材料力学在生活中的应用

材料力学在生活中的应用
材料力学在生活中的应用

材料力学理论在生活中的应用这篇论文选取了三个生活实例,运用材料力学所学的知识,通过受力分析,应力分析,强度校核回答了三个基本问题:铝合金封的廊子窗格是否可以无限高;千斤顶的承载重量是否可以任意大小和桥梁。

关键词

材料力学拉压强度挠度剪切压杆稳定组合变形受力单元体铝合金千斤顶

1.铝合金封的廊子窗格是否可以无限高

图一铝合金门窗、廊子

走在大街上,我们可以看到各式各样的廊子样式,可以看到大小不一的窗格布置,学了材料力学这门课程,我们不禁要提问了,窗格尺寸的极限是多么大才能保证支撑它的铝合金材料安全,不会变形?

现在就将这个模型抽象出来,假设铝合金材料是空心铝管,厚度可以任意选择,屈服强度取σ,只受玻璃给的压力(设玻璃居中,由于给定一段铝合金,主要承载件是玻璃,而且玻璃的相对总质量远远大于承载的铝合金的质量),外力

?(忽略玻璃的宽度),玻璃高度为是均匀分布力,设普通玻璃的密度是ρkg mm

H,取长度a mm的铝合金材料,宽度为b mm,高为h mm,如图二所示:

图二 玻璃安装示意图 该结构危险点在铝合金与玻璃接触处,并且中间部位有一定的挠度(只要有承载,就一定有挠度),当承载到一定极限时,挠度太大不满足装配要求了,或者承载到一定极限就会使铝合金破坏。

情形(一):挠度w 不满足装配要求——

将图二简化为图三(a)所示的力学简图,装配要求挠度值为[w],只要w ≤[w]即可。

首先,做外力矩M F ,单位力力矩图M

?,如图三(b)所示。 图三 (a) 简化模型

图三 (b) 弯矩图 运用图乘法可以求的w=12×b 2×ρH 4×23×14×2=b ρH 48,进而,b ρH 48≤[w],

可以满足装配要求。如果给定了最大允许装配误差[w],知道铝合金管的宽b ,还知道所使用的玻璃的密度ρ,那么H ≤

48[w]b ρ,也就是玻璃不可能无限高,是有一

个极限值的。

情形(二):剪切破坏——

因为玻璃是有一定的厚度的,设厚为δ在玻璃与铝合金接触的地方,有剪切力存在,考虑剪切面是矩形面,最大的剪切应力τ=32×

F Q A ,力学简图如图四所示。

图四 铝合金侧面示意图

每个截面上,剪力F Q =12ρδaH ,切面面积A =at , (t 为铝合金厚度),最大剪力为τ=3ρδH 4t ,可见,最大剪力是一个跟铝合金长度a ,宽度b ,高h 无关的量。如

果使之满足τ≤[τ],可以得到H ?4t[τ]3ρδ,或者t ?3ρδH

4[τ],从这个结果我们可以看到,

可以通过增加铝合金的厚度提高承载玻璃重量,也可以通过降低玻璃的高度,从而使结果安全。

以上的讨论是将铝合金结构与玻璃理想化了的,在实际应用中,玻璃不是直接与铝合金接触,中间会有玻璃紧固条,相当于加宽了玻璃的宽度,还要考虑安装工艺,如果玻璃紧固条与铝合金是通过螺钉固定的,那么会导致应力集中,玻璃是脆性材料,应力集中是非常危险的。所以尽量避免使用螺钉固定,如果非用不可,可以在螺钉与玻璃之间加上松软的垫。采用规格厚的铝合金,尽量减小窗格的高度可以有效地提高整个结构的强度与稳定。

虽然铝镁合金在最近几年得到了广泛的应用,但是铝镁合金的使用量仍然不能跟钢铁相提并论。自从几千年前我们进入铁器时代,铁这种金属材料一直都扮演着人们日常生活必不可少的材料之一,直到今天,甚至更久的将来。铁的绝对

优势首先源于铁矿石的价格相对其他金属要便宜,其次就是钢铁的热处理简单,技术成熟,可以制造出强度,刚度,韧性要求不同的材料,以满足人类某一方面的需求。在我们的日常生活中,铁或者钢处处可见,家里的拖拉机几乎就是一堆钢铁的组合,各种田间劳作的工具,各种交通工具……

2.千斤顶的承载重量是否可以任意大小

下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。

机械式千斤顶(如图五(a)示),设其丝杠长度为l ,有效直径为d ,弹性模量E ,材料抗压强度为σc ,承载力大小为F ,规定稳定安全因数为n w 。

图五(a) 千斤顶示意图 图五(b) 千斤顶丝杠简化图

首先,计算丝杆柔度,判断千斤顶丝杆为短粗杆,中等柔度杆,还是细长杆。 丝杆可以简化为一端固定,另一端自由的压杆(如图五(b)所示),长度因数μ=2。圆截面的惯性半径为i =√I A =d 4,可计算柔度λ=μl i ,查阅千斤顶这种材料的柔

