对变压器微机差动保护误动原因的分析探讨

合集下载

变压器差动保护误动作原因分析

变压器差动保护误动作原因分析
1 变 压 器 纵 联 差 动 保 护 1 保护原理 . 1
厂 变
变压器高低压侧 电流互感器测量 的电流经过代数和 比较 , 判断 比较值 即不平衡电流的大小 , 在变压器正 常运行或者保护 区外部故 障时 , 该值近似于零 , 当保护 区内出现故障时 , 该值达到差动继 电器 动作电流时 , 保护装 置启动 , 跳开高低压保 护安装处断路器 , 切断故 障点 , 其原理图如图 1 。
A B C

渣 浆 泵
叭 ∞ 炉 引 风
叭 ∞ 炉 磨 煤
博 炉 磨 煤
¨ 机 循 环
乱 机 循 环
给 水 泵
图 2厂用 电一次简 图 2. .2电流互感器接线组别错误 。 2 人为的将组别接错 , 电流互感器二次侧三角形接线绕组首尾 将 端子连接错误 , 致使 两侧 的电流相位不一致 , 正常运行 的不 平衡电 流就较大 , 尤其在保 护区外故 障时 , 不平衡 电流随流过 电流互 感器 的 电流增 大幅率显著上升 , 使保护误动。 2. .3电流互感器二次 回路开路 。 2 运行 中电流互感器二次 回路 开路是 由于端 子箱 内保护屏端 子 a b c 排 电流互感器接线螺丝松动 , 电器 内整定插销因胶木衬垫引起接 继 触不 良、 连接断线等而造成 , 当出现穿越性故 障电流时会使纵联 差 图 1 接 线 图 动保护误 动。 1 保 护作用 . 2 变压器纵联差动保 护是较为完善 的快速保护之一 , 能反 映变 它 2. .4电流互感器选型错误 。 2 选择伏安特性相差较 大的电流互感 器 , 因其型号 、 结构 和饱 和 压器绕组的相间短路 、 匝间短路 、 引出线上 的相 间短路 , 到防御变 起 程度及 电流传变 能力 不同 , 当出现故障电流时 , 厂高备变差 动保 护 压 器内部线圈及引 出线 的相间及匝间短路导致变压 器严重损毁 的 的某一侧电流互感器较快出现暂态磁饱 和 , 其二次电流不随着一次 重要作用 。 电流 的增 大而增 大 , 造成 在差 动元件 中产生的差流特别 大 , 引起纵 2 厂高备变纵联差动误动分析 联差动保护误动。 21 . 现象 回顾 22 .. 动 继 电 器线 圈整 定 错 误 。 5差 1 汽轮机和 1 锅炉供热期末检修 , 厂高备变 向 6 V一段供 电, k 在下达差动保护定值通知单时 , 没有认真核对变压器各侧 电流 1 和 4 给水泵 电力 由该段提供 , 该段 同时向检修 的机 、 炉辅助设备 导致平 衡线圈接线错误 , 无法躲过穿越型故 障电流的 提供电源 ,图 2是林 电厂用电电气一 次系统简 图 , 炉引风系统检 互感器 接线 , 1

