四年级速算与巧算方法及练习整理
(完整版)四年级奥数速算与巧算

四年级奥数知识点:速算与巧算(一)例1计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成100 0—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例81999+999×999解法1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999 =1999+999×(1000-1) =1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二)例1比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250—3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250—5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x —1, x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一)1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到1 2点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105 +104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?习题解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987) =1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1 993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+ 107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.四年级奥数习题:速算与巧算(二)1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?习题解答1.先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算. 解法1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=375最后算30个数的总和=10+360+375=745.解法2:把每格的数算出填好.先算出10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数.经观察可以列出下式:(23+37)+(25+35)× 2+(27+33)×3+(29+31)× 4= 60 ×(1+ 2+ 3+4)=600最后算总和:总和=145+600=745.2.① 98765 × 98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1)× 98768= 98765 × 98768+ 98768.所以②比①大3.3.同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016是最大的得数.5.85÷5=17为中数,则五个数是:13、15、17、19、21最大的是21,最小的数是13.6.45÷5=9为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数,10是上面一行的中间数,17是下面一行的中间数,10+17=27是上、下两行中间数之和.这个中间数之和可以用81÷3=27求得.利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7)÷2=75 75+1=76最大数是76.。
人教版四年级数学速算

人教版四年级数学速算
人教版四年级数学速算方法有很多,以下是一些常用的速算技巧:
1. 凑整法:将两个或几个数相加或相减凑成整十、整百、整千等,便于计算。
2. 乘法分配律:a×(b+c)=a×b+a×c,公因数提取法:a÷(b×c)=a÷b÷c,除法的性质:a÷b÷c=a÷c÷b。
3. 提取公因数:在加法、减法、乘法算式中,如果几个数的和或差或积有共同的因数,那么这个因数叫做它们的公因数。
如果要从几个数相加或相减或相乘的算式中,把相同的因数提取出来,就叫做提取公因数。
4. 提取公因数的方法:一是直接观察法,二是找准基准数法,三是分解质因数法。
5. 数字的拆分法:将一个数字拆分成两个或几个数字的和或差,再与其他的数相加或相减。
6. 乘法分配律的逆运算:将两个数的和与一个数相乘,等于将这两个数分别与这个数相乘再相加。
7. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或先把后两个数相乘,再乘以第一个数,积不变。
8. 除法的性质:一个数连续除以两个数,等于这个数除以这两个数的积。
9. 商不变的规律:被除数和除数同时扩大或缩小相同的倍数,商不变。
这些速算方法需要在理解的基础上进行记忆和练习,才能熟练运用。
同时也可以参考相关的练习题进行练习,以提高速算能力。
四年级数学思维训练——速算与巧算

【经典例题一】325÷25【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。
325÷25=(325×4)÷(25×4)=1300÷100=13【练一练1】(1)450÷25 (2)525÷25(3)3500÷125 (4)10000÷625(5)49500÷900 (6)9000÷225【经典例题二】计算25×125×4×8【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。
运用了乘法交换律和结合律。
25×125×4×8=(25×4)×(125×8)=100×1000=100000【练一练2】(1)125×15×8×4 (2)25×24 (3)125×16(4)75×16 (5)125×25×32 (6)25×5×64×125【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43【思路导航】利用乘法分配律来计算这两题(1)125×34+125×66 (2)43×11+43×36+43×52+43=125×(34+66) =43×(11+36+52+1)=125×100 =43×100=12500 =4300【练一练3】计算下面各题:(1)125×64+125×36 (2)64×45+64×71-64×16(3)21×73+26×21+21【经典例题四】计算(1)(360+108)÷36 (2)1÷2+3÷2+5÷2+7÷2【思路导航】两个数的和、差除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(差)。
速算与巧算方法完整版

速算与巧算方法HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】速算与巧算一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:①36+87+64 ②99+136+101 ③ 1361+972+639+28解:①式=(36+64)+87②式=(99+101)+136 ③式=(1361+639)+(972+28) =200+136=336 =100+87=187 =2000+1000=30003.拆出补数来先加。
例2 ①198+873 ②548+996 ③9898+203解:①式=(198+2)+(873-2)(熟练之后,此步可略) ③式=(9898+102)+(203-102) =200+871=1071 ②式=(548-4)+(996+4) =10000+101=10101=544+1000=1544二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27 ② -10解:①式= 300-(73+ 27) ②式=1000-(90+80+20+10) =1000-200=800 =300-100=2002.先减去那些与被减数有相同尾数的减数。
四年级速算与巧算方法及练习整理