度表,将得到的λ与之比较,确定千斤顶丝杆的性质(一般千斤顶丝杆为中等柔度杆,但是针对具体千斤顶,应该具体分析),最后计算临界力F cr 。

如果千斤顶丝杆是细长杆,临界力用欧拉公式F cr =π2E

λ2A 计算,其中E 是丝

杆的弹性模量;如果千斤顶丝杆是中等柔度杆,还要查阅丝杆材料数据手册,利

用经验公式F cr =(a ?bλ)×A ,其中a ,b 都是常数,可以从表里查阅到;如果千斤顶的丝杆是短粗杆,它只会发生强度破坏,不会发生失稳。

计算所得的F cr 是临界力,实际生活中,我们是不能直接加载到这个力大小的,因为稍微一个小的扰动,或者材料的不均匀,都会使千斤顶失稳,严重的可能造成千斤顶的破坏,或者是支撑物的损坏,也就是我们还要人为加进去一个安全因数n w (大于1的常数),使加载力F ?F

cr n w ,确定好最大的安全加载力后,还要校正一下丝杆的强度,先假设力F 作用在圆心处,且与轴线平行,此时只要满足F A ?[σC ]就可以认为加载力安全。

考虑实际生活中,千斤顶使用时承载力并不是集中力,即使将所有的力向圆心处等效,由于力作用面可能不对称,也会产生一个等效的力偶作用,假设等效力大小为F ′,等效力偶为M ’,受力简图如图六所示。

图六 实际千斤顶受力向圆心简化结果

此时,千斤顶的丝杠发生拉伸与扭转的组合变形,危险截面在在丝杠边缘上各个位置。

从A-A 截面截开,在最靠近我们的点处取应力单元体,受力分析如图,其中σ是压应力,τ是切应力。

图七 A-A 截面边缘单元体受力情况

σ=F′A ,τ=M′W t ,W t 是截面的抗扭截面系数,对于千斤顶丝杠来说,A =πd 24,W t =πd 316,只要给定直径d ,截面面积A 与截面的抗扭截面系数W t 都是已知量。 最后校核这种受力状态下的丝杠强度。如果采用第三强度理论校核,则第一主应力(最大应力)σr3=√σ2+4τ2,如果采用第四强度理论校核,则第一主应力σr4=√σ2+3τ2,选择其中一种校核,如果丝杠的第一主应力σr ?[σ],则等效后合力与合力偶满足强度要求,如果不满足这个不等式,则要想法减小σr ,有两个途径,第一,可以减小σ,通过减小承载力F 或者增大丝杠的直径d 可以达到减小压应力的要求;第二,可以减小τ,可以通过合理分布载荷F ,使分布载荷对圆心的合力偶尽量小达到要求。

从这个实例的讨论中,我们不难得出这样的结论,使用千斤顶时,尽量使载荷对称分布,合理摆放千斤顶的位置,可以有效地提高千斤顶的稳定性,保证千斤顶的安全使用。

3.桥梁

桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者其他设施 (如管道、电缆等)跨越天然障碍 (如河流、海峡、峡谷等)或人工障碍 (

高速公路、铁路

线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。

三分析

如果在安全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成

本,而且有美观。

当我们讨论完这两个实例后,回头再想想我们材料力学课程的几大知识点,发现它们之间的联系是那么的密切,实际生活中我们遇到的承载材料一般都不是绝对的拉压杆,轴或者梁,它们往往是几种基本变形的组合,在分析时几乎要用到我们材料力学课程里所有的知识点。材料力学是一门实用的学问,当我们学会了书本中的理论知识的同时,也就掌握了挑选材料,制造工具的能力,作为工科专业的大学生,我们应该努力达到理论知识应用于实际的能力,善于发现身边的材料力学的应用,善于分析各种现象的原因,善于总结各种结构的特性,做一个富于创新的大学生。

工程力学_静力学与材料力学课后习题答案

1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。 解: 1-2 试画出以下各题中AB 杆的受力图。 (a) B (b) (c) (d) A (e) A (a) (b) A (c) A (d) A (e) (c) (a)

解: 1-3 试画出以下各题中AB 梁的受力图。 解: (e) B B (a) B (b) (c) F B (a) (c) F (b) (d) (e) F

1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。 解: (d) D (e) F Bx (a) (b) (c) (d) D (e) W (f) (a) D (b) B (c) B F D F

1-5 试画出以下各题中指定物体的受力图。 (a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。 解:(a) (b) (c) (d) AT F BA F (b) (e)

(c) (d) (e) C A A C ’C D D B

2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上, F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。 解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆, (2) 列平衡方程: 1 214 0 sin 60053 0 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N =?+-==?--=∴==∑∑ AC 与BC 两杆均受拉。 2-3 水平力F 作用在刚架的B 点,如图所示。如不计刚架重量,试求支座A 和D 处的约束 力。 解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形: (2) F 1 F F D F F A F D