变压器差动保护误动分析及对策

变压器差动保护误动分析及对策
科 技 论坛 1 l 1
杜鹏 飞
科 Байду номын сангаас
变压器差 动保 护误 动 分析 及对策
( 黑龙江省火 电第一工程公司, 黑龙 江 哈 尔滨 100 ) 5 0 0
摘 要: 文章 对微机型 变压器差动保 护动作 的原 因, 事件的形成以及保护的原理给 予了详细地分析。对新建的、 从 运行的或设备更新改造 的发
电厂 和 变 电站 的 变 压 器 差动 保 护 误 动提 出 了对 策 。
关键 词: 差动保护 ; 误动 ; 动作特性 ; 电流互感 器 引言 以总结以下,l 1 力面 较大的电 位差。 如果差动保护的二次电流回 路在接 电力变压器是电力系统中最关键的主设备之 Z . 整定值不 1 1 △理造成变压器差动保护误动 地网的不同点接地, 接地网中的不同接地点间的电
算部门, 往往根据运行经验, 将差动速断定值取为 ( 6i。 5— ) 这样 e 器出现误跳。特别是励磁涌流对保护的影响 , 广东 某发电厂在变压器保护设备更新改造后由于空合 变压器产生的励磁应涌流曾出现过以上误跳现象。 比率差动是当变压器内部出现轻微故障时, 保护不 带制动量动作跳开各侧的断路器, 使保护在变压器 轻微故障时具有较高的灵敏度; 而在区外故障时, 通过—定的比 率进行制动, 提高保护的可靠性; 同 产生的二次谐波量来区 实现保护制动。—般 差动电流和制动电 流都在 额定情况下计算得到, 但 现场变压器却在— 般运行方式下, 由于电流互感器 变比、 同时系数、 计算误差的影响 , 就会导致变压器 实际运行时形 成一定的差电流 , 导致比率差动保护 误动作。 二次电流互感器(删 完扔= T I : 整定值选择 不正确造成误动作。 对于微机保护来说, 实现高、 低 压侧电流相角的转移由软件来完成 , 不管高压侧是 采用 Y型接线还是采用△型接线 , i 导 都{彳 到正确 乜 的差动电流 , 和传统的常规继电保护 比 , 较 实际运 用更方便 、 灵活 , 但也是由于这种灵活性 、 方便性, 往往导致现场的差动保护误动作 。 对于变压器差动 保护来说, 如果二次电流互感器( T 接线方斌l 鼗 值选择不正确 ,就不能实现高压侧相角的转移。 2. .2接线错误造成,压器差动保护误动作。电流 1 变 互感器( 性接反导致误动作。 T搬 对于微机保护来 说, 实现差动电流的计算由软件来完成 , 不管是采 动电 流。 从电磁感应知道, 电流互感器(A 极性 , T洧 也就是 同名端 , 变压器差动回路电流互感器(A的同名端 T) 指向母线便胚 是指向变压器. 将对差动电流的计算 结果正确与否有直崩 向 。相序接反导致误动作。 电力系统正常的 相序为正序,也就是以 A相为基 准, B相 比 A相 超前 10 , 2 ̄ C相 比 A相 滞 后 2 - 2发电厂和变电站变压器运行 中差动保护 误动 作原因分析。 发电厂和变电 站变压器运行中出 现差动保护误动作的也不少见, 但对于—个发电厂 和变电站来说,这种误动作情况不是经常性的出 现, 而是要满足一定的条件, 甚至正常运行是很长 时间以后才会出现, 现就根据现场经验, 以下 总结 n 个方面原因:类 电流互感器(A的暂态饱和特 P T) 性导致差动保护误动作。 电流互感器(I的饱和实 1】 A 际就是铁芯中的磁通达到饱和, 电流互感器(A.- T) J /  ̄ 为 P和 P r 两大类。P 类电流互感器(A要求在稳 T1 态情况下不饱和 , T 类 电流互感器(l则要求 而 P 1) A 在稳态和暂态的情况下都不饱和。 当采用 P 类电流 互感器( A , T 州‘ 当外部存在故障 , 外部故障切除瞬 间, 外部存在间歇性的短路情况等 , 均容易导致变 压器差动保护误动作。 从国内多起变压器差动保护 误动作的实例, 也得到 步证明。变压器低压侧 真空断路器绝缘性能不良 , 时 会导致差动保护误动 作。 2 - 3设备更新改造的发电厂和变 电站变压器 差动保护误动作原因分析。 电流互感 (A  ̄ 器 Ty : 供不准确造成差动保护误动作。更换电流互感器 (A后, T ) 变压器各侧电流互感器(A不匹配 , T) 造成 差动保护误动作。 为使变压器差动回 路选用的电流 互感器( A, T】 均是能躲过暂态饱和特性 , 然而在发 电厂和变电站改造更换电流互感器(A的过程中, T) 忽视了这一点, 将电流互感器( 重 成 P类或者 T 同时将两侧电流互感器( 』 T 嗷 为 P类的 , 这样在 外部故障存在时, 当满足一定条件时 , 必然将导致 变压器差动保护误动作。 3防止变压器差动保护误动作的对策 对于新建或设备更新改造的发电厂和变电站 的那些原因造成的变压器保护误动情况, 应严格按 照国家相关标准、 文件或者厂家说明书执行 , 每一

