《MATLAB语言》课程第五次作业

合集下载

MATLAB语言基础与应用(第二版)第5章 习题答案

MATLAB语言基础与应用(第二版)第5章 习题答案

第5章习题与答案5.1用矩阵三角分解方法解方程组123123123214453186920x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 解答:>>A=[2 1 -1;4 -1 3;6 9 -1] A =2 1 -1 4 -13 6 9 -1 >>b=[14 18 20]; b =14 18 20 >> [L, U, P]=lu(A) L =1.0000 0 0 0.6667 1.0000 0 0.3333 0.2857 1.0000 U =6.0000 9.0000 -1.0000 0 -7.0000 3.6667 0 0 -1.7143 P =0 0 1 0 1 0 1 0 0 >> y=backsub(L,P*b’) y =20.0000 4.6667 6.0000 >> x=backsub(U,y) x =6.5000 -2.5000 -3.5000 5.2 Cholesky 分解方法解方程组123121332352233127x x x x x x x ++=⎧⎪+=⎨⎪+=⎩ 解答:>> A=[3 2 3;2 2 0;3 0 12] A =3 2 32 2 03 0 12>> b=[5;3;7]b =537>> L=chol(A)L =1.7321 1.1547 1.73210 0.8165 -2.44950 0 1.7321>> y=backsub(L,b)y =-11.6871 15.7986 4.0415>> x=backsub(L',y)x =-6.7475 28.8917 49.93995.3解答:观察数据点图形>> x=0:0.5:2.5x =0 0.5000 1.0000 1.5000 2.0000 2.5000 >> y=[2.0 1.1 0.9 0.6 0.4 0.3]y =2.0000 1.1000 0.9000 0.6000 0.4000 0.3000 >> plot(x,y)图5.1 离散点分布示意图从图5.1观察数据点分布,用二次曲线拟合。

MATLAB习题及参考答案经典.doc

MATLAB习题及参考答案经典.doc

习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。

2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。

3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。

4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。

(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。

(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。

(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。

(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。

(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。

(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。

(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。

(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。

MATLAB上机内容及作业

MATLAB上机内容及作业

MATLAB上机内容及作业无约束优化求解函数fminsearch和fminunc求解无约束非线性优化问题的函数有fminsearch 函数、fminunc 函数。

函数fminsearch和fminunc功能相同,但fminunc函数可以得到目标函数在最优解处的梯度和Hessian矩阵值。

无约束优化数学模型为:min f(X) X∈R n求解无约束非线性优化问题的步骤为:第一步:先编写目标函数的M文件;第二步:再在命令窗口中调用相应的优化函数。

1、fminsearch函数调用格式为[x, fval]=fminsearch(@myfun, x0)输出参数的含义:x:返回最优解的设计变量的值;fval:在最优设计变量值时,目标函数的最小值;exitflag:返回算法终止的标志,有以下几种情况,>0 表示算法收敛于最优解处;=0 表示算法已经达到迭代的最大次数;<0 表示算法不收敛。

output:返回优化算法信息的一个数据结构,有以下信息:output.iteration 表示迭代次数output.algorithm 表示所采用的算法output.funcCount 表示函数评价次数输入参数的含义:@myfun:目标函数的M文件,在其前要加“@”,或表示为'myfun' ,myfun自己可以任意命名;x0:在调用该优化函数时,需要先对设计变量赋一个初始值;2、fminunc函数的调用格式[x, fval]=fminunc (@myfun, x0)grad:返回目标函数在最优解处的梯度信息;hessian:返回目标函数在最优解处的hessian矩阵信息。

其余含义同上。

3、实例已知某一优化问题的数学模型为:min f(X)=3x12+2x1x2+x22X∈R n用MA TLAB程序编写的代码为:第一步:首先编写目标函数的.m文件,并保存为examplefsearch.m文件(先单击file菜单,后点击New 命令中的M—file,即可打开M文件编辑窗口进行代码的编辑,在英文状态下输入程序代码),代码为:function f=examplefsearch(x)f=3*x(1)^ 2+2*x(1)*x(2)+x(2)^2;第二步:在Command窗口中调用fminsearch函数,代码为:x0=[1;1]; %赋初值[x,fval]=fminsearch(@examplefsearch,x0) %回车即可调用fminsearch函数,得到结果输出最优解结果为:x=1.0e-0.08* -0.7914 0.2260 %分别为x1和x2的最优点的值(近似为0)fval=1.5722e-016 %对应最优点的最优目标函数值(近似为0)4、作业已知几个优化问题的数学模型分别为:(1)min f(X)=0.1935x1 x22 x32(4+6x4) X∈R4(2)min f(X)= (x13+cos x2+log x3)/ e x1 X∈R3(3)min f(X)=2x13+4x1x23 -10x1x2+x33X∈R3试用MATLAB编程分别求解上述优化问题的最优解。