【完整版】材料力学在工程实际中的应用

材料力学在工程实际中的应用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常用的属性主要有: 1.密度ρ:密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f:材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。

5.剪切模量G:指的是材料在单位长度、单位截面面积下受到单位剪切力时的侧向变形量。 材料力学研究的主要问题是杆件的强度、刚度和稳定性问题,因此,制成杆件的物体就应该是变性固体,而不能像理论力学中那样认为是钢体。变形固体中的变形就成为它的主要基本性质之一,必须予以重视。 例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞,使电机不能正常运转,甚至损坏等等。因此,在材料力学中我们必须把组成杆件的各种固体看做是变性固体,固体之所以发生变形,是由于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。在材料力学中,我们要着重研究这种外力和变形之间的关系。大多数变形固体具有在外力作用下发生变形,但在外力除去后又能立刻恢复其原有形状和尺寸大小的特性,我们把变形固体的这种基本性质成为弹性,把具有这种弹性性质的变形固体成为完全弹性体。若变性固体的变形在外力除去后只能恢复其中一部分,这样的固体成为部分弹性体,部分弹性体的形变可分为两部分;一部分是随着外力除去而消失的变形,成为弹性变形;而另一部分是在外力除去后仍不能消失的变形成为塑性变形。严格的说,自然界中并没有完全弹性体,一般的变

材料力学复习题讲解

《材料力学复习题》 考试形式:开卷。 1.构件在外荷载作用下具有抵抗破坏的能力为材料的();具有一定的抵抗变形的能力为 材料的();保持其原有平衡状态的能力为材料的()。 答案:强度、刚度、稳定性。 2.图示圆截面杆件,承受轴向拉力F作用。设拉杆的直径为d,端部墩头的直径为D,高度 为h,试从强度方面考虑,建立三者间的合理比值。已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa。 解:由正应力强度条件 由切应力强度条件 由挤压强度条件 式(1):式(3)得 式(1):式(2)得 故D:h:d=1.225:0.333:1 3.轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是()。

答案:截面法。 4.工程构件在实际工作环境下所能承受的应力称为(),工件中最大工作应力不能超过 此应力,超过此应力时称为()。 答案:许用应力,失效。 5.所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是()。 (A)强度低,对应力集中不敏感; (B)相同拉力作用下变形小; (C)断裂前几乎没有塑性变形; (D)应力-应变关系严格遵循胡克定律。 答案:C 6.现有三种材料的拉伸曲线如图所示。分别由此三种材料制成同一构件,其中:1)强度 最高的是();2)刚度最大的是();3)塑性最好的是();4)韧性最高,抗冲击能力最强的是()。 答案:A,B,C,C 7.试计算图示各杆的轴力,并指出其最大值。 答案 (a)F NAB=F,F NBC=0,F N,max=F (b)F NAB=F,F NBC=-F,F N,max=F (c)F NAB=-2 kN, F N2BC=1 kN,F NCD=3 kN,F N,max=3 kN (d)F NAB=1 kN,F NBC=-1 kN,F N,max=1 kN

工程力学材料力学答案-第十章

10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。 解:(a) (1) 取A +截面左段研究,其受力如图; 由平衡关系求内力 0SA A F F M ++== (2) 求C 截面内力; 取C 截面左段研究,其受力如图; 由平衡关系求内力 2 SC C Fl F F M == (3) 求B -截面内力 截开B -截面,研究左段,其受力如图; 由平衡关系求内力 SB B F F M Fl == q B (d) (b) (a) SA+ M A+ SC M C A SB M B

(b) (1) 求A 、B 处约束反力 e A B M R R l == (2) 求A +截面内力; 取A +截面左段研究,其受力如图; e SA A A e M F R M M l ++=-=- = (3) 求C 截面内力; 取C 截面左段研究,其受力如图; 22 e e SC A A e A M M l F R M M R l +=-=- =-?= (4) 求B 截面内力; 取B 截面右段研究,其受力如图; 0e SB B B M F R M l =-=- = (c) (1) 求A 、B 处约束反力 e M A+ M C B R B M B

A B Fb Fa R R a b a b = =++ (2) 求A +截面内力; 取A +截面左段研究,其受力如图; 0SA A A Fb F R M a b ++== =+ (3) 求C -截面内力; 取C -截面左段研究,其受力如图; SC A C A Fb Fab F R M R a a b a b --== =?=++ (4) 求C +截面内力; 取C +截面右段研究,其受力如图; SC B C B Fa Fab F R M R b a b a b ++=-=- =?=++ (5) 求B -截面内力; 取B -截面右段研究,其受力如图; 0SB B B Fa F R M a b --=-=- =+ (d) (1) 求A +截面内力 取A +截面右段研究,其受力如图; A R SA+ M A+ R A SC- M C- B R B M C+ B R B M q B M

材料力学在工程实际中的应用

材料力学在工程实际中的应用材料力学是研究材料在各种外力作用下产生的应变、应力、强度、 稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中 的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要 符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力 学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺 栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传 动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、 起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑 几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基 本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常 用的属性主要有: :密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f :材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴

