面面平行的判定教案

合集下载

直线与平面平行判定定理说课教案

直线与平面平行判定定理说课教案

直线与平面平行判定定理说课教案第一章:直线与平面平行的概念引入教学目标:1. 让学生理解直线与平面平行的基本概念。

2. 培养学生运用几何图形进行直观思考的能力。

教学内容:1. 直线与平面平行的定义。

2. 直线与平面平行的判定条件。

教学步骤:1. 引入直线与平面平行的概念,通过实物模型或图形进行展示,让学生感受直线与平面平行的直观形象。

3. 讲解直线与平面平行的判定条件,引导学生理解并掌握判定方法。

巩固练习:2. 利用直线与平面平行的判定条件,证明一条直线与一个平面平行。

第二章:直线与平面平行判定定理的证明教学目标:1. 使学生理解直线与平面平行判定定理的内容。

2. 培养学生运用逻辑推理和几何证明的能力。

教学内容:1. 直线与平面平行判定定理的表述。

2. 直线与平面平行判定定理的证明过程。

教学步骤:1. 引入直线与平面平行判定定理,让学生理解定理的含义。

2. 讲解直线与平面平行判定定理的证明过程,引导学生理解并掌握证明方法。

3. 通过图形示例,让学生运用直线与平面平行判定定理进行判断。

巩固练习:1. 证明一条直线与一个平面平行。

第三章:直线与平面平行判定定理的应用教学目标:1. 使学生掌握直线与平面平行判定定理的应用方法。

2. 培养学生运用定理解决实际问题的能力。

教学内容:1. 直线与平面平行判定定理在实际问题中的应用。

2. 直线与平面平行判定定理在其他几何问题中的应用。

教学步骤:1. 讲解直线与平面平行判定定理在实际问题中的应用,引导学生运用定理解决问题。

2. 引导学生思考直线与平面平行判定定理在其他几何问题中的应用,如证明定理、求解几何问题等。

巩固练习:第四章:直线与平面平行判定定理的综合训练教学目标:1. 使学生熟练掌握直线与平面平行判定定理。

2. 培养学生运用定理解决综合问题的能力。

教学内容:1. 直线与平面平行判定定理的综合应用。

2. 直线与平面平行判定定理与其他几何定理的关联。

教学步骤:1. 给出直线与平面平行判定定理的综合应用问题,引导学生运用定理解决问题。

教案平面与平面平行的判定和性质

教案平面与平面平行的判定和性质

平面与平面平行的判定和性质一、教学目标1. 让学生理解平面与平面平行的概念。

2. 引导学生掌握平面与平面平行的判定方法。

3. 让学生了解平面与平面平行的性质。

4. 培养学生运用所学知识解决实际问题的能力。

二、教学内容1. 平面与平面平行的概念2. 平面与平面平行的判定方法3. 平面与平面平行的性质4. 应用实例三、教学重点与难点1. 教学重点:平面与平面平行的判定方法,平面与平面平行的性质。