MATLAB作业5参考答案

MATLAB作业5参考答案

MATLAB作业5参考答案1、 试求出下面线性微分方程的通解。

543225432()()()()()136415217680()[sin(2)cos(3)]3t d y t d y t d y t d y t dy t y t e t t dt dt dt dt dt π-+++++=++假设上述微分方程满足已知条件(0)1,(1)3,()2,(0)1,(1)2y y y y y π=====,试求出满足该条件的微分方程的解析解。

【求解】先定义t 为符号变量,求出等号右侧的函数,则可以由下面命令求出方程的解析 解,解的规模较大,经常能占数页。

>> syms texp(-2*t)*(sin(2*t+sym(pi)/3)+cos(3*t))ans =exp(-2*t)*(sin(2*t+1/3*pi)+cos(3*t))>> y=dsolve(['D5y+13*D4y+64*D3y+152*D2y+176*Dy+80*y=',...'exp(-2*t)*(sin(2*t+1/3*pi)+cos(3*t))'],'y(0)=1','y(1)=3','y(pi)=2',...'Dy(0)=1','Dy(1)=2')略:事实上,仔细阅读求出的解析解就会发现,其中大部分表达式是关于系数的,所以如果能对 系数进行近似则将大大减小解的复杂度。

>> vpa(y)ans =.20576131687242798353909465020576e-2*exp(-2.*t)*cos(3.*t)+.15538705805619602372728107411086e-1*exp(-2.*t)*sin(2.*t)+.76830587084294035590921611166287e-2*exp(-2.*t)*cos(2.*t)-106.24422608844727797303237726774*exp(-2.*t)*t^2+98.159206062620455331994871615083*exp(-2.*t)*t+59.405044899367325888329709780356*exp(-2.*t)*t^3-30.741892776456442808809983330755*exp(-2.*t)+.20576131687242798353909465020576e-2*exp(-2.*t)*sin(3.*t)+31.732152104579289125415500223136*exp(-5.*t)2、 试求解下面微分方程的通解以及满足(0)1,()2,(0)0x x y π===条件下的解析解。