向变形。

5. 剪切模量G :指的是材料在单位长度、单位截面面积下受到单位剪 切力时的侧向变形量。 材料力学研究的主要问题是杆件的强度、 冈肢和稳定性问题, 制成杆件的物体就应该是变性固体,而不能像理论力学中那样认为是 钢体。变形 固体中的变形就成为它的主要基本性质之一,必须予以重 视。 例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变 形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内 的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对 工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞, 使电机不能正常运转,甚至损坏等等。因此,在材料力学中我们必须 把组成杆件的各种固体看做是变性固体,固体之所以发生变形,是由 于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。 在材料力学中,我们要着重研究这种外力和变形之间的关系。大多数 变形固体具有在外力作用下发生变形,但在外力除去后又能立刻恢复 其原有形状和尺寸大小的特性,我们把变形固体的这种基本性质成为 弹性,把具有这种弹性性质的变形固体成为完全弹性体。若变性固体 体,部分弹性体的形变可分为两部分;一部分是随着外力除去而消失 的变形,成为弹性变形;而另一部分是在外力除去后仍不能消失的变 形成为塑性变形。严格的说,自然界中并没有完全弹性体,一般的变 性固体在外力作用下,总会是既有弹性变形也有塑性变形。不过,实 验指出,像金属、木材等常用建筑材料,当所受的外力不超过某一限 度时,可看成是完全弹性体。为了能采用理论的方法对变形固体进行 分析和研究,从而得到比较通用的结论。 总而言之,杆件要能正常工作,必须同时满足以下三方面的要求: (1) 不会发生破坏,即杆件必须具有足够的强度。 (2) 不产生过大变形,发生的变形能限制在正常工作许可的范围以 内。即杆件必须具有足够的强度 (3) 不失稳,杆件在其原有形状下的平衡应保持为稳定的平衡,即 杆件必须具有足够的稳定性。 这三方面的要求统称为构件的承载能力。一般来说,在设计每一杆 件时,应同 因此, 的变形在外力除去后只能恢复其中 部分,这样的固体成为部分弹性

材料力学案例分析

第三部分工程事故案例分析 一、摘要 2003年11月,某特大桥项目部的混凝土预制件场搬迁,用门式起重机吊装钢底模板,在往5t东风货车上卸载时,由于中心偏移,钢底模板在车厢铁皮板上侧滑,将搬运工甲挤在车厢尾部与挡墙之间,搬用工甲头盖被挤破裂,当场死亡。 二、事故发生经过 2003年11月3日,某特大桥项目部的混凝土预制件场,搬迁工作已处于尾声。该场的工长组织有关人员用门式起重机装车,将制作预制件的钢底模板运走,运输工具是东风牌5t载重汽车,当吊装第二车第一块钢底模板时,所吊的这块钢底模板面积为4 3.8m,重量为1.8t ,一面两角裁切,采用两根吊索对角起吊。本应用4根吊索起吊4个吊点,因为该场处于搬迁阶段且已接近尾声,当时只找到2根吊索,因此钢底模板吊起时,重心有所偏位,钢底模板处于侧斜不平稳状态。当龙门起重机吊起后往东风货车上落钩时,侧斜的钢底模板与车厢底板铁板面先接触。这时吊装指挥(信号工)乙在汽车驾驶室的一侧准备做调整,而搬运工甲则站在车厢尾部稳钩,该场的工长发现甲站位很危险,就喊他快躲开,而甲在没有接到乙发出指挥信号时,就喊落钩,落钩的同时,甲也看到了钢底模板在车厢底板上滑动,便慌忙从车厢尾部往下跳,车厢尾部跟后面的挡墙有1.2m左右距离,挡墙高2.2m距离,这是侧滑的钢底模板正在车厢底板上往挡墙冲过来,甲躲闪不及,头部挤在砖石挡墙上,甲的头盖被挤碎,致使甲当场死亡。 三、选择该事故分析原因 起重事故是指在进行各种起重作业中发生的重物坠落、夹挤、物体打击、起重机倾翻、触电等事故。其中伤害事故可造成重大的人员伤亡或财产损失。根据不完全统计,在事故多发的特殊工种作业中,起重作业事故的起数高,事故后果严重,重伤死亡人数比例大,已引起有关方面的高度重视。故选择该事故进行分析。 四、该工程事故原因分析 1.钢底模板吊挂方法不正确,被起吊的钢底模板应该用4根吊索吊挂在吊板的4个吊点上,可这次吊装作业却只用2根吊索吊挂2个吊点,而且挂钩部位不正确,使吊装的钢底模板处于不稳定状态。 2.搬运工甲在稳钩作业中站位非常危险,现场作业的领导工长虽然发现,但为时已晚。而作为现场的指挥乙却没有发现这种危险情况或者发现了竟无动于衷,没有采取积极措施制止。 3.该预制件场忽视安全生产,尤其在搬迁过程中放松安全管理。首先是从事这种大件吊装,竟然连吊索都没有做好准备,野蛮作业;其次,在搬迁过程中,租用的东风运货车,不具备运输大型构件的能力,东风载重卡车也没有采取任何铺垫措施。 五、事后处理及改进方案 这是一起作业现场混乱,从领导到工人安全生产观念淡薄,在工厂搬迁过程,毫无章法,凑凑乎乎作业,结果酿成这次严重事故,这起事故给我们留下深刻教训。 对上述起重事故事故进行分析,得出今后预防措施如下:(1)凡从事特殊工作,起重工、起重司机、挂钩工、指挥人员都应该接受岗位培训,持证上岗。(2)坚决落实岗位责任制,这些特殊岗位,必须制定好岗位操作规程,落实责任,严禁违章作业,强调劳动纪律。(3)起重装卸重物,最好使用专用吊具,如无专用吊具,吊装方法一定要科学和可靠,不能凑乎,马马虎虎就可能出大问题。

