎛⎫+ ⎪⎝⎭等于( )A B .C D .-12.(0分)[ID :13918]已知是12,e e ,夹角为60︒的两个单位向量,则12a e e =+与122b e e =-的夹角是( )A .60︒B .120︒C .30D .90︒13.(0分)[ID :13913]已知()()f x sin x ωθ=+(其中()()12120,0,,''0,2f x f x x x πωθ⎛⎫>∈==- ⎪⎝⎭,的最小值为(),23f x f x ππ⎛⎫=- ⎪⎝⎭,将()f x 的图象向左平移6π个单位得()g x ,则()g x 的单调递减区间是( )A .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦B .()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 14.(0分)[ID :13900]已知单位向量,OA OB 的夹角为60,若2OC OA OB =+,则ABC ∆为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形15.(0分)[ID :13899]若向量a ,b 满足2a b ==,a 与b 的夹角为60,则a b +等于( ) A .223+B .23C .4D .12二、填空题16.(0分)[ID :14005]已知函数sin()y A x ωϕ=+,(0,0,)2A πωϕ>><图象上一个最高点P 的横坐标为13,与P 相邻的两个最低点分别为Q ,R .若PQR ∆是面积为43的等边三角形,则函数解析式为y =__________.17.(0分)[ID :14001]22cos821sin8++-的化简结果是_________. 18.(0分)[ID :13982]如图在ABC 中,AC BC =,2C π∠=,点O 是ABC 外一点,4OA =,2OB =则平面四边形OACB 面积的最大值是___________.19.(0分)[ID :13979]已知平面向量a ,b 满足|a |=1,|b |=2,|a ﹣b 3,则a 在b 方向上的投影是__________.20.(0分)[ID :13977]已知函数()2cos sin 2=-f x x x ,则()f x 的最大值是__________.21.(0分)[ID :13990]已知4tan()5αβ+=,1tan 4β=,那么tan α=____.22.(0分)[ID :13986]在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1a =,3B π=,当ABC ∆3tan C =__________. 23.(0分)[ID :13961]已知()1sin 3x y +=,()sin 1x y -=,则tan 2tan x y +=__________.24.(0分)[ID :13958]已知两个单位向量a 、b 的夹角为60,(1)c ta t b =+-,若b c ⊥,则实数t =__________.25.(0分)[ID :13947]已知0>ω,在函数sin y x ω=与cos y x ω=的图象的交点中,距3,则ω值为__________.三、解答题26.(0分)[ID :14120]在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22222230a c b ac +-+=.(1)求cos B 的值;(2)求sin 24B π⎛⎫+ ⎪⎝⎭的值. 27.(0分)[ID :14117]已知函数()3sin()0,22f x x ππωϕωϕ⎛⎫=+>-≤≤⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π.(1)求ω与ϕ的值;(2)若322463f αππα⎛⎫⎛⎫=<<⎪⎪⎝⎭⎝⎭,求3cos 2πα⎛⎫+ ⎪⎝⎭的值. 28.(0分)[ID :14073]已知圆.(1)求过点(3,0)Q 的圆C 的切线l 的方程;(2)如图,(1,0),A M 定点为圆C 上一动点,点P 在AM 上,点N 在CM 上,且满足2,0,AM AP NP AM =⋅=求N 点的轨迹.29.(0分)[ID :14054]已知向量x 、y 满足:1x =,2y =,且(2)?(2)5x y x y --=.(1)求x 与y 的夹角θ;(2)若()x my y -⊥,求实数m 的值.30.(0分)[ID :14068]某同学用“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+π2π3π22π xπ35π6(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.D 3.D 4.C 5.A 6.A 7.B 8.B 9.D 10.A 11.C 12.B14.C15.B二、填空题16.【解析】【分析】作出三角函数的图象结合三角形的面积求出三角函数的周期和即可得到结论【详解】不妨设是距离原点最近的最高点由题意知是面积为4的等边三角形即则周期即则三角形的高则则由题得所以又所以即故答案17.【解析】原式因为所以且所以原式18.【解析】分析:利用余弦定理设设AC=BC=m则由余弦定理把m表示出来利用四边形OACB面积为S=转化为三角形函数问题求解最值详解:△ABC为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m则由余19.【解析】分析:根据向量的模求出•=1再根据投影的定义即可求出详解:∵||=1||=2|﹣|=∴||2+||2﹣2•=3解得•=1∴在方向上的投影是=故答案为点睛:本题考查了平面向量的数量积运算和投影20.【解析】分析:对函数求导研究函数的单调性得到函数的单调区间进而得到函数的最值详解:函数设函数在故当t=时函数取得最大值此时故答案为:点睛:这个题目考查了函数最值的求法较为简单求函数的值域或者最值常用21.【解析】【分析】根据题干得到按照两角和与差公式得到结果【详解】已知那么故答案为【点睛】这个题目考查了给值求值的问题常见的解题方式有:用已知角表示未知角再由两角和与差的公式得到结果22.【解析】由题意即则所以由余弦定理所以所以应填答案点睛:解答本题的思路是先借助三角形的面积公式求出边进而运用余弦定理求出边然后再运用余弦定理求出进而求出最后求出23.0【解析】分析:利用和差角的正弦公式可求及的值可得详解:联立可解得故即答案为0点睛:本题综合考查了三角函数公式灵活运用和差角公式和同角三角函数基本关系式是解题的关键属于中档题24.【解析】由题意得即解得t=2;故答案为225.【解析】由题意令则所以即当;当如图所示由勾股定理得解得三、解答题26.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】用不同的方法表示出同一向量,然后对式子进行化简验证.【详解】=-,DC AC AD=-,DC BC BD∴AC AD BC BD-=-,∴AC BD BC AD+=+.故选:B.【点睛】本题主要考查了平面向量的加减法及其几何意义,属于容易题.2.D解析:D【解析】()()00++1tan171tan280000000000 =+++=++-+1tan17tan28tan17tan281tan(1728)(1tan17tan28)tan17tan28000001tan 45(1tan17tan 28)tan17tan 282=+-+=,选D.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.3.D解析:D 【解析】 【分析】利用余弦定理求出cos A 和cos C 的表达式,由2A C =,结合正弦定理sin sin c aC A= 2sin cos aC C=得出cos C 的表达式,利用余弦定理得出cos C 的表达式,可解出n 的值,于此确定ABC ∆三边长,再利用大边对大角定理得出C 为最小角,从而求出cos C . 【详解】2A C =,由正弦定理sin sin c a C A=,即sin sin 22sin cos c a aC C C C ==, ()1cos 221a n C c n +∴==-, ()()()()222222114cos 22121n n n a b c n C ab n n n ++--+-+===++,()()142121n n n n ++∴=-+, 解得5n =,由大边对大角定理可知角C 是最小角,所以,63cos 244C ==⨯,故选D . 【点睛】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.4.C解析:C 【解析】试题分析:()1sin()cos()sin 2222y x x x ϕϕϕ=++=+将其向右平移8π个单位后得到:11sin 2sin 22824y x x ππϕϕ⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若为偶函数必有:()42k k Z ππϕπ-=+∈,解得:()34k k Z πϕπ=+∈,当0k =时,D 正确,1k =-时,B 正确,当2k =-时,A 正确,综上,C 错误. 考点:1.函数的图像变换;2.函数的奇偶性.5.A解析:A 【解析】 【分析】利用向量的线性运算求解即可. 【详解】由题, ()12111111322626MN MC CN AC AB AC AB AC e e =+=+-=-=-.