变压器差动保护误动原因探讨

变压器差动保护误动原因探讨

动继 电器是接在差动 回路 。从理论 上讲 , 正常运行 及外部故障时 , 动回路 电流为零 。实际上 由于两 差 侧电流互感器的特性不可能完全一致等原因, 在正 常运行和外部短路时 , 差动 回路 中仍有不平衡 电流
, 流 过 。流过 继 电器 的 电流 , 。 ’ I , 求 =, 一,=, 要 J 不平 衡 电流应 尽 量 小 , 以确保 继 电器 不 会 误 动 。 当
Ca s s o lp a i n Dier t lPrt c i fTr sor r u e fMao er t on i f en i o e t f a on o an f me
L hu n we IC a — i
( i i r bs nl ehooyIstt, ia 24 1 ,C ia Weh o si a T cnl tu Wehi 6 2 0 hn ) aP i o g nie
使 继 电器可 靠 动作 。 ( )保 护 范 围 3 变压 器差 动保 护 的范 围是构 成变 压器 差 动保护 的电 流互感 器之 间 的 电气 设 备 、 以及 连 接 这些 设 备
根据 基 尔 霍 夫 电流 定 律 , 当变压 器 正 常 工作 或 在 区外发 生故 障 时 , 流入 变压 器 的 电流 和 流 出 电流
变压器的两侧均装设 电流互感 器 , 其二次侧则按循 环 电 流法接 线 , 即如 果 两侧 电流 互 感 器 的 同极 性 端
都朝 向母线 侧 , 则将 同极 性端 子相 连 , 在两接 线之 并 间并 联 接 入 电流继 电器 。 在继 电器线 圈 中流过 的 电 流 是两 侧 电流互 感 器 的二 次 电 流 之 差 , 就 是说 差 也
Ab t c : T ep p rit d c steb scpicpea dfn t n fdf rnilpoet no a some , n lz s sr t a h a e nr u e ai r il n ci so iee t rtci f r n fr r a ay e o h n u o f a o t

变压器差动保护误动作产生原因及对策分析

变压器差动保护误动作产生原因及对策分析
图 1变压 器 差 动 保 护 原 理接 线 图
以通 过以下两种方法进行控制和预 防:一 是通 过装设 自耦变
当变 压器正常 运行或差 动保护 的保 护区外短路 时, 流人 流器进行 电流补偿 , 自耦变流器一般装置在 电流互感器一侧 ,
差 动 继 电器 的 不 平 衡 电 流 小 于 继 电器 的 动 作 电流 , 护 不 动 而对 于三 绕 组变 压 器 则应 该 装 设在 两 侧 。 二 是 利 用 中 间 变 流 保
为变 压器 一 、 次侧 的不 平衡 电流 。 二
形接线侧的电流互感器接成三角形接线, 变压器三角形接线侧
的 电流 互 感器 接 成 星 形接 线 , 这样 变 压 器 两 侧 电流 互 感 器 的 二
次侧电流相位相 同, 消除了由变压器连接组引起 的不平衡 电流。
() 2 电流 互 感 器 变 比引 起 的 不 平 衡 电流 。为 了 使 变 压 器 两
励磁涌流必然给差动保护的正常工作带来不利 的影 响。
因 为 对 于 差 动 回 路 而 言 , 由 于 变 压 器 的 励 磁 电流 只 流 入 变 压


斟 协 论 坛 ・2 1 第 1 ( ) — — 0 0年 期 下
变压器差 动保护误动作产 生原 因及对 策分 析
口 徐 良俊
3 30 ) 500 ( 南平 电业 局 福 建 ・ 平 南