Matlab第五章答案

Matlab第五章答案

第一题(1)a=[1 9 8;7 2 5;3 -2 7] %产生矩阵det(a) %检验是否可逆ans=-442,非0,可逆div(a) %求逆矩阵(2)b=[1 0 -7 5;0 -26 7 2;7 4 3 5;8 -3 2 15]det(b)div(b)第二题(1)A=[1 2 3;2 2 5;3 5 1];B=[11 12 31];X=B/A(2) A=[3 1 0 5;0 6 7 3;0 4 3 0;2 -1 2 6];B=[2 4 7 8];X=B/A第三题(1)t=[1 2 3 4 5 6 7 8 9 10]';y=[4.842 4.362 3.754 3.368 3.169 3.083 3.034 3.016 3.012 3.005]';A=[ones(size(t)) exp(-t)];C=A\yT=[0:.1:10]';Y=[ones(size(T)) exp(-T)]*C;plot(T,Y,'-',t,y,'o')title( '采用y(t)≈c1+c2e–t的拟合' )xlabel('\itt'), ylabel('\ity')(2)t=[0 .3 .8 1.1 1.6 2.3]';y=[.82 .72 .63 .60 .55 .50]';A=[ones(size(t)) t.*exp(-t)];C=A\y;T=[0:.1:2.5]';Y=[ones(size(T)) T.*exp(-T)]*C;plot(T,Y,'-',t,y,'o')title('采用y(t)≈d1+d2te–t拟合')xlabel('\itt'), ylabel('\ity')第四题A=[11.59 12.81 15.66; 15.2 4.18 13.61; 10.597.59 9.22];[L,U]=lu(A)[Q R]=qr(A)B=[16.00 4.41 -10.37 -21.61; 0.88 -20.04 12.86 8.56; -1.43 10.71 18.81 -5.99; -12.48 24.35-23.9 10.34];[C,D]=lu(B)[E F]=qr(B)第五题(1)A=[5 -5 -6;3 -2 5;2 -1 -4];x0=[1;-4;5];X=[];for t=0:.01:1X=[X expm(t*A)*x0];endplot3(X(1,:),X(2,:),X(3,:),'-o')grid on(2)A=[1 2 -3 1;3 0 1 -2;1 -2 0 5;2 3 0 1];x0=[1;-1;2;1];X=[];for t=0:.01:1X=[X expm(t*A)*x0];endplot3(X(1,:),X(2,:),X(3,:),'-o')grid on第六题(1)A=[11.59 12.81 15.66; 15.2 4.18 13.61;10.59 7.59 9.22];lambda=eig(A)[V,D]=eig(A)(2)B=[16.00 4.41 -10.37 -21.61; 0.88 -20.04 12.86 8.56; -1.43 10.71 18.81 -5.99; -12.48 24.35 -23.9 10.34];lambda=eig(B)[V,D]=eig(B)第七题(1)x=[1 2 3 4 5 6 7 8 9 10];y=[15.0 39.5 66.0 85.5 89.0 67.5 12.0 -86.4 -236.9 -448.4];p=polyfit(x,y,2);x2=1:.1:10;y2=polyval(p,x2);figure(1)plot(x,y,'o',x2,y2)grid ontitle('二阶多项式曲线拟合')(2)x=[1 2 3 4 5 6 7 8 9 10];y=[15.0 39.5 66.0 85.5 89.0 67.5 12.0 -86.4 -236.9 -448.4];p=polyfit(x,y,3);x2=1:.1:10;y2=polyval(p,x2);figure(1)plot(x,y,'o',x2,y2)grid ontitle('三阶多项式曲线拟合')第八题p1=[1,-2-3,4,2];p2=[1,-7,5,31,-30];p3=[1,-1,-25,25];p4=[-2,3,1,5,8,0];[L1,U1]=lu(p1)r1=roots(p1)[L2,U2]=lu(p2)r2=roots(p2)[L3,U3]=lu(p3)r3=roots(p3)[L4,U4]=lu(p4)r4=roots(p4)第九题p1=[1,-2-3,4,2];p2=[1,-7,5,31,-30];p3=[1,-1,-25,25];p4=[-2,3,1,5,8];p1_x=polyval(p1,[-1.5,2.1,3.5]) p2_x=polyval(p2,[-1.5,2.1,3.5]) p3_x=polyval(p3,[-1.5,2.1,3.5]) p4_x=polyval(p4,[-1.5,2.1,3.5])第十题a=[2,3,-4];b=[4,-2,5];c=[3,0,-2,5,6];d1=conv(a,b)[d2,r2]=deconv(c,a)[d3,r3]=deconv(c,b)第十一题a=[2,3,-4];b=[4,-2,5];c=[3,0,-2,5,6];dao1=polyder(a,b)[dao2,r2]=polyder(c,a)[dao3,r3]=polyder(c,b)第十二题x=-5:.25:5;y=10*exp(-x);xi=-5:5;y1=interp1(x,y,xi,'nearest');y2=interp1(x,y,xi,'linear');y3=interp1(x,y,xi,'spline');y4=interp1(x,y,xi,'cubic'); figure(1);subplot(2,2,1)plot(x,y,'-',xi,y1,'o');title('最邻近内插');grid on;xlabel('x');ylabel('y');subplot(2,2,2)plot(x,y,'-',xi,y2,'o');title('线性内插');grid on;xlabel('x');ylabel('y');subplot(2,2,3)plot(x,y,'-',xi,y3,'o');title('三次样条内插');grid on;xlabel('x');ylabel('y');subplot(2,2,4)plot(x,y,'-',xi,y4,'o');title('三次曲线内插');grid on;xlabel('x');ylabel('y');第十三题x=rand(1,50);y=randn(1,50);minx=min(x)miny=min(y)maxx=max(x)maxy=max(y)avx=mean(x)avy=mean(y)Ex=(std(x)).^2Ey=(std(y)).^2第十四题t=[0 .2 .4 .6 .8 1.0 2.0 5.0 ]';y=[1.0 1.51 1.88 2.13 2.29 2.40 2.60 24.00]'; X1=[ones(size(t)) t t.^2];a=X1\y;X2=[ones(size(t)) exp(-t) t.*exp(-t)];b=X2\y;T=[0:.1:6]';Y1=[ones(size(T)) T T.^2]*a;Y2=[ones(size(T)) exp(-T) T.*exp(-T)]*b; figure(1)subplot(1,2,1)plot(T,Y1,'-',t,y,'o'),grid ontitle('多项式回归')subplot(1,2,2)plot(T,Y2,'-',t,y,'o'),grid ontitle('指数函数回归')第十五题t=0:1/119:1;x=3*sin(2*pi*20*t)+10*sin(2*pi*200*t+pi/4)+10*randn(size(t)); y=fft(x);m=abs(y);f=(0:length(y) -1)'*119/length(y);figure(1)subplot(2,1,1),plot(t,x),grid ontitle('被噪声污染的信号')ylabel('Input \itx'),xlabel('Time ')subplot(2,1,2),plot(f,m)ylabel('Abs. Magnitude'),grid onxlabel('Frequency (Hertz)')第十六题w=input('w=');t=0:1/119:1;x1=sin(w.*t)+randn(size(t));x2=cos(w.*t)+randn(size(t));x3=sin(w.*t)+randn(size(t));a=corrcoef(x1,x2)b=corrcoef(x1,x3)若没有正弦分量w=input('w=');t=0:1/119:1;x1=randn(size(t));x2=randn(size(t));x3=randn(size(t));a=corrcoef(x1,x2)b=corrcoef(x1,x3)第十七题z1=quad('exp(-2*t)',0,2)z2=quad('exp(2*t)',0,2)z3=quad('exp(t.^2-3*t+.5)',-1,1)第十八题function y=five(x)y=exp(-x)-1.5*exp(2*cos(2*x));%主函数x0=input('x0='); %执行时,按要求输入[-1,1]z=fzero('five',x0)第十九题function f=five(x,y)f=exp(-x.*y)-2*x.*y;%主函数z=dblquad('five',0,1,-1,1)第二十题function dy=five(t,y)dy=[0.5-y(1);y(1)-4*y(2)];%主函数X0=[1; -0.5];tspan=[0,25];[T,X]=ode45('five',tspan,X0);figure(1)subplot(2,1,1),plot(T,X(:,1),'r'),title('x_{1}'),grid onsubplot(2,1,2),plot(T,X(:,2),'k'),title('x_{2}'),grid onfigure(2)plot(X(:,1),X(:,2)),title('系统轨迹'),grid onxlabel('x_{1}'),ylabel('x_{2}')。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