故选:A 【点睛】本题主要考查了平面向量的线性运算,属于基础题型.6.A解析:A 【解析】 解:根据题意,α,β为锐角,若sinα=513,则cosα=1213, 若cos (α+β)=35,则(α+β)也为锐角, 则sin (α+β)=45, 则cosβ=cos[(α+β)﹣α]=cos (α+β)cosα+sin (α+β)sinα=35×1213+45×513=5665, 点睛:由cos (α+β)与sinα的值,结合同角三角函数基本关系式计算可得sin (α+β)与cosα的值,进而利用β=[(α+β)﹣α]可得cosβ=cos[(α+β)﹣α]=cos (α+β)cosα+sin (α+β)sinα.7.B解析:B 【解析】 【分析】先利用辅助角公式将函数()y f x =的解析式化简,并求出平移变换后的函数解析式,由变换后的函数图象关于点,02π⎛⎫⎪⎝⎭对称,可得出ϕ的表达式,结合ϕ的范围可求出ϕ的值. 【详解】()()()sin 222sin 23f x x x x πϕϕϕ⎛⎫=+++=++ ⎪⎝⎭,将函数()y f x =的图象向左平移4π个单位后, 所得图象的函数解析式为()52sin 22sin 2436g x x x πππϕϕ⎡⎤⎛⎫⎛⎫=+++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由于函数()y g x =的图象关于点,02π⎛⎫⎪⎝⎭对称,则()5226k k Z ππϕπ⨯++=∈,得()116k k Z ϕπ⎛⎫=-∈ ⎪⎝⎭,0ϕπ<<,2k ∴=,6π=ϕ. 故选:B. 【点睛】本题考查利用三角函数的对称性求参数值,同时也考查了三角函数图象的平移变换,根据对称性得出参数的表达式是解题的关键,考查推理能力与计算能力,属于中等题.8.B解析:B 【解析】分析:根据题意利用韦达定理列出关系式,利用两角和与差的余弦函数公式化简得到A=B ,即可确定出三角形形状. 详解:设已知方程的两根分别为x 1,x 2, 根据韦达定理得:x 1+x 2=cosAcosB ,x 1x 2=2sin 22C=1﹣cosC , ∵x 1+x 2=12x 1x 2, ∴2cosAcosB=1﹣cosC , ∵A+B+C=π,∴cosC=﹣cos (A+B )=﹣cosAcosB+sinAsinB , ∴cosAcosB+sinAsinB=1,即cos (A ﹣B )=1, ∴A ﹣B=0,即A=B , ∴△ABC 为等腰三角形. 故选B .点睛:此题考查了三角形的形状判断,涉及的知识有:根与系数的关系,两角和与差的余弦函数公式,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.9.D解析:D 【解析】 【分析】 【详解】试题分析:把2sin 21cos2αα=+的两边平方得224sin 2(1cos 2)αα=+,整理可得2244cos 412cos 2cos 2ααα-=++,即25cos 22cos 230αα+-=,所以(5cos 23)(cos 21)0αα-+=,解得3cos 25α=或cos21α=-,当2312sin 5α-=时,1cos 244sin 2,tan 2253ααα+===;当cos21α=-时,1cos 2sin 20,tan 202ααα+===,所以4tan 23α=或0,故选D. 考点:三角函数的基本关系式及三角函数的化简求值.10.A解析:A 【解析】 【分析】 【详解】记OA =a ,OB =b ,OC =c ,记a 与b ,b 于c 夹角分别为,αθ,因为这三向量的起点相同,且满足a 与b 不共线,a ⊥c ,|a |=|c |,则cos sin θα=,利用向量的内积定义,所以|b c ⋅|=||b |•|c |cos <b ,c >|=||OB ||OC |cosθ|==||OB ||OA |sin α |,又由于12BOA S ∆=|OB ||OA |sin α,所以||OB ||OA |sin α |等于以a ,b 为邻边的平行四边形的面积,故选A 11.C解析:C 【解析】 【分析】利用同角三角函数的基本关系求出sin 4πα⎛⎫+ ⎪⎝⎭与sin 42πβ⎛⎫-⎪⎝⎭,然后利用两角差的余弦公式求出cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦值. 【详解】02πα<<,3444πππα∴<+<,则sin 43πα⎛⎫+== ⎪⎝⎭,02πβ-<<,则4422ππβπ<-<,所以,sin 42πβ⎛⎫-==⎪⎝⎭, 因此,cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1cos cos sin sin 44244233339ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=+-++-=+⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故选C . 【点睛】本题考查利用两角和的余弦公式求值,解决这类求值问题需要注意以下两点: ①利用同角三角平方关系求值时,要求对象角的范围,确定所求值的正负; ②利用已知角来配凑未知角,然后利用合适的公式求解.12.B解析:B 【解析】 【分析】求出||,||,a b a b ⋅,根据向量夹角公式,即可求解. 【详解】22222121122||()2a a e e e e e e ==+=+⋅+ 022cos 603,||3a =+⨯=∴=22222121122||(2)44b b e e e e e e ==-=-⋅+ 054cos 603,||3b =-⨯==,1212()(2)a b e e e e ⋅=+⋅-2201122321cos602e e e e =-⋅-=--=-,设,a b 的夹角为1,cos 2||||a b a b θθ⋅==-,20,3πθπθ≤≤∴=. 故选:B, 【点睛】本题考查向量的夹角、向量的模长、向量的数量积,考查计算能力,属于中档题.13.A解析:A【解析】 【分析】利用正弦函数的周期性以及图象的对称性求得f (x )的解析式,利用函数y =A sin (ωx +φ)的图象变换规律求得G (x )的解析式,利用余弦函数的单调性求得则G (x ) 的单调递减区间. 【详解】∵f (x )=sin (ωx +θ),其中ω>0,θ∈(0,2π),f '(x 1)=f '(x 2)=0,|x 2﹣x 1|min 2π=,∴12•T 2ππω==, ∴ω=2,∴f (x )=sin (2x +θ). 又f (x )=f (3π-x ), ∴f (x )的图象的对称轴为x 6π=,∴2•6π+θ=k π2π+,k ∈Z ,又02πθ⎛⎫∈ ⎪⎝⎭,, ∴θ6π=,f (x )=sin (2x 6π+). 将f (x )的图象向左平移6π个单位得G (x )=sin (2x 36ππ++)=cos2x 的图象, 令2k π≤2x ≤2k π+π,求得k π≤x ≤k π2π+,则G (x )=cos2x 的单调递减区间是[k π,k π2π+],故选A . 【点睛】本题主要考查正弦函数的周期性以及图象的对称性,函数y =A sin (ωx +φ)的图象变换规律,余弦函数的单调性,属于中档题.14.C解析:C 【解析】2,2,OC OA OB BC OC OB OA AC OC OA OA OB =+∴=-==-=+,22222,23BC OA AC OA OB OA OB ∴===++⋅=,3,AC OA ∴=与OB 夹角为60,且1,1OA OB AB ==∴=,222,AB AC BC ABC +=∴∆为直角三角形,故选C.15.B解析:B 【解析】 【分析】将a b +平方后再开方去计算模长,注意使用数量积公式. 【详解】因为2222cos 6044412a b a a b b +=+︒+=++=,所以23a b +=, 故选:B. 【点睛】本题考查向量的模长计算,难度一般.对于计算xa yb +这种形式的模长,可通过先平方再开方的方法去计算模长.二、填空题16.【解析】【分析】作出三角函数的图象结合三角形的面积求出三角函数的周期和即可得到结论【详解】不妨设是距离原点最近的最高点由题意知是面积为4的等边三角形即则周期即则三角形的高则则由题得所以又所以即故答案解析:23y x ππ⎛⎫=+ ⎪⎝⎭【解析】 【分析】作出三角函数的图象,结合三角形的面积求出三角函数的周期和A ,即可得到结论. 【详解】不妨设P 是距离原点最近的最高点, 由题意知||T RQ =,PQR ∆是面积为∴2134322T =216T =, 则周期4T=,即24πω=,则2πω=,三角形的高2h A ==A =则()3sin()2f x x πϕ+,3sin(6πϕ+()2,62k k Z ππϕπ+=+∈又2πϕ<所以263πππϕ=-=,即()3sin()23f x x ππ=+,故答案为3sin 23y x ππ⎛⎫=+⎪⎝⎭【点睛】本题主要考查三角函数解析式求解,根据条件求出三角函数的周期和振幅是解决本题的关键.17.【解析】原式因为所以且所以原式 解析:2sin 4-【解析】 原式()224cos 42sin4cos42cos42sin4cos4=-=+-,因为53442ππ<<,所以cos40<,且sin4cos4<,所以原式()2cos42sin4cos42sin4=---=-.18.【解析】分析:利用余弦定理设设AC=BC=m 则由余弦定理把m 表示出来利用四边形OACB 面积为S=转化为三角形函数问题求解最值详解:△ABC 为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m 则由余解析:542+ 【解析】分析:利用余弦定理,设AOB α∠=,设AC=BC=m ,则2AB m =.