工程力学材料力学部分习题答案

工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21m m 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 1758001000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302 sin(2 30=?= ?= οο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

材料力学在工程实际中的应用

材料力学在工程实际中的应用

材料力学在工程实际中的应用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常用的属性主要有: 1.密度ρ:密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f:材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。

性固体在外力作用下,总会是既有弹性变形也有塑性变形。不过,实验指出,像金属、木材等常用建筑材料,当所受的外力不超过某一限度时,可看成是完全弹性体。为了能采用理论的方法对变形固体进行分析和研究,从而得到比较通用的结论。 总而言之,杆件要能正常工作,必须同时满足以下三方面的要求:(1)不会发生破坏,即杆件必须具有足够的强度。 (2)不产生过大变形,发生的变形能限制在正常工作许可的范围以内。即杆件必须具有足够的强度 (3)不失稳,杆件在其原有形状下的平衡应保持为稳定的平衡,即杆件必须具有足够的稳定性。 这三方面的要求统称为构件的承载能力。一般来说,在设计每一杆件时,应同时考虑到以上三方面的要求,但对某些具体的杆件来说,有事往往只需考虑其中的某一主要方面的要求(例如稳定性为主),当这些主要方面的要求满足了,其它两个次要方面的要求也就自动地得到满足。当设计的杆件能满足上述三方面的要求时,就可认为设计是安全的,杆件能够正常工作。 其次,材料力学在工程实际中的应用时非常多的,例如在铁路和桥梁等等上。 1976年7月28日发生在中国唐山,震级为M7.8级的地震,造成了大面积公路、铁路、桥梁普遍倒塌或者严重损坏,据有关部门专家对这次地震的分析,桥梁破坏主要集中在新进建造的桥梁,主要原因有

材料力学案例:教学与学习参考

竭诚为您提供优质文档/双击可除材料力学案例:教学与学习参考 篇一:材料力学案例分析 迈安那斯桥坍塌事故原因分析 1.关键词:桥梁垮塌,组合变形,偏心载荷,设计失误 2.事件背景 时间:1983年6月27日,地点:美国康涅狄格州迈安那斯(mianus)河桥垮塌,造成4辆汽车掉落桥下,3人死亡,多人受伤。 图1垮塌的迈安那斯河桥 该桥梁结构属于钢结构的多跨静定梁,建成于1958年,桥龄25年。大桥双向各三线车道,每日车流量超过10万次。大桥的悬臂式的结构在建桥当时是很流行的样式:主跨为两端外伸梁,主跨两侧各有一段约30米长的悬吊梁垮。垮塌的是东悬吊跨的一段梁,其西端接在称为轴台的支架上,用水平销连接到中跨梁外伸段的自由端;东端以销接吊件连接在东边悬臂梁的末端,正是此悬吊组件的破坏导致了大桥的

坍塌。 1983年春末,大桥边的居民向当局反映他们听到桥身发出尖锐的声响。过去至少五六年来,这些居民陆续在河边检到桥上掉下来的混凝土碎块或碎钢屑,每次他们都尽责地向公路局报告。而近来在轰隆的车流声中,他们又听到了新增的噪音。一位居民表示:“像是几千只鸟同时唧喳地发出刺耳的鸣叫。 整个周末, 都可以清楚地听到这样的声音。” 6月27日星期一凌晨1:30左右,大桥在一声巨响中发生坍塌。 图2悬吊梁的支撑结构 3.事故过程与关键性细节 康州公路局长看了现场的残骸后,表示他发现了桥梁倒塌的可能线索:把掉下去的桥身和悬臂式钢梁拴在一起的栓销少了一个。这个长约18厘米的栓钉的一部分残余物最后在河里被捞起,其余的部分还在桥上,它看起来像是被剪断的。 事故起因是因为栓销断裂,还是另有原因?为了解开谜团,局长请来了专家,另外还有3家独立的工程公司和国家交通安全局的代表以及法院指派的工程师都参与了事故调查,可是各方都强调不同的理由并得出不同的结论。