要 : 整个 电力系统中, 在 电力变压器是 一个重要 的组成元件 , 其故障将对电力系统供 电可 靠性 、 稳定性、 安全
性及 系统 的正常运行带来众 多的严重影响。所以对电力变压器 的继 电保护是 一个必不 可缺 的过程 , 差动保护又 是其 中的一个重要 内容。文章仅对 电力变压器差动保护误动作进行 阐述 , 从不平衡 电流、 励磁涌流 、 T因素 三 C 方面分析 了误动作产生 的原 因, 并通过相关实例分别提 出解决误动作产生的措施。

变压器微机差动保护误动原因的分析及对策

变压器微机差动保护误动原因的分析及对策
差动保护误动。
I ( 一 ,/ I I 、 丁 )
将这个表达式作相量图 5中的“ Y侧 电流移 相图” 比较 图 5 △侧 , “ 电流 的相 位 ” 可 见 Y侧 电 流 移 相 后 和 △侧 电流 的相 位 是 一致 的 , 没 , 也 有零序电流产生 。
I a
() 2 整定计算人员必须深入理解差动保护的定值计算 。 首先 ,差动保护整定计算时应该按全容量 计算变压器低压侧额定 电流 ,不能按低压侧的实际容量计算。如 5 0 V主变 压器联结组别为 0k Y Y, 1— 1三侧 容量为 7 0M A/ 0M A/ 0M A 计算 出高 【 0 △~ 2 1 , / 5 V 7 V 2 V , 5 4 压侧额定 电流 8 6 中压侧额定 电流 l8 A, 6 A, 3 低压侧额定 电流 10 8 8 2 2A。 低压侧额定 电流不应该计算 为 2 0 A 3 K * /3= 80 4 MV /6 V 、 35 A。且流变变 比太大 :0 k 3 0 /、3 k 3 0/ 、5 V:0 01 5 0 V:2 012 0 V:20 13k 5 0 /,带 主变差动保 护 负荷测试 时仅用一组 6 Mvr电抗器作 为负荷 电流 , 0 a 是无法观察到实际 差 流 的存 在 。 其次 , 核实主变各侧 开关流变 的变 比, 防止流变变 比整定错误。某 主变压器 10 V侧开关流变变 比为 205 整定时整定为 3 05 用一组 1k 0/ , 0/ , 电容器作为负荷电流检测差动保护是无法观察差流扁大的。 () 3 调试人员必须能够正确地做好差动保护的电流平衡性试验。 调试人员要学 会计算主变压器各侧的额定电流 ,有利于正确施加 合适 的电流进入差 动保护来观察差流的数值。如果电流平衡性试验时 差流偏大 , 应该仔细思考施加电流的数值和相位的正确性 。 此举是验证 区外故障时差动保护动作行为的最好方法 。 () 4 做好投运前的带负荷测试工作 。 尽可能调整系统运行方式以满足变压器投运时差动保护带 负荷测 试的要求。 在主变压器带上超过 2 %的额定电流后 , 0 很容易发现差动保 护 中是否存 在羞流。不能够只用 一组 电容器或 电抗器作 为带负荷测试 的电流 , 这样小 的负荷电流无法观察差 流的数值 , 如果差动保护确实有 问 题 也 失去 了最 后 一 次 消除 失 误 的 机 会 。

变压器差动保护误动原因与对策

变压器差动保护误动原因与对策

变压器差动保护误动的原因与对策摘要:电力变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。

一旦发生故障遭到损坏,就要造成很大的经济损失,同时对地区的供电造成影响,因此一定要有完善可靠的继电保护装置来确保护其正常的工作;同时防止任何情况下的误动也是一项十分重要的工作,本文将从几个面来探讨变压器差动保护的误动原因以及防止措施。