由余弦定理把m 表示出来,利用四边形OACB 面积为S=24sin 4sin 2OACB ABC m S S αα∆∆=+=+.转化为三角形函数问题求解最值.详解:△ABC 为等腰直角三角形.∵OA=2OB=4, 不妨设AC=BC=m ,则2AB m =.由余弦定理,42+22﹣2m 2=16cos α,∴2108cos m α∴=-.108cos 4sin 4sin 4sin 4cos 52OACB ABC S S ααααα∆∆-∴=+=+=-+)554πα=-+≤.当34απ=时取到最大值5+.故答案为5+点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设AOB α∠=,再建立三角函数的模型.19.【解析】分析:根据向量的模求出•=1再根据投影的定义即可求出详解:∵||=1||=2|﹣|=∴||2+||2﹣2•=3解得•=1∴在方向上的投影是=故答案为点睛:本题考查了平面向量的数量积运算和投影 解析:12【解析】分析:根据向量的模求出a •b =1,再根据投影的定义即可求出.详解:∵|a |=1,|b |=2,|a ﹣b ∴|a |2+|b |2﹣2a •b =3, 解得a •b =1, ∴a 在b 方向上的投影是a b b⋅=12, 故答案为12点睛:本题考查了平面向量的数量积运算和投影的定义,属于中档题.20.【解析】分析:对函数求导研究函数的单调性得到函数的单调区间进而得到函数的最值详解:函数设函数在故当t=时函数取得最大值此时故答案为:点睛:这个题目考查了函数最值的求法较为简单求函数的值域或者最值常用解析:2【解析】分析:对函数求导,研究函数的单调性,得到函数的单调区间,进而得到函数的最值. 详解:函数()2cos sin2f x x x =-,()22sin 2cos24sin 2sin 2,f x x x x x =----'=设()()[]2sin ,422,1,1t x f x g t t t t ===--∈-',函数在11-1-122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,故当t=12-时函数取得最大值,此时,662x f ππ⎛⎫=--= ⎪⎝⎭故答案为:2. 点睛:这个题目考查了函数最值的求法,较为简单,求函数的值域或者最值常用的方法有:求导研究单调性,或者直接研究函数的单调性,或者应用均值不等式求最值.21.【解析】【分析】根据题干得到按照两角和与差公式得到结果【详解】已知那么故答案为【点睛】这个题目考查了给值求值的问题常见的解题方式有:用已知角表示未知角再由两角和与差的公式得到结果 解析:1124【解析】 【分析】根据题干得到an α=()tan αββ+-,按照两角和与差公式得到结果. 【详解】 已知()4tan 5αβ+=,1 tan 4β=, 那么tan α=()tan αββ+-()()tan tan 111tan tan 24αββαββ+-==++. 故答案为1124. 【点睛】这个题目考查了给值求值的问题,常见的解题方式有:用已知角表示未知角,再由两角和与差的公式得到结果.22.【解析】由题意即则所以由余弦定理所以所以应填答案点睛:解答本题的思路是先借助三角形的面积公式求出边进而运用余弦定理求出边然后再运用余弦定理求出进而求出最后求出解析:-【解析】由题意1sin 23ac π=4c =⇒=,则b ==,所以由余弦定理cosC ==sin C ==tan (C ==-- 点睛:解答本题的思路是先借助三角形的面积公式求出边4c =,进而运用余弦定理求出边b ==,然后再运用余弦定理求出cosC ==,进而求出sin C ==tan (C ==- 23.0【解析】分析:利用和差角的正弦公式可求及的值可得详解:联立可解得故即答案为0点睛:本题综合考查了三角函数公式灵活运用和差角公式和同角三角函数基本关系式是解题的关键属于中档题解析:0 【解析】分析:利用和差角的正弦公式,可求sin cos x y 及cos sin x y 的值,可得tan 2.tan xy=- 详解:()1sin sin cos cos sin ,3x y x y x y +=+=()sin sin cos cos sin 1,x y x y x y -=-= 联立可解得21sin cos ,cos sin ,33x y x y ==-sin cos tan 2.cos sin tan x y x x y y∴==- 故tan 2tan 0.x y += 即答案为0.点睛:本题综合考查了三角函数公式,灵活运用和差角公式和同角三角函数基本关系式是解题的关键,属于中档题.24.【解析】由题意得即解得t=2;故答案为2 解析:12【解析】由题意得,1cos602a b a b ⋅=⨯⨯=, 0b c ⋅=,即()()()2111111022b ta t b ta b t b t t t ⎡⎤⋅+-=⋅+-=+-=-=⎣⎦, 解得t =2; 故答案为2.25.【解析】由题意令则所以即当;当如图所示由勾股定理得解得解析:π【解析】由题意,令sin cos x x ωω=, sin cos 0x x ωω-=,则sin 04x πω⎛⎫-= ⎪⎝⎭,所以4x k πωπ-=, k Z ∈,即14x k ππω⎛⎫=⋅+ ⎪⎝⎭,当10,4k x πω==, 1y =251,4k x πω==, 222y =-,如图所示,由勾股定理得()()()22221213y y x x -+-=,解得ωπ=.三、解答题 26. (1)34-(22314-【解析】试题分析:(1)利用余弦定理表示出cosB ,将已知等式代入即可求出cosB 的值;(2)由cosB 可求出sin 2,cos 2B B 的值,然后利用两角和的余弦公式可得结果. 试题解析:(1)由22222230a c b ac +-+=,得22232a cb ac +-=-, 根据余弦定理得222332cos 224aca cb B ac ac -+-===-; (2)由3cos 4B =-,得7sin B = ∴37sin22sin cos 8B B B ==-,21cos22cos 18B B =-=,∴23712314sin 2sin2cos cos2sin 4448B B B πππ⎫-⎛⎫+=+=+=⎪ ⎪⎪⎝⎭⎝⎭. 27.(1)2ω=,6πϕ=-;(2)3158【解析】 【分析】(1)根据最高顶点间的距离求出周期得2ω=,根据对称轴求出6πϕ=-;(2)根据题意求出1sin 64πα⎛⎫-= ⎪⎝⎭,结合诱导公式及和差公式求解.【详解】解:(1)因()f x 的图象上相邻两个最高点的距离为π, ∴()f x 的最小正周期T π=,从而22Tπω==. 又因()f x 的图象关于直线3x π=对称,∴2()32k k Z ππϕπ⋅+=+∈.∵22ππϕ-≤≤,∴0k =,此时2236ππϕπ=-=-. (2)由(1)得33sin 264f απα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, ∴1sin 64πα⎛⎫-= ⎪⎝⎭, 由263ππα<<得062ππα<-<,∴215cos 1sin 664ππαα⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, ∴3cos sin sin 266πππααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 315sin sin cos cos sin 6666668ππππππααα⎡⎤+⎛⎫⎛⎫⎛⎫=-+=-+-=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】此题考查根据三角函数图像性质求参数的值,结合诱导公式和差公式处理三角求值的问题.28.(1),(2)【解析】 【分析】 【详解】(1)由题意知所求的切线斜率存在,设其方程为,即; 由得,解得, 从而所求的切线方程为,.(2)∴NP 为AM 的垂直平分线,∴|NA|=|NM|. 又∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 且椭圆长轴长为焦距2c=2.∴点N 的轨迹是方程为29.(1) 3πθ=(2) 14m =【解析】 【分析】(1)由(2)(2)5x y x y -⋅-=展开,可解出1x y ⋅=,根据向量夹角公式1cos 2x yx yθ==⋅,即可求出夹角θ的大小; (2)根据两向量垂直,数量积为0,列出方程即可求出m 的值. 【详解】 (1)∵(2)(2)5x y x y --=∴2225251x x y y x y -⋅+=⇒⋅= ∵1cos 2x y x yθ⋅==⋅∴3πθ=.(2)∵()x m y y -⊥∴()0x m y y -⋅=,即20x y m y ⋅-= ∴11404m m -=⇒=. 【点睛】本题主要考查平面向量的数量积的运算律,向量的夹角公式,向量垂直与数量积的关系的应用,属于基础题.30.(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)π6. 【解析】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k Z ∈. 令π22π6x k θ+-=,解得ππ212k x θ=+-,k Z ∈. 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k Z ∈.由0θ>可知,当1k =时,θ取得最小值π6. 考点:“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象,三角函数的平移变换,三角函数的性质.。

