《材料力学 》第五章 课后习题参考答案

合集下载

材料力学第3版习题答案

材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。

若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。

请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。

在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。

因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。

在本例中,材料的屈服强度是200 MPa。

第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。

若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。

要计算应变,我们可以使用公式ε =σ/E。

将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。

第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。

如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。

请解释塑性变形与弹性变形的区别。

答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。

弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。

而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。

第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。

如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。

请计算在单轴拉伸下,材料达到断裂的临界应力。

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

第五章习题5-1一矩形截面梁如图所示,试计算I-I截面A、B、C、D各点的正应力,并指明是拉应力还是压应力。

5-2一外伸梁如图所示,梁为16a号槽刚所支撑,试求梁的最大拉应力和最大压应力,并指明其所作用的界面和位置。

5-3一矩形截面梁如图所示,已知P=2KN,横截面的高宽比h/b=3;材料为松木,其许用应力为。

试选择横截面的尺寸。

5-4一圆轴如图所示,其外伸部分为空心管状,试做弯矩图,并求轴内的最大正应力。

5-5一矿车车轴如图所示。

已知a=0.6cm,p=5KN,材料的许用应力,试选择车轴轴径。

5-6一受均布载荷的外伸刚梁,已知q=12KN/m,材料的许用用力。

试选择此量的工字钢的号码.5-7图示的空气泵的操纵杆右端受力为8.5KN,截面I-I和II-II位矩形,其高宽比为h/b=3,材料的许用应力。

试求此二截面的尺寸。

5-8图示为以铸造用的钢水包。

试按其耳轴的正应力强度确定充满钢水所允许的总重量,已知材料的许用应力,d=200mm.5-9求以下各图形对形心轴的z的惯性矩。

5-10横梁受力如图所试。

已知P=97KN,许用应力。

校核其强度。

5-11铸铁抽承架尺寸如图所示,受力P=16KN。

材料的许用拉应力。

许用压应力。

校核截面A-A的强度,并化出其正应力分布图。

5-12铸铁T形截面如图所示。

设材料的许用应力与许用压应力之比为,试确定翼缘的合理跨度b.5-13试求题5-1中截面I-I上A、B、C、D各点处的切应力。

5-14制动装置的杠杆,在B处用直径d=30mm的销钉支承。

若杠杆的许用应力,销钉的,试求许可载荷和。

5-15有工字钢制成的外伸梁如图所示。

设材料的弯曲许用应力,许用且应力,试选择工字钢的型号。

5-16一单梁吊车由40a号工字钢制成,在梁中段的上下翼缘上各加焊一块的盖板,如图所示。

已知梁跨长=8m,=5.2m,材料的弯曲许用应力,许用且应力。

试按正应力强度条件确定梁的许可载荷,并校核梁的切应力。

材料力学习题册答案-第5章 弯曲应力

材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。

( × )2、中性轴是梁的横截面与中性层的交线。

梁发生平面弯曲时,其横截面绕中性轴旋转。

( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。

( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。

( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。

( × )6、控制梁弯曲强度的主要因素是最大弯矩值。

( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。

( √ )@二、填空题1、应用公式zMy I 时,必须满足的两个条件是 满足平面假设 和 线弹性 。

2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。

3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。

4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、xH Bh BH 66132- 和 Hbh BH 66132- 。

三、选择题1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。

2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。

则当F 增大时,破坏的情况是 ( C )。

A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。

若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是(D )ABCDHABC D?四、计算题&1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

⼯程⼒学--材料⼒学(北京科⼤、东北⼤学版)第4版第五章习题答案第五章习题5-1⼀矩形截⾯梁如图所⽰,试计算I-I截⾯A、B、C、D各点的正应⼒,并指明是拉应⼒还是压应⼒。