关键字:变压器差动保护误动中图分类号:tm4文献标识码: a 文章编号:一.引言差动保护是变压器的主保护,其原理是反应流人和流出被保护变压器各端的电流差。

变压器在电力系统中的主要作用是变换电压,以利于电功率的传输和电能的分配,是发电厂、电网、用户之间的桥梁和纽带。

为了防止因为变压器产生故障而给电力系统的安全性和可靠性带来影响,对电力变压器采取了多种保护措施,变压器差动保护误动就是其中最为普遍的一种做法。

然而,系统运行中发现,因为电流不平衡、励磁涌流等因素经常会导致差动保护发生误动现象,更为重要的是差动保护误动经常影响到整个电力系统的安全可靠运行。

所以,关于变压器差动保护误动问题的研究具有十分重要的意义和价值。

二.变压器的差动保护概括变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护。

差动保护的工作原理基尔霍夫电流定律,当变压器正常工作或区外故障时,内部不消耗能量,则流入变压器的电流和流出电流(折算后的电流)相等,差动保护不动作。

当变压器内部故障时,内部消耗能量,由电源侧向变压器内部提供短路电流,差动保护感受到差电流,差动保护动作。

差动保护由比率差动和差动速断两个保护功能组成。

二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流.并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。

通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。

差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。

对变压器微机差动保护误动原因的分析探讨

对变压器微机差动保护误动原因的分析探讨

对变压器微机差动保护误动原因的分析探讨作者:杜兆慧来源:《科技创新导报》2012年第01期摘要:微机比率制动式差动保护作为变压器的主保护,它因有灵敏度高,选择性强,接线简单的优点而得到广泛应用。

但是,由于运行经验不足、接线错误、设计错误等原因,使实际运行中常出现投入运行又误动的现象,严重影响到了变电站安全运行。

本文对微机变压器差动保护装置投入运行后误动原因进行了分析,并提出改进措施。

关键词:励磁涌流不平衡电流接线错误 TA误差设计缺陷中图分类号:TM772 文献标识码:A 文章编号:1674-098X(2012)01(a)-0078-011 问题的提出微机比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路等故障。

它较常规保护具有灵敏度高,选择性强,接线简单等优点,因此得到广泛应用。

但是,由于种种原因使差动保护投入运行后又误动,严重影响了变电站安全运行。

2 差动保护误动原因的分析及措施2.1 励磁涌流造成的误动当变压器空载投入和外部故障切除后电压恢复时,因铁心饱和及存在剩磁会出现很大的励磁电流即励磁涌流,其特点是含有很大成分的非周期分量、含有大量的高次谐波分量且以二次谐波为主、波形之间有间断,对于三相交流变压器,由于三相之间相差120°,所以任何瞬间合闸至少有两相出现不同的励磁涌流,容易在合闸瞬间引起变压器差动保护误动,而在稳态运行及差动范围外发生故障时则影响不大。

变压器微机差动保护中常用的涌流闭锁方法有二次谐波制动、间断角闭锁、波形对称原理等,基本能够有效解决励磁涌流造成的误动。

2.2 不平衡电流造成的误动从理论上讲,变压器在正常运行和区外故障时,应该有Ij=I1"- I2"=0(Ij:二次计算电流;I1"、I2"为变压器高低压侧二次电流)。

然而,由于变压器在结构和运行上的特点,实际运行中很多因素使Ij=Ibp≠0,(Ibp为不平衡电流),即当保护范围内无故障时也存在不平衡电流,这些不平衡电流有可能引起保护误动。

变压器差动保护误动原因及防范措施的探讨

变压器差动保护误动原因及防范措施的探讨

变压器差动保护误动原因及防范措施的探讨【摘要】本文简单介绍了变压器差动保护的原理,从生产实际出发总结及分析了运行中变压器差动保护误动的常见原因,并针对这些误动原因提出具体有效的防范措施——通过极性试验、带负荷测试等试验方法及在运行维护中采取措施防止变压器差动保护误动,在生产中具有一定的实际应用价值。

【关键词】差动保护;误动;试验;运行维护;防误动引言变压器作为电力系统中的电能传递元件在电力系统中有着重要的地位,而且变压器的造价高损坏修复不易。

变压器的安全运行对电网的安全稳定运行有重要的意义。

差动保护是变压器的主保护,它对变压器安全运行起着极其重要的作用,其误动会对设备及电网的安全运行造成重大影响。

然而变压器差动保护的误动事件时有发生,如笔者所在的江门供电局的220kV恩平变电站于2006年就曾发生了主变差动保护误动的事故,对电网的正常供电产生了严重的影响。