西交大2020年春《高等数学》期末考前资料

西交大2020年春《高等数学》期末考前资料


A 高阶无穷小

B 低阶无穷小

C 等价无穷小

D 同阶但不等价无穷
正确答案:D (65)
若 f(x)在处可导,则∣f(x)∣在 x=x0 处( )

A 可导

B 不可导

C 连续但未必可导

D 不连续
正确答案:C
(66)
设函数 y=f(x)在点 x0 处可导,且 f′(x)>0, 曲线 y=f(x)则在点(x0,f(x0))处的切线的倾斜

B 函数 y=f(x)导数不存在的点,一定不是函数 y=f(x)的极值点.

C 若函数 y=f(x)在 x0 处取得极值,且 f′(x)存在,则必有 f′(x)=0.

D 若函数 y=f(x)在 x0 处连续,则 y=f′(x0)一定存在.
正确答案:C
(69)
下列各微分式正确的是( ).

Axdx=d(x^2)

AA

BB

CC

DD
正确答案:D (13)

AA

BB

CC

DD
正确答案:B (14)

AA

BB

CC

DD
正确答案:C (15)

AA

BB

CC

DD
正确答案:B (16)

AA

BB

CC

DD
正确答案:C (17)

AA

BB

西安交通大学高等数学期末考试试卷(含答案)

西安交通大学高等数学期末考试试卷(含答案)

西安交通大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1. ( ).
A、
B、
C、
D、
【答案】D
2.设函数,则.
A、正确
B、不正确
【答案】A
3.设函数,则().
A、
B、
C、
D、
【答案】A
4.定积分.
A、正确
B、不正确
【答案】B
5.是偶函数.
A、正确
B、不正确
【答案】B
6.设函数,则().A、
B、
C、
D、
【答案】B
7.设函数,则().A、
B、
C、
D、
【答案】A
8.不定积分().
A、
B、
C、
D、
【答案】C
9.函数的单调减少区间是().
A、
B、
C、
D、
【答案】D
10.微分方程的通解是().
A、
B、
C、
D、
【答案】A
一、一选择题
11.是微分方程.
A、正确
B、不正确
【答案】B
12.函数的图形如图示,则是函数的
( ).
A、最大值点
B、极大值点
C、极小值点也是最小值点
D、极小值点但非最小值点
【答案】C
13.不定积分( ).
A、
B、
C、
D、
【答案】B
14.函数的定义域为.
A、正确
B、不正确
【答案】A
15.不定积分.
A、
B、
C、
D、
【答案】B。

2021年陕西省西安市交大附中分校高二数学理下学期期末试题含解析

2021年陕西省西安市交大附中分校高二数学理下学期期末试题含解析

2021年陕西省西安市交大附中分校高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中为偶函数的是()A.y=x+B.y=x3 C.y=D.y=e x+e﹣x参考答案:D【考点】函数奇偶性的判断.【分析】利用奇偶函数的定义,即可得出结论.【解答】解:对于A,B,满足f(﹣x)=﹣f(x),函数是奇函数;对于C,函数的定义域不关于原点对称,非奇非偶函数;对于D,满足f(﹣x)=f(x),函数是偶函数.故选D.2. 数列中,,,则( )A. B. C.D.参考答案:B3. 已知正方体ABCD﹣A1B1C1D1中,E、F分别为棱BC和棱CC1的中点,则异面直线AC和EF 所成的角为()A.30°B.45°C.60°D.90°参考答案:C【考点】异面直线及其所成的角.【分析】连接BC1,A1C1,A1B,根据正方体的几何特征,我们能得到∠A1C1B即为异面直线AC和EF所成的角,判断三角形A1C1B的形状,即可得到异面直线AC和EF所成的角.【解答】解:连接BC1,A1C1,A1B,如图所示:根据正方体的结构特征,可得EF∥BC1,AC∥A1C1,则∠A1C1B即为异面直线AC和EF所成的角BC1=A1C1=A1B,∴△A1C1B为等边三角形故∠A1C1B=60°故选C4. 设函数,则().A.B.3 C.D.参考答案:C.选.5. 已知函数则满足不等式的的取值范围是()A. B. C. D.参考答案:C略6. 若l,m是两条不同的直线,m垂直于平面,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件参考答案:B【分析】利用直线与平面垂直的关系,再利用充要条件的判定方法,即可求解.【详解】由是两条不同的直线,垂直于平面,则“”可能“”或“”,反之,“”则“”,所以是两条不同的直线,垂直于平面,则“”是“”的必要不充分条件,故选B.【点睛】本题主要考查了空间中直线与平面的位置关系的应用,以及充要条件的判定,其中解答中熟记线面位置关系的判定定理和性质定理,准确利用充要条件的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7. 若直线过第一、三、四象限,则实数a,b满足()A.B.C.D.参考答案:C8. 抛物线的焦点到准线的距离是()A. B. C. D.参考答案:由,知p=4w,又交点到准线的距离就是,故选C.9. 复数z=(1﹣i)(4﹣i)的共轭复数的虚部为()A.﹣5i B.5i C.﹣5 D.5参考答案:D【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,进一步求得的答案.【解答】解:∵z=(1﹣i)(4﹣i)=3﹣5i,∴,则复数z=(1﹣i)(4﹣i)的共轭复数的虚部为5.故选:D.10. 下面命题正确的个数是()①若,则与、共面;②若,则、、、共面;③若,则、、、共面;④若,则、、、共面;A. B. C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 若函数在区间是减函数,则的取值范围是________.参考答案:(-∞,2]12. 若P表示已知条件或已有的定义、公理或定理,Q表示所得到的结论,下列框图表示的证明方法是.参考答案:综合法【考点】综合法与分析法(选修).【分析】根据证题思路,是由因导果,是综合法的思路,故可得结论.【解答】解:∵P表示已知条件或已有的定义、公理或定理,Q表示所得到的结论,∴证明方法是由因导果,是综合法的思路故答案为:综合法13. 已知抛物线y2=2px(p>0)的准线与圆(x-3)2+ y2 = 16相切,则p的值为 .参考答案:214. △ABC中,角A、B、C的对边分别为a、b、c,若A=60°,B=45°,c=20cm,则△ABC 的AB边上的高h c= .参考答案:【考点】解三角形.【专题】计算题;方程思想;解三角形.【分析】由A与C的度数求出B的度数,再作出AB边上的高,利用两个特殊直角三角形求高.【解答】解:由已知得到∠C=75°,作出AB边上的高CD,设高为x,则BD=x,AD=x,则x+x=20解得x=;故答案为:.【点评】此题考查了特殊角的三角函数以及利用方程思想解三角形.15. 若关于x的不等式在上恒成立,则a的取值范围为______.参考答案:【分析】关于的不等式在上恒成立等价于在恒成立,进而转化为函数的图象恒在图象的上方,利用指数函数与对数函数的性质,即可求解.【详解】由题意,关于的不等式在上恒成立等价于在恒成立,设,,因为在上恒成立,所以当时,函数的图象恒在图象的上方,由图象可知,当时,函数的图象在图象的上方,不符合题意,舍去;当时,函数的图象恒在图象的上方,则,即,解得,综上可知,实数的取值范围是.【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,以及不等式的恒成立问题的求解,其中解答中把不等式恒成立转化为两个函数的关系,借助指数函数与对数函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.16. 甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为和参考答案:24,23略17. 已知a>0,b>0,,,则m与n的大小关系为__参考答案:略三、解答题:本大题共5小题,共72分。