2. 教学难点:如何运用判定方法和性质解决实际问题。

四、教学方法1. 采用直观演示法,让学生通过观察实物模型,理解平面与平面平行的概念。

2. 运用讲解法,引导学生掌握平面与平面平行的判定方法。

3. 运用案例分析法,让学生通过分析实际案例,了解平面与平面平行的性质。

4. 运用练习法,培养学生运用所学知识解决实际问题的能力。

五、教学过程1. 导入新课:通过展示实物模型,引导学生思考平面与平面之间的关系,引出平面与平面平行的概念。

2. 讲解判定方法:讲解平面与平面平行的判定方法,引导学生通过观察实物模型,理解判定方法。

3. 讲解性质:讲解平面与平面平行的性质,引导学生通过观察实物模型,理解性质。

4. 应用实例:分析实际案例,让学生运用所学知识解决实际问题。

5. 课堂练习:布置练习题,让学生巩固所学知识。

6. 总结与拓展:总结本节课所学内容,引导学生思考平面与平面平行在实际中的应用价值。

7. 布置作业:布置课后作业,让学生进一步巩固所学知识。

六、教学评价1. 评价目标:检查学生对平面与平面平行的判定和性质的理解程度。

2. 评价方法:通过课堂提问、作业批改、课后练习等方式进行评价。

3. 评价内容:a. 学生是否能准确描述平面与平面平行的概念。

b. 学生是否能运用判定方法正确判断平面与平面是否平行。

c. 学生是否能理解并应用平面与平面平行的性质解决实际问题。

七、教学反思1. 反思内容:a. 教学方法是否适合学生的学习需求。

面面平行的判定教案

面面平行的判定教案

面面平行的判定教案一、教学目标1. 让学生掌握面面平行的判定定理及其推论。

2. 培养学生运用几何知识解决实际问题的能力。

3. 提高学生的空间想象能力和逻辑思维能力。

二、教学内容1. 面面平行的判定定理2. 面面平行的性质定理3. 面面平行的判定定理的应用三、教学重点与难点1. 教学重点:面面平行的判定定理及其推论。

2. 教学难点:面面平行的判定定理在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解面面平行的判定定理及其推论。

2. 运用案例分析法,分析实际问题中的面面平行判定。

3. 利用互动教学法,引导学生参与课堂讨论,提高学生的动手操作能力。

五、教学过程1. 导入新课:通过展示生活中的实例,引导学生思考面面平行的判定方法。

2. 讲解面面平行的判定定理:结合图形,讲解定理的内涵和外延。

3. 讲解面面平行的性质定理:引导学生理解定理的含义,并学会运用。

4. 应用练习:布置具有代表性的练习题,巩固所学知识。

5. 课堂小结:总结本节课的主要内容和知识点。

6. 布置作业:布置课后作业,巩固所学知识。

六、教学活动1. 课堂讨论:邀请学生分享他们在生活中遇到的面面平行问题,以及他们是如何解决的。

2. 小组合作:将学生分成小组,每组解决一个面面平行问题,并展示他们的解题过程。

3. 游戏环节:设计一个面面平行的小游戏,让学生在游戏中加深对知识的理解。

七、课程评价1. 课堂参与度:观察学生在课堂讨论、小组合作和游戏环节的参与情况。

2. 作业完成情况:评估学生课后作业的完成质量。

3. 知识测试:通过笔试或口试,测试学生对面面平行知识的掌握程度。

八、教学资源1. 教材:选用权威、易懂的教材,为学生提供系统的知识体系。

2. 教具:准备相关的几何模型和道具,帮助学生直观地理解面面平行。

3. 网络资源:利用网络资源,为学生提供更多的学习资料和实践案例。

九、教学反思在课程结束后,教师应反思教学效果,思考如何改进教学方法,以提高学生的学习兴趣和效果。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。

2. 引导学生掌握直线与平面平行的判定定理。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学内容1. 直线与平面平行的定义。