故研究防止变压器差动保护误动对电网的安全运行有重大意义。

目前国内外研究防止主变差动保护误动多是针对怎样改善微机差动保护装置本身的研究,如采用新算法、新判据等。

然而笔者作为电力生产一线人员更关心的是在保护装置及CT等设备已定的情况下怎样在生产运行过程中防止其的误动。

在实际生产现场由于安装质量出现问题接线错误、调试工作没到位及装置的内部控制字的整定错误等原因使差动保护误动时有发生。

但这方面的总结及研究不多,本文笔者主要从生产实际出发总结及提出防止由上述原因所产生的误动的方法,具有一定的实际意义。

2常见误动原因分析由于安装质量出现问题接线错误、调试工作没到位及装置的内部控制字的整定错误等原因使差动保护误动时有发生。

现针对常见的误动原因分析如下。

2.1内部控制字的整定错误造成的误动笔者所在的江门供电局就曾发生由该原因引起的误动。

现对事故的过程及原因分析进行详细介绍。

2.1.1事故过程及初步检查结果2006年9月6日13时30分,220kV恩平站220kV圣恩线发生BC相接地故障,高频保护及阻抗I段保护动作,跳圣恩线两侧开关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对变压器微机差动保护误动原因的分析探讨摘要:微机比率制动式差动保护作为变压器的主保护,它因有灵敏度高,选择性强,接线简单的优点而得到广泛应用。

但是,由于运行经验不足、接线错误、设计错误等原因,使实际运行中常出现投入运行又误动的现象,严重影响到了变电站安全运行。

本文对微机变压器差动保护装置投入运行后误动原因进行了分析,并提出改进措施。

关键词:励磁涌流不平衡电流接线错误TA误差设计缺陷
1 问题的提出
微机比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路等故障。

它较常规保护具有灵敏度高,选择性强,接线简单等优点,因此得到广泛应用。

但是,由于种种原因使差动保护投入运行后又误动,严重影响了变电站安全运行。

2 差动保护误动原因的分析及措施
2.1 励磁涌流造成的误动
当变压器空载投入和外部故障切除后电压恢复时,因铁心饱和及存在剩磁会出现很大的励磁电流即励磁涌流,其特点是含有很大成分的非周期分量、含有大量的高次谐波分量且以二次谐波为主、波形之间有间断,对于三相交流变压器,由于三相之间相差120°,所以任何瞬
间合闸至少有两相出现不同的励磁涌流,容易在合闸瞬间引起变压器差动保护误动,而在稳态运行及差动范围外发生故障时则影响不大。

变压器微机差动保护中常用的涌流闭锁方法有二次谐波制动、间断角闭锁、波形对称原理等,基本能够有效解决励磁涌流造成的误动。

2.2 不平衡电流造成的误动
从理论上讲,变压器在正常运行和区外故障时,应该有Ij=I1”- I2”=0(Ij:二次计算电流;I1”、I2”为变压器高低压侧二次电流)。

然而,由于变压器在结构和运行上的特点,实际运行中很多因素使Ij=Ibp≠0,(Ibp为不平衡电流),即当保护范围内无故障时也存在不平衡电流,这些不平衡电流有可能引起保护误动。

2.2.1 因各侧绕组的接线方式不同造成电流相位不同而产生不平衡电流
我国规定的五种变压器标准联结组中,35kV Y/D-11双绕组变压器常被使用。

这种联结方式的变压器两侧电流相差30O,要使差动保护不误动就要设法调整CT二次回路的接线和变比以进行相位校正,使电源侧和负荷侧的CT二次电流相差180 O且大小相等,这样就能消除Y/D-11变压器接线对差动保护的影响。

其它方式依此类推。

2.2.2 因CT计算变比与实际变比不同而产生不平衡电流
由于各侧的CT变比都是标准的,如:600/5、800/5、1000/5、1200/5
等,变压器的变比也是一定的,很难完全满足(nl2/nl1)-nb或nl2/nl1√3=nf的要求,即Ij≠0,产生Ibp,此时差动回路就有不平衡电流流过使保护可能误动。