【完整版】:力学在土木工程中的应用

力学在土木工程中的应用 1:力学基本内容: 力学是用数学方法研究机械运动的学科。“力学”一词译自英语mechanics源于希腊语一机械,因为机械运动是由力引起的.mechanics在19世纪5O年代作为研究力的作用的学科名词传人中国后沿用至今。 力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展.力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支. 力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等. 2:土木是力学应用最早的工程领域之一. 2.1土木工程专业本科教学中涉及到的力学内容

包括理论力学、材料力学、结构力学、弹性力学、土力学、岩石力学等几大固体力学学科. 理论力学与大学物理中有关内容相衔接,主要探讨作用力对物体的外效应(物体运动的改变) ,研究的是刚体,是各门力学的基础.其他力学研究的均为变形体(本科要求线性弹性体),研究力系的简化和平衡,点和刚体运动学和复合运动以及质点动力学的一般理论和方法. 材料力学:主要探讨作用力对物体的内效应(物体形状的改变),研究杆件的拉压弯剪扭变形特点,对其进行强度、刚度及稳定性分析计算.结构力学:在理论力学和材料力学基础上进一步研究分析计算杆件结构体系的基本原理和方法,了解各类结构受力性能. 弹性力学:研究用各种精确及近似解法计算弹性体(主要要求实体结构) 在外力作用下的应力、应变和位移. 土力学:研究地基应力、变形、挡土墙和土坡等稳定计算原理和计算方法.岩石力学:研究岩石地基、边坡和地下工程等的稳定性分析方法及其基本设计方法. 2.2土木工程专业之力学可分为两大类,即“结构力学类”和“弹性力学类”. “弹性力学类”的思维方式类似于高等数学体系的建构,由微单元体(高等数学为微分体)人手分析,基本不引入(也难以引入)计算假设,计算思想和理论具有普适特征.在此基础上引入某些针对岩土材料的计算假设则构建了土力学和岩石力学.“结构力学类”(包括理论、材料学和结构力学)则具有更强烈的工程特征,其简化的模型是质点或杆件,在力学体系建立之前就给出了诸

材料力学阶段练习一及答案讲解学习

材料力学阶段练习一 及答案

华东理工大学 网络教育学院材料力学课程阶段练习一 一、单项选择题 1.如图所示的结构在平衡状态下,不计自重。对于CD折杆的受力图,正确的是( ) A. B. C. D.无法确定 2.如图所示的结构在平衡状态下,不计自重。对于AB杆的受力图,正确的是( )

A. B. C. D.无法确定 3.如图所示悬臂梁,受到分布载荷和集中力偶作用下平衡。插入端的约束反力为( )

A.竖直向上的力,大小为qa qa 2;逆时针的力偶,大小为2 qa B.竖直向上的力,大小为qa 2;顺时针的力偶,大小为2 qa C.竖直向下的力,大小为qa 2;逆时针的力偶,大小为2 qa D.竖直向下的力,大小为qa 2;顺时针的力偶,大小为2 4.简支梁在力F的作用下平衡时,如图所示,支座B的约束反力为( ) A.F,竖直向上 B.F/2,竖直向上 C.F/2,竖直向下 D.2F,竖直向上 5.简支梁,在如图所示载荷作用下平衡时,固定铰链支座的约束反力为( )

A.P,竖直向上 B.P/3,竖直向上 C.4P/3,竖直向上 D.5P/3,竖直向上 6.外伸梁,在如图所示的力和力偶作用下平衡时,支座B的约束反力为( ) A.F,竖直向上 B.3F/2,竖直向上 C.3F/2,竖直向下 D.2F,竖直向上 7.如图所示的梁,平衡时,支座B的约束反力为( ) A. qa,竖直向上 B. qa,竖直向下 C. qa 2,竖直向上 D. qa 4,竖直向上 8.关于确定截面内力的截面法的适用范围有下列说法,正确的是( )。

A.适用于等截面直杆 B.适用于直杆承受基本变形 C.适用于不论基本变形还是组合变形,但限于直杆的横截面 D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况 9.下列结论中正确的是( )。 A.若物体产生位移,则必定同时产生变形 B.若物体各点均无位移,则该物体必定无变形 C.若物体无变形,则必定物体内各点均无位移 D.若物体产生变形,则必定物体内各点均有位移 10.材料力学根据材料的主要性能作如下基本假设,错误的是( )。 A.连续性 B.均匀性 C.各向同性 D.弹性 11.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为( ) A.连续性 B.均匀性 C.各向同性 D.小变形 12.如图所示的单元体,虚线表示其受力的变形情况,则单元体的剪应变γ=( )。 A.α B.2α

生活中的材料力学实例分析【爆款】.doc

生活中的材料力学实例分析 一意义 材料力学主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 二对象 材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 材料力学不仅在复杂机械工程中有重要的作用,在生活中也很常见。比如随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者