2020-2021学年陕西省西安市交大二附中高二数学理测试题含解析

2020-2021学年陕西省西安市交大二附中高二数学理测试题含解析

2020-2021学年陕西省西安市交大二附中高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 一个四棱锥的三视图如图所示,其正视图和侧视图为全等的等腰直角三角形,俯视图是边长为2的正方形,则该几何体的表面积为()A. B. 4 C. D.参考答案:D【分析】由三视图还原几何体可知该四棱锥为正四棱锥,底面ABCD为边长为2的正方形,由几何体的表面积公式计算即可得到答案.【详解】由三视图可知该几何体为为正四棱锥:底面为边长为2的正方形,四个侧面为边长为2的等边三角形.故.故选:D.【点睛】本题考查由三视图还原几何体,考查几何体的表面积的计算方法,考查空间想象能力和计算能力,属于中档题. 2. 已知,则最小值是()A.2 B. C.3D.4参考答案:D略3. 已知点与点在直线的两侧,给出以下结论:①;②当时,有最小值,无最大值;③;④当且时,的取值范围是,正确的个数是()A.1 B.2 C. 3 D.4参考答案:B4. 变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4)(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2)(13,1),表示变量Y与X之间的线性相关系数,表示变量V与U之间的线性相关系数,则()A. <<0B. 0<<C. <0<D. =参考答案:C5. 已知,则()A.B.C.D.参考答案:C略6. 若集合,,则()A. B. C. D.参考答案:C7. 下列命题不正确的是()A. 由样本数据得到的回归方程必过样本点中心B. 相关指数用来刻画回归效果,的值越大,说明模型的拟合效果越好C. 归纳推理和类比推理都是合情推理,合情推理的结论是可靠的,是正确的结论D. 演绎推理是由一般到特殊的推理参考答案:C【分析】根据涉及的知识对给出的四个选项分别进行分析、判断后可得结果.【详解】对于A,由线性回归分析可得回归直线一定经过样本中心,所以A正确.对于B,当相关指数的值越大时,意味着残差平方和越小,即模型的拟合效果越好,所以B正确.对于C,合情推理的结论是不可靠的,需要进行证明后才能判断是否正确,所以C不正确.对于D,由演绎推理的定义可得结论正确.故选C.8. 当时,下面的程序段执行后所得的结果是 ( )A. B. C.D.参考答案:C9. 设命题p:?n∈N,n2>2n,则¬p为()A.?n∈N,n2>2n B.?n∈N,n2≤2n C.?n∈N,n2≤2n D.?n∈N,n2=2n参考答案:C【考点】命题的否定.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:?n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.10. 对于,直线恒过定点,则以为圆心,为半径的圆的方程是()A.B.C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 用秦九韶算法求多项式f(x)=9x6+12x5+7x4+54x3+34x2+9x+1的值时,需要的乘法运算次数是次,加法运算次数是次。

【经典期末卷】大学高数(下)期末测试题及答案

【经典期末卷】大学高数(下)期末测试题及答案

第 1 页 (共 10 页)班级(学生填写): 姓名: 学号: 命题: 审题: 审批: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)第 2 页(共10 页)第 3 页 (共 10 页)班级(学生填写): 姓名 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)第 4 页 (共 10 页)三. 计算题(一)(每小题6分,共36分)1.计算:22xy De d σ+⎰⎰,其中D 是由圆周224x y +=所围成的闭区域。

2.计算三重积分xdxdydz Ω⎰⎰⎰,其中Ω为三个坐标面及平面21x y z ++=所围成的闭区域。

3.计算xyzdxdydz Ω⎰⎰⎰,其中Ω是由曲面2221x y z ++=,0,0,0x y z ≥≥≥所围成.第 5 页 (共 10 页)班级(学生填写): 姓名 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)4.求2d d Dxx y y⎰⎰,其中D 为1xy =,y x =及2x =所围成的区域。

2020-2021西安交通大学附属中学高中必修二数学下期末第一次模拟试题(带答案)

2020-2021西安交通大学附属中学高中必修二数学下期末第一次模拟试题(带答案)