2. 直线与平面平行的判定定理。

三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。

2. 教学难点:直线与平面平行的判定定理的证明和应用。

四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。

2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。

3. 设计典型例题,培养学生运用判定定理解决问题的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。

2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。

3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。

4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。

5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。

6. 课堂小结:总结本节课的主要内容和知识点。

7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。

这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。

希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。

2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。

3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。

七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。

2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。

3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。

教学设计1:线面、面面平行的判定与性质

教学设计1:线面、面面平行的判定与性质

9.4直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)⎭⎪⎬⎪⎫l ∥a a ⊂αl ⊄α l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l ∥αl ⊂βα∩β=b l ∥b文字语言 图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a ∥βb ∥βa ∩b =P a ⊂αb ⊂αα∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b a ∥b1.直线与平面平行的判定中易忽视“线在面内”这一关键条件. 2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.[试一试]1.下列说法中正确的是________(填序号).①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内.【解析】由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确;③错误,因为经过一点可作一直线与已知直线平行,而经过这条直线可作无数个平面.【答案】①②④2.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,且m ⊥α,则l ⊥α; ②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m . 其中正确命题的个数是________.【解析】易知①正确;②错误,l 与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明.【答案】21.转化与化归思想——平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.[练一练]1.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β ②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β③⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒α∥a其中正确的命题是________(填序号).【解析】②正确.①错在α与β可能相交.③④错在a可能在α内.【答案】②2.如图所示,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件______时,有MN∥平面B1BDD1.【解析】由平面HNF∥平面B1BDD1知,当M点满足在线段FH上有MN∥平面B1BDD1.【答案】M∈线段FH考点一线面平行、面面平行的基本问题1.有互不相同的直线m,n,l和平面α,β,给出下列四个命题:①若m⊂α,l∩α=A,A∉m,则l与m不共面;②若m,l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若m,n是相交直线,m⊂α,m∥β,n⊂α,n∥β,则α∥β;④若l∥α,m∥β,α∥β,则l∥m.其中真命题有________个.【解析】由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l′⊂α,m′⊂α,使得l∥l′,m∥m′,∵m,l是异面直线,∴l′与m′是相交直线,又n⊥l,n⊥m,∴n ⊥l′,n⊥m′,故n⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l ∥α,m∥β,α∥β的直线m,l或相交或平行或异面,故④是假命题.【答案】32.(2014·济宁模拟)过三棱柱ABC­A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.【解析】过三棱柱ABC­A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.【答案】6[备课札记][类题通法]解决有关线面平行、面面平行的基本问题要注意(1)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断. (3)举反例否定结论或用反证法推断命题是否正确.考点二直线与平面平行的判定与性质[典例] (2013·新课标卷Ⅱ)如图,直三棱柱ABC ­A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C ­A 1DE 的体积. [解] (1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD . (2)因为ABC ­A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC ­A 1DE =13×12×6×3×2=1.