5-2⼀外伸梁如图所⽰,梁为16a号槽刚所⽀撑,试求梁的最⼤拉应⼒和最⼤压应⼒,并指明其所作⽤的界⾯和位置。

5-3⼀矩形截⾯梁如图所⽰,已知P=2KN,横截⾯的⾼宽⽐h/b=3;材料为松⽊,其许⽤应⼒为。

试选择横截⾯的尺⼨。

5-4⼀圆轴如图所⽰,其外伸部分为空⼼管状,试做弯矩图,并求轴内的最⼤正应⼒。

5-5 ⼀矿车车轴如图所⽰。

已知 a=0.6cm,p=5KN,材料的许⽤应⼒,试选择车轴轴径。

5-6 ⼀受均布载荷的外伸刚梁,已知q=12KN/m,材料的许⽤⽤⼒。

试选择此量的⼯字钢的号码.5-7 图⽰的空⽓泵的操纵杆右端受⼒为8.5KN,截⾯I-I和II-II位矩形,其⾼宽⽐为h/b=3,材料的许⽤应⼒。

试求此⼆截⾯的尺⼨。

5-8 图⽰为以铸造⽤的钢⽔包。

试按其⽿轴的正应⼒强度确定充满钢⽔所允许的总重量,已知材料的许⽤应⼒,d=200mm.5-9 求以下各图形对形⼼轴的z的惯性矩。

5-10 横梁受⼒如图所试。

已知P=97KN,许⽤应⼒。

校核其强度。

5-11 铸铁抽承架尺⼨如图所⽰,受⼒P=16KN。

材料的许⽤拉应⼒。

许⽤压应⼒。

校核截⾯A-A的强度,并化出其正应⼒分布图。

5-12 铸铁T形截⾯如图所⽰。

设材料的许⽤应⼒与许⽤压应⼒之⽐为,试确定翼缘的合理跨度b.5-13 试求题5-1中截⾯I-I上A、B、C、D各点处的切应⼒。

5-14 制动装置的杠杆,在B处⽤直径d=30mm的销钉⽀承。

若杠杆的许⽤应⼒,销钉的,试求许可载荷和。

5-15 有⼯字钢制成的外伸梁如图所⽰。

设材料的弯曲许⽤应⼒,许⽤且应⼒,试选择⼯字钢的型号。

5-16 ⼀单梁吊车由40a号⼯字钢制成,在梁中段的上下翼缘上各加焊⼀块的盖板,如图所⽰。

已知梁跨长=8m,=5.2m,材料的弯曲许⽤应⼒,许⽤且应⼒。

材料力学习题解答[第五章]

材料力学习题解答[第五章]

5-1构件受力如图5-26所示。

试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。

题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。

b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。

c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。

d) 1)危险点:杆件表面上各点;2)应力状态见下图。

5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。

10题5-2图解:a)1σ=50 MPa,2σ=3σ=0,属于单向应力状态AAT (a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。

试用解析法求指定斜截面上的正应力和切应力。

题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPa5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。

材料力学-第五章

材料力学-第五章

合理布置载荷
F
小结
1、熟练求解各种形式静定梁的支 座反力 2、明确剪力和弯矩的概念,理解 剪力和弯矩的正负号规定 3、熟练计算任意截面上的剪力和 弯矩的数值
4、熟练建立剪力方程、弯矩方程, 正确绘制剪力图和弯矩图
5.7 总结 回顾
毛和业,怎样快速绘制剪力图和弯
矩图,黔南民族师范学院学报, 2005,3:81-83
( -)
1kN.m
A
FAY
1.5m
C
1.5m
D
2kN
1.5m
B
FBY
4 .从 A 截面左测开始画 弯矩图。 从A左到A右 从A右到C左 从C左到C右 从C右到D左 从D左到D右
1.11
(+)
Fs( kN) 0.89 M( kN.m)
( -)
0.330
(-)
1.330
( -)
1.665
从D右到B左
从B左到B右
2
FS
FS x

x
0 x l 0 x l
M
ql2 / 8

依方程画出剪力图和弯矩图 ql / 2 由剪力图、弯矩图可见。最 大剪力和弯矩分别为
x
FS max=ql
M max=ql2 / 2
5.4
y
剪力图和弯矩图(将剪力方程和弯矩方程具体化)
q
例题 简支梁受均布载荷作用
FS ql / 2
( 2)在有均布载荷作用的 段上, 剪力图为倾斜直线, 直线由左上向右下倾斜; 弯矩图为抛物线, 抛物线 开口与均布载荷的方向一 致。

M 3ql2 / 32 x
ql2 / 8

材料力学第五章剪切和挤压的实用计算

材料力学第五章剪切和挤压的实用计算

> A[s]:=Pi*d*delta:
> d:=25e-3: tao[u]:=300e6: delta:=10e-3:
> ineq:=evalf(ineq,4);
ineq := 235600.F
答:需要 235.6kN 的冲剪力。
#清零。 #剪切强度条件 #剪切面积。 #已知条件。 #冲孔所需要冲剪力的数值。
图5-2连接轴与轮的键的工程实例
(1)作用于构件某一截面两侧的外力,大小相等,方向相反,作用线相距很近且垂 直于轴线。
(2)处于两个平行外力之间的截面,发生相对错动变形。 把有错动变形趋势的截面为剪切面,剪切面上的内力与截面相切,称为剪力, 用 FS 表示。
图5-3钢杆剪切实例
5.2剪切的实用计算
式中 bs 为材料的许用挤压应力,一般 bs 1.7 ~ 2 。
(a)
(b) (c)
图5-4圆孔及铆钉挤压应力的分布
当连接件与被连接件的接触面为平面时,如键连接,此时挤压面的面积 就是连接与被连接件的接触面积。
对于像销钉一类的连接件,它们的承压面实际上是半个圆柱面。在实用
> SOL1:=solve({eq1},{Fs}): > Fbs:=F: > tau:=Fs/A[s]: > tau:=subs(SOL1,tau): > sigma[bs]:=F/A[bs]: > A[s]:=Pi/4*d^2: > A[bs]:=delta1*d: > delta1:=1.5*delta: > d:=20e-3: delta:=8e-3: F:=15e3: > tau:=evalf(tau,4);
计算中通常是用半个圆柱面在垂直于总挤压作用线平面上的投影作为挤压 面的计算面积。这样得到的挤压应力更接近于挤压应力的最大值,因而可 以使设计更趋于安全。

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档