2020-2021西安交通大学附属中学高中必修二数学下期末第一次模拟试题(带答案)一、选择题1.已知向量()cos ,sin a θθ=v ,()1,2b =v ,若a v 与b v 的夹角为6π,则a b +=v v ( )A .2B .7C .2D .12.ABC V 中,已知sin cos cos a b cA B C==,则ABC V 为( ) A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形3.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U I A .{1,1}- B .{0,1} C .{1,0,1}-D .{2,3,4}4.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .45.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .6.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)7.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生9.已知二项式2(*)nx n N x ⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-10.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4511.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>12.在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1,则1BC 与侧面1ACC A 所成角的大小为( )A .30oB .45oC .60oD .90o二、填空题13.底面直径和高都是4cm 的圆柱的侧面积为___cm 2.14.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______. 15.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.16.在四面体ABCD 中,=2,60,90AB AD BAD BCD =∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为__________.17.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高 为18.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=02的点共有________个.19.若()1,x ∈+∞,则131y x x =+-的最小值是_____. 20.在△ABC 中,85a b ==,,面积为12,则cos 2C =______.三、解答题21.已知函数31()log 1a m xf x x -=-(0a >,且1a ≠)的图象关于坐标原点对称.(1)求实数m 的值;(2)比较()2f 与()3f 的大小,并请说明理由.22.解关于x 的不等式2(1)10()ax a x a R -++>∈. 23.已知圆O :x 2+y 2=2,直线.l :y=kx-2. (1)若直线l 与圆O 相切,求k 的值;(2)若直线l 与圆O 交于不同的两点A ,B ,当∠AOB 为锐角时,求k 的取值范围;(3)若1k 2=,P 是直线l 上的动点,过P 作圆O 的两条切线PC ,PD ,切点为C ,D ,探究:直线CD 是否过定点.24.a b c 分别为ABC ∆内角A 、B 、C 的对边,已知tan 3sin a B b A =.(1)求cos B ;(2)若3a =,17b =,求ABC ∆的面积. 25.已知函数()()sin 0,0,2f x A x A πωφωφ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 的单调增区间并求出()f x 取得最小值时所对应的x 取值集合. 26.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=o ,21EA =百米,60AED ∠=o . (1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.【参考答案】***试卷处理标记,请不要删除1.B 解析:B 【解析】 【分析】先计算a r 与b r的模,再根据向量数量积的性质22()a b a b +=+r rr r即可计算求值. 【详解】因为()cos ,sin a θθ=r,(b =r ,所以||1a =r ,||b =r又222222()2||2||||cos ||6a b a b a a b b a a b b +=+=+⋅+=+π+r r r r r r r r r r r r137=++=,所以a b +=r r ,故选B.【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.2.B解析:B 【解析】 【分析】 【详解】因为sin cos cos a b c A B C==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== , 即ABC V 为等腰直角三角形.故选:B .3.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.4.D解析:D【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.5.B解析:B 【解析】 【分析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】 根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B 故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.6.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩V 解得:04k <<,综上k 的取值范围是[)0,4,故选C. 7.C解析:Cx ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.8.C解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.C解析:C 【解析】 【分析】由二项展开式的通项公式为()12rn rrr n T C x -+⎛= ⎝及展开式中第2项与第3项的二项式系数之比是2︰5可得:6n =,令展开式通项中x 的指数为3,即可求得2r =,问题得解. 【详解】二项展开式的第1r +项的通项公式为()12rn rrr n T C x x -+⎛=- ⎪⎝⎭由展开式中第2项与第3项的二项式系数之比是2︰5,可得:12:2:5n n C C =. 解得:6n =. 所以()()366216221rr n rr rr r r nT C x C xx ---+⎛=-=- ⎪⎝⎭令3632r -=,解得:2r =, 所以3x 的系数为()2262621240C --=故选C 【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.10.C解析:C 【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .12.A解析:A 【解析】 【分析】由题意,取AC 的中点O ,连结1,BO C O ,求得1BC O ∠是1BC 与侧面11ACC A 所成的角,在1BC O ∆中,即可求解. 【详解】由题意,取AC 的中点O ,连结1,BO C O ,因为正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1, 所以1,BO ACBO AA ⊥⊥,因为1AC AA A ⋂=,所以BO ⊥平面11ACC A , 所以1BC O ∠是1BC 与侧面11ACC A 所成的角, 因为222113131(),(2)()2222BO C O =-==+=, 所以11332tan 32BO BC O OC ∠===, 所以0130BC O ∠=,1BC 与侧面11ACC A 所成的角030.【点睛】本题主要考查了直线与平面所成的角的求解,其中解答中空间几何体的线面位置关系,得到1BC O ∠是1BC 与侧面11ACC A 所成的角是解答的关键,着重考查了推理与运算能力,以及转化与化归思想,属于中档试题.二、填空题13.【解析】【分析】【详解】圆柱的侧面积为 解析:【解析】 【分析】 【详解】圆柱的侧面积为22416ππ⨯⨯=14.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6 【解析】 【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出. 【详解】数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5,即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=, 则2122221333n n T -=++++L 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6. 【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.15.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A (2-2)代入得m=-2∴代入B 得故水面宽为米故答案为米考点:抛物线的应用解析:6米 【解析】【分析】 【详解】如图建立直角坐标系,设抛物线方程为2x my =, 将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得06x =故水面宽为266 考点:抛物线的应用16.【解析】画出图象如下图所示其中为等边三角形边的中点为等边三角形的中心(等边三角形四心合一);球心在点的正上方也在点的正上方依题意知在中所以外接圆半径 21【解析】画出图象如下图所示,其中E 为等边三角形BD 边的中点,1O 为等边三角形的中心(等边三角形四心合一);球心O 在E 点的正上方,也在1O 点的正上方.依题意知11132360,OEO O E O A ∠===o 在1Rt OO E ∆中11tan 601OO O E ==o,所以外接圆半径221142113r OA OO O A ==+=+=17.【解析】【分析】【详解】试题分析:根据题意设塔高为x 则可知a 表示的为塔与山之间的距离可以解得塔高为考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用属于中档题 解析:【解析】 【分析】 【详解】试题分析:根据题意,设塔高为x ,则可知00tan 60=,t 2an 30=00200a ax,a 表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.18.3【解析】【分析】圆方程化为标准方程找出圆心坐标与半径求出圆心到已知直线的距离判断即可得到距离【详解】圆方程变形得:(x+1)2+(y+2)2=8即圆心(﹣1-2)半径r =2∴圆心到直线x+y+1=解析:3 【解析】 【分析】圆方程化为标准方程,找出圆心坐标与半径,求出圆心到已知直线的距离,判断即可得到距离. 【详解】圆方程变形得:(x +1)2+(y +2)2=8,即圆心(﹣1,-2),半径r =,∴圆心到直线x +y +1=0的距离d ==,∴r ﹣d =则到圆上到直线x +y +1=03个, 故答案为3. 