其他设施 (如管道、电缆等)跨越天然障碍 (如河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。 三分析

如果在安全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 四总结 因此,材料力学是一门很有用的学科,能够处理各种各样复杂的问题。只要注意观察,生活中处处有材料力学的踪影。利用材料力学的知识对我们身边的事物进行分析并加以改进,对我们的生活和社会的发展能起到积极的促进作用。

材料力学讲解作业(2)

1、 轴向拉伸的等直杆,杆内任一点处最大剪应力的方向与轴线成 ___________。 2、 一空心圆截面直杆,其内、外径之比为α=0.8,两端承受轴向拉 力作用,如将内、外径增加一倍,则其抗拉刚度将是原来的________倍。 3、 在减速箱中,转速低的轴的直径比转速高的轴_____________。 4、 若梁上某段内的弯矩值全为零,则该段的剪力值为 _____________。 5、 梁的截面为对称的空心矩形,如图1所示,这时,梁的抗弯截面 模量W 为_______________。 6、 在梁的变形中挠度和转角之间的关系是____________。 7、 减小梁变形的主要途径有:_______________ 、 __________________ 、_________________。 8、 二向应力状态(已知x σ,y σ ,xy τ)的应力圆圆心的 横坐标值为_____________________,圆的半径为_____________。 9、与图2所示应力圆对应的单元体是____________向应力状态。 图1 图2 10、 将圆截面压杆改成面积相等的圆环截面压杆,其它条件不变,其柔度将 ________,临界应力将________。 工程上通常把延伸率δ>________的材料称为塑性材料。 b b h h 1 2

低碳钢经过冷作硬化处理后,它的_________极限得到了明显的提高。 图1正方形单元体ABCD ,变形后成为AB `C`D`。单元体的剪应变为_________。 简支梁全梁上受均布荷载作用,当跨长增加一倍时,最大剪力增加一倍,最大弯矩增加了_______________倍。 如图2所示截面的抗弯截面模量Wz =_________________。 运用叠加原理求梁的变形时应满足的条件是:___________________________。 已知梁的挠曲线方程为)3(6)(2 x l EI Px x y -= ,则该梁的弯矩方程是______________________。 图1 图2 单向受拉杆,若横截面上的正应力为σ0,则杆内任一点的最大正应力为_______,最大剪应力为____________。 图3应力圆,它对应的单元体属______________________应力状态。 细长杆的临界力与材料的____________________有关, 为提高低碳钢压杆的稳定性,改用高强刚不经济,原因是 _______________________________。 图3 z h b d τ σ

材料力学作业习题讲解

第二章 轴向拉伸与压缩 1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。 (1) (2) 2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2 。如以α表示斜截面与横 截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。 3、一木桩受力如图所示。柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。如不计柱的自重,试求: (1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱的总变形。 4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的 线应变d ε。 (2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。 (3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。试求: (1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律); (2) 钢丝在C点下降的距离?; (3) 荷载F的值。 6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组 [σ=170MPa。试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力] 条件? 7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。 ] E

工程力学材料力学答案-第十一章

11-6图示悬臂梁,横截面为矩形,承受载荷最大 弯曲正应力,及该应力所在截面上 F1与F2作用,且F1=2F2=5 kN,试计算梁内的 K点处的弯曲正应力。 M max =7.5 kN 解:(1)查表得截面的几何性质: y0 =20.3 mm b = 79 mm I 176 cm4 (2)最大弯曲拉应力(发生在下边缘点处) 解:⑴画梁的弯矩图 1m 40 80 y ------ ”z 30最大弯矩(位于固定端) CT + max M(b-y。) = 80X79-20.3)X0」2.67 MPa lx 176 10’ ⑶ 最大应力: 计算应力: max M max W Z M bh2 max 6 7 5^10 - ------- =176 MPa 40 80 K点的应力: y l z M max bh 7爲106330 =132 MPa 40 803 12 M=80 N.m, 试求梁内的最大弯曲拉应力与最大弯曲压应力。 11-7图示梁,由No22槽钢制成,弯矩 12 并位于纵向对称面(即x-y平面)内。

(3)最大弯曲压应力(发生在上边缘点处) y 。 max 80 20.3 10 176 10' =0.92 MPa 11-8图示简支梁,由No28工字钢制成,在集度为q的均布载荷作用下,测得横截面边的纵向正应变F3.0 XI0"4,试计算梁内的最大弯曲正应力, 已知钢的弹性模量 C底 E=200 Gpa, a=1 m。 解:(1)求支反力 R A 3 4 qa 1 R B= qa 4 (2)画内力图 x x 由胡克定律求得截面C下边缘点的拉应力为: 也可以表达为: max _4 9 ;E =3.0 10 200 10 =60 MPa ⑷梁内的最大弯曲正应力: 二 max 2 qa CT : C max M e W z W z 小 2 9qa M max ___ 32 W z W z 9 . 蔦二C max =67.5 MPa 8