[备课札记]在本例条件下,线段BC 1上是否存在一点M 使得DM ∥平面A 1ACC 1? 解:存在.当M 为BC 1的中点时成立. 证明如下:连结DM ,在△ABC 1中, D ,M 分别为AB ,BC 1的中点 ∵DM 綊12AC 1,又DM ⊄平面A 1ACC 1AC 1⊂平面A 1ACC 1,∴DM ∥平面A 1ACC 1. [类题通法]证明线面平行的关键点及探求线线平行的方法(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线; (2)利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可. [针对训练]如图,已知四棱锥P ­ABCD 的底面为直角梯形,AB ∥CD ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =12AB =1,M 是PB 的中点.(1)求证:AM =CM ;(2)若N 是PC 的中点,求证:DN ∥平面AMC .证明:(1)∵在直角梯形ABCD 中,AD =DC =12AB =1,∴AC =2,BC =2,∴BC ⊥AC ,又P A ⊥平面ABCD ,BC ⊂平面ABCD , ∴BC ⊥P A ,又P A ∩AC =A , ∴BC ⊥平面P AC ,∴BC ⊥PC .在Rt △P AB 中,M 为PB 的中点,则AM =12PB ,在Rt △PBC 中,M 为PB 的中点, 则CM =12PB ,∴AM =CM .(2)如图,连结DB 交AC 于点F , ∵DC 綊12AB ,∴DF =12FB .取PM 的中点G ,连结DG ,FM , 则DG ∥FM ,又DG ⊄平面AMC ,FM ⊂平面AMC , ∴DG ∥平面AMC .连结GN ,则GN ∥MC ,GN ⊄平面AMC , MC ⊂平面AMC . ∴GN ∥平面AMC , 又GN ∩DG =G ,∴平面DNG ∥平面AMC , 又DN ⊂平面DNG , ∴DN ∥平面AMC .平面与平面平行的判定与性质[典例] 陕西高考)如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面 A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD ­A 1B 1D 1的体积. [解] (1)证明:由题设知,BB 1綊DD 1, ∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1. 又BD 平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C . 又A 1B 平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B , ∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD ­A 1B 1D 1的高. 又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又∵S △ABD =12×2×2=1,∴VABD ­A 1B 1D 1=S △ABD ×A 1O =1.[备课札记] [类题通法]判断面面平行的常用方法(1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ);(3)利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).[针对训练]如图,在直四棱柱ABCD ­A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:(1)平面AD1E∥平面BGF;(2)D1E⊥AC.证明:(1)∵E,F分别是B1B和D1D的中点,∴D1F綊BE.∴四边形BED1F是平行四边形,∴D1E∥BF;又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵FG是△DAD1的中位线,∴FG∥AD1;又AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.(2)连结BD,B1D1,∵底面是正方形,∴AC⊥BD.∵D1D⊥AC,D1D∩BD=D,∴AC⊥平面BDD1B1.∵D1E⊂平面BDD1B1,∴D1E⊥AC.[课堂练通考点]1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是________.【解析】对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①不正确;对于②,若a ∥b,a∥α,则应有b∥α或b⊂α,因此②不正确;对于③,若a∥α,b∥α,则应有a∥b或a 与b 相交或a 与b 异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.【答案】02.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________.【解析】对于图形①,平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ;对于图形④,AB ∥PN ,即可得到AB ∥平面MNP ;图形②③无论用定义还是判定定理都无法证明线面平行.【答案】①④3.(2014·南京学情调研)已知α,β为两个不同的平面,m ,n 为两条不同的直线, 下列命题:(1)若m ∥n ,n ∥α,则m ∥α; (2)若m ⊥α,m ⊥β,则α∥β;(3)若α∩β=n ,m ∥α,m ∥β,则m ∥n ; (4)若α⊥β,m ⊥α,n ⊥β,则m ⊥n . 其中是真命题的是________(填序号).【解析】对于(1),由m ∥n ,n ∥α得m ∥α或m ⊂α,故(1)错误;根据空间中直线与平面的平行、垂直关系进行一一判断.【答案】(2)(3)(4)4.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.【解析】连结AM 并延长,交CD 于E ,连结BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 【答案】平面ABC 、平面ABD5.如图,在三棱柱ABC ­A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明:(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC.∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形.∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.。