【点睛】本题考查了直线与圆的位置关系,解题时注意点到直线的距离公式的合理运用.19.【解析】【分析】由已知可知然后利用基本不等式即可求解【详解】解:(当且仅当取等号)故答案为【点睛】本题主要考查了利用基本不等式求最值解题的关键是配凑积为定值属于基础试题解析:3+【解析】 【分析】由已知可知()11y 3x 3x 13x 1x 1=+=-++--,然后利用基本不等式即可求解. 【详解】解:x 1>Q ,()11y 3x 3x 13x 1x 1∴=+=-++--33≥=,(当且仅当13x =+取等号)故答案为3. 【点睛】本题主要考查了利用基本不等式求最值,解题的关键是配凑积为定值,属于基础试题.20.【解析】【分析】利用面积公式即可求出sinC 使用二倍角公式求出cos2C 【详解】由题意在中面积为12则解得∴故答案为【点睛】本题考查了三角形的面积公式二倍角公式在解三角形中的应用其中解答中应用三角形解析:725【解析】 【分析】利用面积公式即可求出sinC .使用二倍角公式求出cos2C . 【详解】由题意,在ABC ∆中,8a =,5b =,面积为12, 则120122S absinC sinC ===,解得35sinC =.∴297212122525cos C sin C =-=-⨯=. 故答案为725. 【点睛】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题21.(1)1m =-;(2)当1a >时, ()()23f f >;当01a <<时, ()()23f f <,理由见解析 【解析】 【分析】(1)将图象关于坐标原点对称转化为函数为奇函数,从而有()()f x f x -=-在函数的定义域内恒成立,进而求得m 的值,再进行检验; (2)根所在(1)中求得的m 值,得到1()log 1ax f x x +=-,再求得()()2,3f f 的值,对 a 分两种情况讨论,从而得到()()2,3f f 的大小关系.【详解】解:(1)31()log 1a m x f x x -=-Q ,31()()log 1a m x f x x -⋅-∴-=--.又Q 函数()f x 的图象关于坐标原点对称,()f x ∴为奇函数,()()f x f x ∴-=-在函数的定义域内恒成立,331()1log log 11a am x m xx x -⋅--∴=----, 331()1111m x m xx x -⋅--∴⋅=---,()6210m x ∴-=在函数的定义域内恒成立,1m ∴=-或1m =.当1m =时,函数的真数为1-,不成立,1m ∴=-.(2)据(1)求解知,1()log 1ax f x x +=-, (2)log 3a f ∴=,(3)log 2a f =.当1a >时,函数()log a g x x =在(0,)+∞上单调递增,23<Q ,log 2log 3(3)(2)a a f f ∴<⇒<;当01a <<时,函数()log a g x x =在(0,)+∞上单调递减,23<Q ,log 2log 3(3)(2)a a f f ∴>⇒>.【点睛】本题考查利用函数的奇偶性求解析式中参数值、对数函数的单调性比较大小,考查数形结合思想、分类讨论思想的运用,在比较大小时,注意对a 分1a >和01a <<两种情况讨论.22.a <0时,不等式的解集是(1a,1); a =0时,不等式的解集是(﹣∞,1); 1a =时,不等式的解集为{|1}x x ≠.01a <<时,不等式的解集是(﹣∞,1)∪(1a,+∞);a >1时,不等式的解集是(﹣∞,1a)∪(1,+∞).【解析】 【分析】讨论a 与0的大小,将不等式进行因式分解,然后讨论两根的大小,即可求出不等式的解集. 【详解】当0a =时,原不等式可化为10x -+>,所以原不等式的解集为{|1}x x <. 当0a ≠时,判别式()()22141a a a ∆=+-=-.(1)当1a =时,判别式0∆=,原不等式可化为2210x x -+>, 即()210x ->,所以原不等式的解集为{|1}x x ≠. (2)当0a <时,原不等式可化为()110x x a ⎛⎫--< ⎪⎝⎭,此时11a<,所以原不等式的解集为1{|1}x x a <<.(3)当01a <<时,原不等式可化为()110x x a ⎛⎫--> ⎪⎝⎭,此时11a >,所以原不等式的解集为1{|1}x x x a或. (4)当1a >时,原不等式可化为()110x x a ⎛⎫--> ⎪⎝⎭,此时11a<, 所以原不等式的解集为1{|1}x xx a或. 综上,a <0时,不等式的解集是(1a,1); a =0时,不等式的解集是(﹣∞,1); 1a =时,不等式的解集为{|1}x x ≠.01a <<时,不等式的解集是(﹣∞,1)∪(1a,+∞);a >1时,不等式的解集是(﹣∞,1a)∪(1,+∞).【点睛】本题主要考查了含有字母系数的不等式求解问题,解题的关键是确定讨论的标准,属于中档题.23.(1)k=±1;(2)(1-)∪(13)直线CD 过定点(112-,). 【解析】 【分析】(1)由直线l 与圆O 相切,得圆心O (0,0)到直线l 的距离等于半径,由此能求出k .(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),将直线l :y=kx-2代入x 2+y 2=2,得(1+k 2)x 2-4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k 的取值范围.(3)由题意知O ,P ,C ,D 四点共圆且在以OP 为直径的圆上,设P (t ,122t -),其方程为221202x tx y t y ⎛⎫-+--= ⎪⎝⎭,C ,D 在圆O :x 2+y 2=2上,求出直线CD :(x+y 2)t-2y-2=0,联立方程组能求出直线CD 过定点(1,12-). 【详解】解:(1)∵圆O :x 2+y 2=2,直线l :y=kx-2.直线l 与圆O 相切, ∴圆心O (0,0)到直线l 的距离等于半径, 即=,解得k=±1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),将直线l :y=kx-2代入x 2+y 2=2,整理,得(1+k 2)x 2-4kx+2=0, ∴1224k x x 1k +=+,1222x x 1k =+, △=(-4k )2-8(1+k 2)>0,即k 2>1, 当∠AOB 为锐角时,OA OB ⋅u u u r u u u r=x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2)=()()212121kx x2k x x 4+-++=2262k 1k-+>0,解得k 2<3,又k 2>1,∴k 1-<或1<k. 故k 的取值范围为(1-)∪(1(3)由题意知O ,P ,C ,D 四点共圆且在以OP 为直径的圆上, 设P (t ,1t 22-),其方程为x (x-t )+y (y 1t 22-+)=0, ∴221x tx y t 2y 02⎛⎫-+--=⎪⎝⎭, 又C ,D 在圆O :x 2+y 2=2上, 两圆作差得l CD :tx+1t 2y 202⎛⎫--=⎪⎝⎭,即(x+y 2)t-2y-2=0,由y 0{?2220x y +=+=,得1{?21x y ==-,∴直线CD 过定点(112-,). 【点睛】本题考查实数的取值范围的求法,考查直线是否过定点的判断与求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题. 24.(1)1cos 3B =;(2). 【解析】 【分析】(1)利用正弦定理边角互化思想以及切化弦的思想得出cos B 的值;(2)利用余弦定理求出c 的值,并利用同角三角函数的平方关系求出sin B 的值,最后利用三角形的面积公式即可求出ABC ∆的面积. 【详解】(1)因为tan 3sin a B b A =,所以sin tan 3sin sin A B B A =, 又sin 0A >,所以sin 3sin cos BB B =,因为sin 0B >,所以1cos 3B =; (2)由余弦定理,得2222cos b a c ac B =+-,则21179233c c =+-⨯⨯⨯, 整理得2280c c --=,0c >Q ,解得4c =. 因为1cos 3B =,所以sin B ==, 所以ABC ∆的面积1sin 2S ac B == 【点睛】本题考查利用正弦定理边角互化思想求角,同时也考查余弦定理解三角形以及三角形面积的计算,考查计算能力,属于中等题.25.(1)()2sin(2)6f x x π=+(2)单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,(k Z ∈);x 取值集合|,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭,(k Z ∈) 【解析】 【分析】(1)先由函数()y f x =的最大值求出A 的值,再由图中对称轴与相邻对称中心之间的距离得出最小正周期T ,于此得出2T πω=,再将点,26π⎛⎫⎪⎝⎭代入函数()y f x =的解析式结合φ的范围得出φ的值,于此可得出函数()y f x =的解析式; (2)解不等式()222262k x k k Z πππππ-+≤+≤+∈可得出函数()y f x =的单调递增区间,由()2262x k k Z πππ+=-+∈可求出函数()y f x =取最小值时x 的取值集合.【详解】(1)由图象可知,2A =. 因为51264T ππ-=,所以T π=.所以2ππ=ω. 解得2ω=. 又因为函数()f x 的图象经过点(,2)6π,所以2sin(2)26ϕπ⨯+=, 解得=+2()6k k Z ϕππ∈. 又因为2πϕ<,所以=6ϕπ,所以()2sin(2)6f x x π=+.(2)222262k x k πππππ-+≤+≤+,k Z ∈,解得36k x k ππππ-+≤≤+,k Z ∈,()f x 的单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,(k Z ∈),()f x 的最小值为-2,取得最小值时x 取值集合|,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭,(k Z ∈). 【点睛】本题考查由三角函数图象求解析式,以及三角函数的基本性质问题,在利用图象求三角函数()()sin 0,0y A x b A ωϕω=++>≠的解析式时,其基本步骤如下: (1)求A 、b :max min 2y y A -=,max min2y y b +=;(2)求ω:2Tπω=; (3)求ϕ:将顶点或对称中心点代入函数解析式求ϕ,但是在代对称中心点时需要结合函数在所找对称中心点附近的单调性来考查.26.(12百米. 【解析】 【分析】(1)由余弦定理求出4AB =百米,由此能求出ABE V 区域的面积;(2)记AEB α∠=,在ABE V 中,利用正弦定理求出sin α和cos α的值,当CH DE ⊥时,水管长最短,由此能求出当水管CH 最短时的长. 【详解】(1)由题知1,120,BE ABC EA =∠==o在ABE V 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 4122ABE S AB BE ABE V =⋅⋅∠=⨯⨯=.(2)记AEB α∠=,在ABE V 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin αα===当CH DE ⊥时,水管CH 最短, 在Rt ECH V 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=- ⎪⎝⎭百米.【点睛】本题考查了正弦定理、余弦定理以及三角形面积公式的综合应用,利用同角三角函数关系式求三角函数值,并求三角形面积,属于基础题.(1)根据余弦定理,可直接求得AB 的长度,由三角形面积公式即可求得ABE S V 的面积;(2)根据最短距离为垂直距离,可求得CH 的长.。