MATLAB教程2012a第5章习题解答-张志涌..

MATLAB教程2012a第5章习题解答-张志涌..

d=0.05;
%控制运动速度(0.01——0.5)
n=200;
x=[0:pi/30:4*pi]; %供画曲线用的横坐标
axis([-0.2,4*pi,-1,1]),axis off,
10
pause(0.1)
%足够迟延似乎不可缺。否则可能图形有误。
for tt=0:n
%决定画曲线的时刻
a=tt*pi/24-x;
3
y=(exp(-(zk-beta)*t)-exp(-(zk+beta)*t))/(2*beta); plot(t,y,'r') if zk>1.2
text(0.3,0.14,'\zeta = 1.4') end end end text(10,0.7,'\Delta\zeta=0.2') axis([0,18,-0.4,0.8]) hold off box on grid on
9
图 p5-9
10 在[0,4 ] 区间内,根据 y(t, x) e0.2x sin( t x) ,通过图形曲线表 24 现“行波”。做题前,请先运行 prob510.p 文件,观察演示。
图 p5-10
〖解答〗
function prob510
% prob510.m
clear all clf,shg
-0.9801 -0.9801 -0.9801 -0.9801 y0 =
0.2005 0.2005 0.2005 0.2005
CRROS-POINTS OF ' y/(1+x2+y2)-0.1 ' AND ' sin(x+cos(y)) '
0.8

MATLAb与数学实验 第五章习题解答

MATLAb与数学实验 第五章习题解答
i=
1 3 2 4 1 3 5 2 4 3 5
j=
1 1 2 2 3 3
3 4 4 5 5
s=
1 3 1 3 2 1 3 2 1 2 1 A1 =
10200 01020 30102 03010 00301 (2) n=nnz(A)
n=
13 ans =
1 2 -1 3 -2 4 1 -3 5 2
-4 3 -5
>> nx=nzmax(A)
nx =
35
>> [i,j,s]=find(A)
i=
1 2 1 3 2 4 1 3 5 2 4 3 5
j=
1 2 3 3 4 4 5 5 5 6 6 7 7
s=
1 2 -1 3 -2 4 1 -3 5 2 -4 3 -5
A1 =
1 0 -1 0 1 0 0
0 2 0 -2 0 2 0
C=
11 11 11
>> B=[3 5 7;0 1 0]
B=
357 010
>> D=[0 0 0;0 0 0]
D=
000 000
2.随机生成:(1)一个含有五个元素的列向量. (2)一个数值在 0~100 之间的三行四列的矩阵.
答 (1) rand(5,1)
ans =
0.9501
0.2311 0.6068 0.4860 0.8913
0 0 3 0 -3 0 3
0 3 0 1 0
0 0 0
4
0
4
0

0 0 3 0 1
0 0 0 0 5 0 5
答(1) n=nnz(A)
n=
11
>> nonzeros(A)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《MATLAB语言》课程第五次作业
1、函数sum 与cumsum有何区别?
2、利用rand函数生成符合正态分布的10*5随机矩阵A,写出完成下列操作的
命令。

(1)A各列元素的均值和标准方差。

(2)A的最大元素和最小元素。

(3)求A每行元素的和以及全部元素之和。

(4)分别对A的每列元素按升序、每行元素按降序。

3、什么是数据插值?什么是曲线拟合?他们有何共同之处与不同之处?
4、在某处测得海洋不同深处水温数据如表所示,用插值法求出水深500m、900m
和1500m处的水温(°C)
5、用5次多项式p(x)在区间[1,10]内逼近函数lgx,并绘制出lgx和p(x)在[1,10]区间的函数曲线。

相关文档
最新文档