教案平面与平面平行的判定和性质

教案平面与平面平行的判定和性质

平面与平面平行的判定和性质第一章:教案简介本章将介绍教案平面与平面平行的判定和性质。

通过本章的学习,学生将能够理解并应用平面与平面平行的判定条件,掌握平面与平面平行的性质,并能够运用这些知识解决实际问题。

第二章:平面与平面平行的判定1. 判定条件一:如果两个平面的法向量互相平行,则这两个平面平行。

2. 判定条件二:如果一个平面经过另一个平面的法向量,则这两个平面平行。

3. 判定条件三:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。

第三章:平面与平面平行的性质1. 性质一:平面与平面平行时,它们的法向量互相平行。

2. 性质二:平面与平面平行时,它们的法向量垂直于它们的交线。

3. 性质三:平面与平面平行时,它们的交线平行于它们的法向量。

第四章:应用举例1. 例一:给定两个平面,如何判断它们是否平行?2. 例二:给定一个平面和一条直线,如何判断这条直线是否与平面平行?3. 例三:给定两个平面和它们的交线,如何判断这两个平面是否平行?第五章:练习题1. 判断题:如果两个平面的法向量互相垂直,则这两个平面平行。

(对/错)2. 判断题:如果一个平面经过另一个平面的法向量,则这两个平面平行。

(对/错)3. 判断题:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。

(对/错)4. 应用题:给定两个平面,它们的法向量分别为向量A和向量B。

判断这两个平面是否平行,并说明理由。

5. 应用题:给定一个平面P和一条直线L。

已知平面P的法向量为向量A,直线L的方向向量为向量B。

判断直线L是否与平面P平行,并说明理由。

第六章:教案平面与平面平行的判定和性质的综合应用1. 综合应用一:如何判断一个平面是否平行于另一个平面的交线?2. 综合应用二:如何判断一条直线是否与另一个平面平行?3. 综合应用三:如何判断两个平面是否平行,并确定它们的交线?第七章:教案平面与平面平行的判定和性质的证明题1. 证明题一:已知平面P和Q,证明平面P与平面Q平行的条件是它们的法向量互相平行。

面面平行的判定教案-推荐下载

面面平行的判定教案-推荐下载

平面与平面平行的判定一、教材分析1.1教材所处地位与作用本节课是人教版数学必修(2)第二章第二节第2课内容——平面与平面平行的判定。

本节课是在学生学习了线线、线面关系后,已具有一定的空间几何知识和一定的数学能力和方法的基础上进行的。

两个平面平行的判定定理是立体几何中的一个重要定理。

它揭示了线线平行,线面平行,面面平行的内在联系,体现了转化的思想。

通过本课的学习不仅能进一步培养学生的空间想象能力,逻辑推理能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习平面与平面的垂直打下基础。

1.2教学重点、难点1.2.1教学重点平面与平面平行的判定定理的理解1.2.2教学难点平面与平面平行的判定定理的应用(新教材将线面平行的性质安排在面面平行的判定之后,使得定理无法用理论推理来完成。