2024届陕西省西安市西安交大附中八年级数学第二学期期末学业水平测试试题含解析

2024届陕西省西安市西安交大附中八年级数学第二学期期末学业水平测试试题含解析

2024届陕西省西安市西安交大附中八年级数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.132.如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+KQ的最小值为()A.3B.1C.2 D.31+3.下列计算,正确的是()A.B.C.D.4.反比例函数kyx=的图象如图所示,则k的值可能是()A .3-B .1C .2D .45.如图,已知一次函数y=kx+b (k ,b 为常数,且k≠0)的图象与x 轴交于点A (3,0),若正比例函数y=mx (m 为常数,且m≠0)的图象与一次函数的图象相交于点P ,且点P 的横坐标为1,则关于x 的不等式(k-m )x+b <0的解集为( )A .x 1<B .x 1>C .x 3<D .x 3>6.已知▱ABCD 的周长为50cm ,△ABC 的周长为35cm ,则对角线AC 的长为( )A .5cmB .10cmC .15cmD .20cm7.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒8.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .39.生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n 个三角形的面积为( )A .nB .nC .2nD .2n 10.已知线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为( )A .(1,2)B .(2,9)C .(5,3)D .(–9,–4)11.下列几何图形是中心对称图形的是( )A .B .C .D .12.下列事件中,是必然事件的为( )A .明天会下雨B .x 是实数,x 2<0C .两个奇数之和为偶数D .异号两数相加,和为负数二、填空题(每题4分,共24分)13.平行四边形ABCD 中,∠A=80°,则∠C= °.14.如图,在Rt ABC ∆中,角903, 4, A AB AC P ︒===,是BC 边上的一点,作PE 垂直AB , PF 垂直AC ,垂足分别为E F 、,则EF 的最小值是______.15.已知:如图,在△ABC 中,∠ACB =90°,D 、E 、F 分别是AC 、AB 、BC 的中点,若CE =8,则DF 的长是________.16.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)17.已知不等式2123x a x b -<⎧⎨->⎩的解集为﹣1<x <2,则( a +1)(b ﹣1)的值为____. 18.一次函数33y x =-+与x 轴的交点是__________.三、解答题(共78分)19.(8分)已知一次函数21y x =+.(1)在平面直角坐标系中画出该函数的图象;(2)点(12,5)在该函数图象的上方还是下方?请做出判断并说明理由. 20.(8分)如图,直线11:23l y x =+与直线22:1l y kx =-交于点A ,点A 的横坐标为1-,且直线1l 与x 轴交于点B ,与y 轴交于点D ,直线2l 与y 轴交于点C .(1)求点A 的坐标及直线2l 的函数表达式;(2)连接BC ,求ABC ∆的面积.21.(8分)如图,在△ABC 中,∠ACB =90°,点D ,E ,F 分别为AB ,AC ,BC 的中点.求证:CD =EF .22.(10分)如图,已知ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F . (1)求证:BE=AD ;(2)求∠BFD 的度数.23.(10分)如图,直线y=kx+b(k≠0)与两坐标轴分别交于点B、C,点A的坐标为(﹣2,0),点D的坐标为(1,0).(1)求直线BC的函数解析式.(2)若P(x,y)是直线BC在第一象限内的一个动点,试求出△ADP的面积S与x的函数关系式,并写出自变量x 的取值范围.(3)在直线BC上是否存在一点P,使得△ADP的面积为3?若存在,请直接写出此时点P的坐标,若不存在,请说明理由.24.(10分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8 8 0.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .(填“变大”、“变小”或“不变”).25.(12分)如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.26.当a 在什么范围内取值时,关于x 的一元一次方程231-2x x a +=的解满足11x -≤≤?参考答案一、选择题(每题4分,共48分)1、B【解题分析】根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC ,AD ∥BC ,推出∠EAO=∠FCO ,证△AEO ≌△CFO ,推出AE=CF ,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD=BC=6,AB=CD=5,OA=OC ,AD ∥BC ,∴∠EAO=∠FCO ,在△AEO 和△CFO 中,AOE=FOC OA=OCEAO=FCO ∠∠⎧⎪⎨⎪∠∠⎩,∴△AEO≌△CFO(ASA),∴AE=CF,OE=OF=2,∴DE+CF=DE+AE=AD=6,∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=1.故选B.【题目点拨】本题考查平行四边形性质,全等三角形的性质和判定的应用,解题的关键是求出DE+CF的长和求出OF长.2、A【解题分析】先根据四边形ABCD是菱形可知,AD//BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P'',连接P'Q,PC,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,再在Rt△BCP'中利用锐角三角函数的定义求出P'C的长即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 2 2 x x 2 1
f ( x, y )dy ;
2
3.求微分方程 x 3x 2 x e2t 的通解。 4.已知曲线 L : y x 2 (0 x 1) 上任意一点处的线密度在数值上与该点的横坐标相同, 求曲线的质量; 5.(工科分析做(1) ,其他做(2))
1
个特解,试确定常数 a, b, c,并求该方程的通解。 三、 (8 分)设 y f ( x, t ) ,而 t 是由方程 F ( x, y, t ) 0 所确定的 x, y 的函数,其中 f , F 都 具有一阶连续的导数,求 四、 (8 分)计算积分 成的区域; 五、 (8 分)设函数 ( y ), ( y ) 具有连续的导数,对平面内的任意分段光滑简单闭曲线 C, 有曲线积分 2[ x ( y ) ( y )]dx [ x 2 ( y ) 2 xy 2 2 x ( y )]dy 0
2[ x ( y ) ( y )]dx [ x 2 ( y ) 2 xy 2 2 x ( y )]dy ;
六、 (8 分)设 D ( x, y ) 0 x 2, 0 y 2, (1)计算
( D)
xy 1 dxdy ;
( D)
(2)设 f ( x, y ) 在 D 上连续,且
(2) 验证 y1 e x , y2 e x ln x , 是微分方程 xy (2 x 1) y ( x 1) y 0 的解,并求其通解. 6.计算三重积分 zdv ,其中 V 是由不等式 x 2 y 2 z 2 x 2 y 2 确定的空间区域;
V
7.求向量场 A z x 2 , x, z 2 3 y穿过曲面设力场 : z x 2 y 2 (0 z 1) ,下侧的通
量; 8.计算第一型面积分 ( x 2 y 2 )dS ,其中 是曲面 z
()
x 2 y 2 介于 0 z 1 之间的
高等数学(I II)期末考试题 A 卷 一、计算下列各题(每小题 6 分,共 60 分)
2014 年 月 20 日
x2 1.在曲面 z y 2 上求一点,使曲面在该点处的切平面平行于平面 2 x 2 y z 0 ; 2
2.设 f ( x, y ) 是连续函数,交换积分次序 dx 1
C
dy ; dx
( D)
x[1 y sin 2 ( x 2 y 2 )]d ,其中(D)是由 y x 3 , y 1, x 1 所围
(1)求满足条件 (0) 2, (0) 0 的函数 ( y ), ( y ) ; (2)计算
( 0, 0 ) (1,1)
f ( x, y )dxdy 0 ,
( D)
xyf ( x, y )dxdy 1 ,证明存在
( , ) D ,使 f ( , )
1 ; A
2
4 1 8 dx A x 的通解,其中 A 4 7 4 。 (1)求微分方程组 dt 1 4 8
(2) 已知函数 y e2 x ( x 1)e x 是二阶常系数非齐次线性微分方程 y ay by ce x 的一
1 2 sin 2t 1 x d x1 cos t 1 2 ( 1 ) 验 证 微 分 方 程 组 的 通 解 为 x 2 dt x2 1 sin 2t 1 2 sin t 2
et cos t sin t x C1 C 2 cos t , t R ; et sin t
部分; 9.计算第二型曲线积分 ye y dx ( xe y 2 xy 2 e y )dy ,其中 L 为 y 3 x 上从 O(0,0) 到
2 2 2
L
A(1,1) 的曲线段;
10.求 div[ grad ( x 2 y 2 z 2 )] ; 二、(8 分)工科分析做(1) ,其他做(2)) 。
相关文档
最新文档