现在变压器微机保护通常采用差动平衡系数来平衡或减小这个差值,从微机保护装置内部计算弥补实际变比与理想值之差,使差动两臂电流差接近零,从而消除或尽量减小不平衡电流。

2.3 接线错误造成的误动
差动保护电流回路接线,要求变压器一侧TA为正极极性接线:TA 一次和二次侧同极性两个线头排在同一面的接线;而变压器另一侧TA 为负极极性接线; 把TA一次和二次不同极性的两个线头排在同一面的接线。

若把变压器两侧TA极性都接成正极极性接线。

变压器在正常负荷和差动保护范围以外发生短路故障时,流进差动保护内A相、B相、C相的电流方向相同,差流为两侧TA电流叠加之和。

当差电流值大于差动保护定值时,必然引起差动保护误动作,使变压器两侧开关跳闸。

将一侧极性修改为负极极性后,在变压器正常负荷和差保范围外发生短路故障时,流进差动保护的电流为两侧TA 的A相、B相、C 相电流方向相反,差流为侧TA电流之差,差电流仅为不平衡电流,小于差动保护定值,所以差动保护不会发生误动作。

只有当变压器内部和两侧TA范围以内发生短路故障时,差动保护才会有选择性动作,跳开变压器两侧开关。

2.4 TA误差造成的误动
用于差动保护的TA,应保证在变压器正常负荷和差动保护范围以外发生短路时,TA变比误差、角差符合要求,使流进保护的差电流近似为零。

但实际上即使选用相同型号的TA,其特性曲线也总是存在某种程度的差异。

这是由于钢导磁体特性不同及装配的情况不同所致。

因此,使导磁体的磁阻改变,并使励磁电流改变,这就出现了TA的电流比误差和角差。

选用不同型号不同容量的TA,在二次负载Z和磁饱和程度不同时,对TA误差影响更大。

差动保护应选用TA的准确等级为D级(具有较大的铁芯截面),同时对所选TA应作极性和伏安特性的变比试验,保证变比误差和角差在规定范围内,并按10%误差特性条件进行校验。

2.5 微机保护程序设计缺陷造成的误动
一般对于Y/D型双绕组变压器,微机差动保护设计程序中因为考虑高低压侧之间存在30o的相角差,高压侧参与差动计算电流一般为IA‘=IA-IB、IB‘=IB-Ic、Ic‘=Ic-IA,低压侧参与差动计算电流一般为Ia‘=Ia-Ib、Ib‘=Ib-Ic、Ic‘=Ic-Ia,而差动电流的计算公式则为Icda=IA ‘+Ia‘、Icdb=IB‘+Ib‘、Icdc=Ic‘+Ic‘,这种计算方法可以有效地滤去由于接地、不完全相短路造成的零序电流;但对于Y/Y型双绕组变压器,由于高低压侧同相位,因此有些微机保护装置未考虑到以上因素,高压侧参与差动计算电流一般为IA‘、IB‘、Ic‘,低压侧参与差
动计算电流一般为Ia‘、Ib‘、Ic‘,而差动电流的计算公式则为Icda=IA ‘+Ia‘、Icdb=IB‘+Ib‘、Icdc=Ic‘+Ic‘,这种计算方法只考虑到了各相正序分量,而忽视了零序分量,因此在实际运行中出现了中性点接地运行变压器在差动保护范围外故障引起变压器差动保护误动跳闸的事故,经过修改保护装置程序软件后隐患消除,变压器运行正常。

2.6 二次线安装质量引起的误动
二次线安装质量较差。

差动保护电流回路二次线在电流端子、设备端子处接触不良,差动保护在投入运行前没有认真检查。

差动保护投入运行后,差动电流突变大时,造成TA二次回路断线,闭锁功能退出时,造成差动保护误动。

3 结语
提高变压器保护的可靠性对电网的安全稳定运行有极其重要的作用,有效地采用各种方式方法,减少和杜绝变压器误动,同时结合当前微机保护的迅速成熟和应用,变压器保护的灵敏度和鉴别各种故障的能力必将大大提高,变压器保护的可靠性也必将大大提升。

相关文档
最新文档