因此,我采用观察感知,操作发现的研究方法来解决这一难点。

通过讨论加深印象,设计更多的例子练习直线与直线的平行。

)根据上述教材内容分析,并结合学生的认知水平和思维特点,我将教学目标分为三部分进行说明:1.3目标分析1.3.1知识技能目标1、了解面面平行判定定理的发现过程。

2、理解证明过程必须的三个条件。

3、运用定理进行证明和解决生活中有关的实际问题。

1.3.2过程与方法1、学生通过观察、探究、思考,得出两平面平行的判定定理,体验如何把语言文字描述为数学符号。

2、通过问题的提出与解决,培养学生探究问题、解决问题的能力。

通过对例题的推证,培养学生观察、归纳、猜想、论证的能力。

进一步增强学生空间想象能力、空间问题平面化的思想。

1.3.3情感态度价值观1、通过主动参与探究活动,体验在科学发现中获得成功的喜悦,体验生活中的数学美,激发学习兴趣,养成勇于开拓和创新的科学态度。

2、在师生对图形分析的过程中,培养学生积极进行教学交流,乐于探索创新的科学精神。

3、通过同学之间讨论、互动,培养互帮互助的合作精神。

直线与平面平行的性质教案

直线与平面平行的性质教案

直线与平面平行的性质教案一、教学目标:1. 让学生理解直线与平面平行的概念,掌握直线与平面平行的判定方法。

2. 培养学生运用直线与平面平行的性质解决几何问题的能力。

3. 提高学生的空间想象能力和逻辑思维能力。

二、教学内容:1. 直线与平面平行的定义。

2. 直线与平面平行的判定定理。

3. 直线与平面平行的性质定理。

4. 直线与平面平行在实际问题中的应用。

三、教学重点与难点:1. 教学重点:直线与平面平行的判定方法,直线与平面平行的性质定理。

2. 教学难点:直线与平面平行的性质定理在实际问题中的应用。

四、教学方法:1. 采用讲解法、演示法、讨论法、练习法等相结合的教学方法。

2. 通过实物模型、几何画板等工具,直观展示直线与平面平行的性质。

3. 组织学生进行小组讨论,培养学生的合作意识。

五、教学过程:1. 导入新课:通过展示生活中的实例,引出直线与平面平行的概念。

2. 讲解直线与平面平行的判定方法,引导学生理解并掌握判定定理。

3. 讲解直线与平面平行的性质定理,并通过实物模型、几何画板等进行展示。

4. 组织学生进行小组讨论,探索直线与平面平行的性质在实际问题中的应用。

5. 布置课堂练习,巩固所学知识。

6. 总结本节课的主要内容,强调直线与平面平行的性质在几何问题解决中的重要性。

7. 布置课后作业,鼓励学生深入研究直线与平面平行的性质。

六、教学评价:1. 通过课堂提问、作业批改等方式,评价学生对直线与平面平行概念的理解和判定方法的掌握。

2. 注重评价学生在实际问题中运用直线与平面平行性质的能力,以及空间想象能力和逻辑思维能力的提升。

3. 结合小组讨论情况,评价学生的合作意识和交流沟通能力。

七、教学反馈:1. 收集学生作业,分析掌握情况,针对普遍问题进行有针对性的辅导。

2. 听取学生对课堂教学的反馈意见,了解教学方法的适用性,及时调整教学策略。

3. 关注学生在小组讨论中的表现,鼓励表达自己的想法,提高自信心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面与平面平行的判定
一、教材分析
1.1教材所处地位与作用
本节课是人教版数学必修(2)第二章第二节第2课内容——平面与平面平行的判定。

本节课是在学生学习了线线、线面关系后,已具有一定的空间几何知识和一定的数学能力和方法的基础上进行的。

两个平面平行的判定定理是立体几何中的一个重要定理。

它揭示了线线平行,线面平行,面面平行的内在联系,体现了转化的思想。

通过本课的学习不仅能进一步培养学生的空间想象能力,逻辑推理能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习平面与平面的垂直打下基础。

1.2教学重点、难点
1.2.1教学重点
平面与平面平行的判定定理的理解
1.2.2教学难点
平面与平面平行的判定定理的应用(新教材将线面平行的性质安排在面面平行的判定之后,使得定理无法用理论推理来完成。

因此,我采用观察感知,操作发现的研究方法来解决这一难点。

通过讨论加深印象,设计更多的例子练习直线与直线的平行。

)根据上述教材内容分析,并结合学生的认知水平和思维特点,我将教学目标分为三部分进行说明:
1.3目标分析
1.3.1知识技能目标
1、了解面面平行判定定理的发现过程。