材料力学工程应用实例分析

锯床模型工程案例分析报告 刘 红 良 班级:卓越2班 学号:201002070707 2012年5月20日

工程案例分析大作业 试建立锯床锯架的力学分析模型。 如图设两个铰链之间的距离为L,主动轮和从从动轮的半径均为R,机构在工作时,锯条受到X C F的切削阻力。设锯床在未工作前,皮带上应加一个预紧力F?,机构在工作时锯条左端皮带受力为F?,右端受力为F?,铰链两端对两轮的力均为F P 。试求F?与F?之间的关系,以及F?与F?的关系。 解:在初始预紧力作用下,皮带伸长△l。工作时,在F?的作用下,皮带伸长△l1 ,在F?作用下皮带伸长△l2,主动轮皮带伸长△l3。∴△l=△l1+△l2+△l3① △l= 01 F l E A , △l1= 12 F l E A , △l2= 23 F l E A ② 3 1 2L R l=+∏ 1 2 2 L l= 在机构工作时,进行受力分析有:

F ?- F ?=X C F ③ M=( F ?- F ?)R ④ 对主动轮进行受力分析,d θ取 为圆心角对应的弧段: f dF +()T θ=()T θ+()dT θ ∵f dF =()N F θ×f =()T θ·()D θ·f ∴()T θ·f ()d θ=()dT θ 即f ()d θ= () () dT T θθ F xc

∴1f ln ()T C θθ=+ ∴()T θ=2f C e θ ⑥ ∵(0)T =F 2 ∴2 C = F 2 21()f T F e F ∏ ∏==⑧ 由③⑧得F 2=1XC F f e ∏ - 1= 1XC f F e F f e ∏∏- 20 ()f F e R T d EA θ θθ ∏∏?= ? = 2f ()(1) F R T e E A F θ∏ ∏?= - = ? l 3 ⑦ 将 ② ⑦ 代 入 ③ 中 得 F = ()f f 3122 f 122X C f L R e L R e F e L R θ ∏ ∏ ∏??+∏++- ???-+∏ 这样就求出了初始预紧力,以及1F 2F 的关系及大小。

材料力学在工程实际中的应用

材料力学在工程实际中的应用 材料力学就是研究材料在各种外力作用下产生的应变、应力、强度、稳定与导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常用的属性主要有: 1、密度ρ:密度与结构自重与地震荷载有关。 2、弹性模量E:指的就是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3、强度f:材料的承受能力。 4、泊松比v:指的就是材料在受轴向力时,材料的横向变形或材料的轴向变形。

5、剪切模量G:指的就是材料在单位长度、单位截面面积下受到单位剪切力时的侧向变形量。 材料力学研究的主要问题就是杆件的强度、刚度与稳定性问题,因此,制成杆件的物体就应该就是变性固体,而不能像理论力学中那样认为就是钢体。变形固体中的变形就成为它的主要基本性质之一,必须予以重视。 例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞,使电机不能正常运转,甚至损坏等等。因此,在材料力学中我们必须把组成杆件的各种固体瞧做就是变性固体,固体之所以发生变形,就是由于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。在材料力学中,我们要着重研究这种外力与变形之间的关系。大多数变形固体具有在外力作用下发生变形,但在外力除去后又能立刻恢复其原有形状与尺寸大小的特性,我们把变形固体的这种基本性质成为弹性,把具有这种弹性性质的变形固体成为完全弹性体。若变性固体的变形在外力除去后只能恢复其中一部分,这样的固体成为部分弹性体,部分弹性体的形变可分为两部分;一部分就是随着外力除去而消失的变形,成为弹性变形;而另一部分就是在外力除去后仍不能消失的变形成为塑性变形。严格的说,自然界中并没有完全弹性体,一般的变性固体在外力作用下,总

工程力学课后习题答案

工程力学 练习册 学校 学院 专业 学号 教师 姓名

第一章静力学基础 1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。 (a) (b) (c) (d) (e)

(f) (g) 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图 (a)(b)(c) (a) 1-3 画出图中指定物体的受力图。所有摩擦均不计,各物自重除图中已画出的外均不计。 (a) (b) (c) (d) (e) (f) (g)

第二章 平面力系 2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。 题2-1图 解得: N P F F B A 5000=== 2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。转动绞车,物体便能升起。设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。 题2-2图 解得: P F P F AB BC 732.2732.3=-= 2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。 题2-3图 以AC 段电线为研究对象,三力汇交 2-4 图示为一拔桩装置。在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时, tan α≈α)。如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。 题2-4图 作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈= α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。求平衡时力F 1和F 2的大小间的关系。 题2-5图 以B 、C 节点为研究对象,作受力图 解得:4 621=F F 2-6 匀质杆重W=100N ,两端分别放在与水平面成300 和600 倾角的光滑斜面上,求平衡时这两斜面对杆的约束反力以及杆与水平面间的夹角。 题2-6图 2-7 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。求在图a,b,两三种情况下,支座A 和B 的约束反力。 (a ) (b ) 题2-7图

相关文档
最新文档