2、理解证明过程必须的三个条件。

3、运用定理进行证明和解决生活中有关的实际问题。

1.3.2过程与方法
1、学生通过观察、探究、思考,得出两平面平行的判定定理,体验如何把语言文
字描述为数学符号。

2、通过问题的提出与解决,培养学生探究问题、解决问题的能力。

通过对例题的
推证,培养学生观察、归纳、猜想、论证的能力。

进一步增强学生空间想象能力、空间问题平面化的思想。

1.3.3情感态度价值观
1、通过主动参与探究活动,体验在科学发现中获得成功的喜悦,体验生活中的数学美,激发学习兴趣,养成勇于开拓和创新的科学态度。

2、在师生对图形分析的过程中,培养学生积极进行教学交流,乐于探索创新的科学精神。

3、通过同学之间讨论、互动,培养互帮互助的合作精神。

二、教法、学法
2.1 教法
美国心理学家布鲁纳指出:“探索是数学教育的生命线”。

遵循“教必须立足于学”的教学理念,为了立足于学生思维发展,着力于知识构建在教法上我采用启发式讲解法。

通过采用提出疑问,引导学生自主思考、探索通过直观感知、操作确认逐步发现平面与平面平行判定的方法,加深对判定定理的理解。

通过问题探究激发学生学习的积极性和创造性,让学生分享到探索知识的方法和乐趣。

2.2 学法
以学生观察实践、自主探究、合作交流为主要形式的启发式讲解法。

强调动脑思考,动手操作,亲身体验,注重多感官参与,多心理能力的投入,通过教师在教学过程中的点拨,启发学生自主探究来达到对知识的发现与领悟。

三、教学设计
3.1 教材
普通高中课程标准实验教科书人教A版必修2
3.2 教学目标
知识与技能:理解平面与平面平行的判定定理,并会初步运用。

过程与方法:主动地去获取知识、发现问题并解决问题
情感态度与价值观:进一步培养观察、发现的能力及空间想象能力
3.3 教学重点
平面与平面平行的判定定理的理解 3.4 教学难点
平面与平面平行的判定定理的应用 3.5 教学用具
多媒体教学设备 3.6 教学方法
启发式讲解法
3.7 板书设计
平面与平面平行的判定
一、 复习回顾 四、课堂小结 平面与平面的位置关系 五、作业 二、 探究揭示新知 猜想1 证明 定理 猜想2
三、 理解应用 1. 问题1 2. 例1
3.8 教学过程
教学活动
活动意图
一、复习回顾引入课程
1、平面与平面间的位置关系 位置关系 两平面平行 两平面相交 公共点 没有公共点
有一条相交直线
符号表示
图形表示
复习旧知,承上启下,为研究新知打下基础。

//αβ
a
αβ⋂=D
α
β
二、探究揭示新知
1、那我们应该如何判定两个平面平行?
(师)由于平面是无限延展,我们比较难于直接判断两平面是否有交点,为此,我们需要寻找比较确实可行的判定方法。

(师)若一个平面内的所有直线都与另一个平面平行,那么这两个平面一定平行(为什么?)(若不平行则有公共点,那么在一个平面内通过这个公共点的直线不平行于另一平面)。

若要证明一个平面内所有的直线与另一平面平行是相当困难的,那么
2、至少需要在一个平面内找多少条平行于另一平面的直线才能证明两平面平行?(一条、两条、或更多)
【探究】
(1)平面β内有一条直线与平面α平行,αβ
、平行吗?
(2)平面β内有两条直线与平面α平行,αβ
、平行吗?((2)问中的两条直线可平行也可相交,因此要分开讨论)
【猜想1】一个平面内的两条相交直线与另一个平面平行,则这两个平面平行学生讨论发表意见。

从直观感知入手,让学生充分经历平面与平面平行的判定定理的探究发现过程。

学生阅读交流提高认识而不是教师讲解,能够使学生感悟知识的应
【证明】
定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行
,,,
//,////a b a b P a b ββαββα
⊂⊂=⇒
【知识挖掘】
①条件注意点:两条直线必须相交;两条直线平行于同一平面; ②转化:面面平行转化为线面平行问题
简而言之:线面平行⇒面面平行
③判定两平面平行的方法
(1) 定义
(2)判定定理:
线线(面面)平行⇒线面平行⇒面面平行
【猜想2】如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行 三、定理的理解及应用 【问题1】:判断下列命题是否正确,正确的说明理由,错误的举例说明:
(1) 已知平面αβ,和直线m,n ,若,,//m n m αββ⊂⊂,
//n β ,则//αβ。

(2) 一个平面α内有两条不平行的直线都平行于另一平面
β,则 //αβ。

例1:如图,在长方体D C B A ABCD ''''-中, 求证:平面//DB C '平面D B A ''
用。

讲解时注意规
范学生书写。

让学生用符号语言表达
让学生拥有整理、消化知识的时间
题目为教材习题,较为灵活帮助学生掌握定理
β
a b
α
【分析】只要证一个平面内有两条相交直线和另一个平面平行即可。

四、课堂小结
本节课主要研究如何判断两平面平行,其途径可以选择从公共点入手,但较为麻烦(常用反证法),也可以用判定定理,其关键在于有两条相直线平行平面且必须相交。

五、作业
1、证明问题1
2、本节练习题2,3
六、教学反思灵活应用所学知识,解决问题。

锻炼逻辑思维
完善认知结构,掌握研究的方法和思路。

不会反思,就不会学习。

巩固知识,开拓思路。

相关文档
最新文档