四年级速算与巧算⽅法及练习整理四年级速算与巧算⽅法随着数学竞赛的蓬勃发展,数值计算充满了活⼒,除了遵循四则混合运算的运算顺序外,破局部考虑、⽴整体分析,巧妙、灵活地运⽤定律和⽅法,对处理⼀些貌似复杂的计算题常常有事半功倍的效果,常见适⽤的巧算⽅法如下:⼀、凑整法整数速算与巧算的基础是凑整思想,通过⽤交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。
运算定律是巧算的⽀架,是巧算的理论依据,根据式题的特征,应⽤定律和性质“凑整”运算数据,能使计算⽐较简便。
1、加法“凑整”。
利⽤加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+(27689+22311)= 10000+50000= 600002、减法“凑整”。
利⽤减法的性质“凑整”,例如:50-13-7= 50-(13+7)= 303、乘法“凑整”。
利⽤乘法交换律、结合律、分配律“凑整”,例如:125×4×8×25×78=(125×8)×(4×25)×78= 1000×100×78= 78000004、补充数“凑整”。
末尾是⼀个或⼏个0的数,运算起来⽐较简便。
若数末尾不是0,⽽是98、51等,我们可以⽤(100-2)、(50+1)等来代替,使运算变得⽐较简便、快速。
⼀般地我们把100叫作98的“⼤约强数”,2叫做98的“补充数”;50叫作51的“⼤约弱数”,1叫作51的“补充数”。
把⼀个数先写成它的⼤约强(弱)数与补充数的差(和),然后再进⾏运算,例如:(1)387+99=387+(100-1)=387+100-1=486(2)1680-89=1680-(100-11)=1680-100+11=1580+11=1591(3)69×101=69×(100+1)=6900+69=6969⼆、基准数法根据数据特征,从诸多数中选择⼀个做计算基础的数,通过“割”、“补”,采⽤“以乘代加”的⽅法速算。
小学四年级数学乘除法的速算与巧算知识点汇总100题练习题

小学四年级数学乘除法的速算与巧算知识点汇总+100题练习题,给孩子收藏!要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.⑵在连除时,可以交换除数的位置,商不变.⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.⑸两个数之积除以两个数之积,可以分别相除后再相乘.上面的三个性质都可以推广到多个数的情形.1001、45+15×6= 1352、250÷5×8=4003、6×5÷2×4=604、30×3+8=985、400÷4+20×5= 2006、10+12÷3+20=347、(80÷20+80)÷4=218、70+(100-10×5)=1209、360÷40= 910、40×20= 80011、80-25= 5512、70+45=11513、90×2= 18014、16×6= 9615、300×6= 180016、540÷9=6017、30×20= 60018、400÷4= 10019、350-80= 27020、160+70=23021、18-64÷8= 1022、42÷6+20=2723、40-5×7= 524、80+60÷3=10025、41+18÷2= 5026、75-11×5= 2027、42+7-29= 2028、5600÷80=7029、25×16= 40030、120×25= 300031、36×11= 39632、1025÷25=4133、336+70= 40634、25×9×4= 90035、200-33×3= 10136、3020-1010=201037、12×50= 60038、25×8= 20039、23×11= 25340、125÷25=541、4200-2200=200042、220+80= 30043、20×8×5= 80044、600-3×200=045、20+20÷2= 3046、35-25÷5= 3047、36+8-40= 448、2800÷40=7049、98÷14 = 750、96÷24 = 451、56÷14 =452、65÷13 = 553、75÷15 = 554、120÷24 =555、200÷25 = 856、800÷16 = 5057、840÷21 =4058、560÷14 = 4059、390÷13 = 3060、600÷15 =4061、72÷24 = 362、85÷17 = 563、90÷15 =665、78÷26 = 466、51÷17 =367、80÷40 = 268、100÷20 = 569、100÷4 =2570、240÷40 = 671、920÷4 = 23072、300÷60=573、64÷2 = 3274、64÷4 = 1675、50÷5 =1076、60÷8 = 7、577、96÷4 = 2478、90÷6 =1579、400+80 = 48080、400-80 = 32081、40×80 =320082、400÷80 = 583、48÷16 = 384、96÷24 =485、160×5= 80086、4×250= 100088、10×76= 76089、36×10=36090、15×6= 9091、24×3= 7292、5×18= 9093、26×4= 7494、7×15=10595、32×30= 96096、40×15= 60097、60×12= 72098、23×30= 69099、30×50=1500 100、5×700=3500。
四年级速算、巧算方法

速算与巧算方法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。
运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整”运算数据,能使计算比较简便。
1、加法“凑整”。
利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+(27689+22311)= 10000+50000= 600002、减法“凑整”。
利用减法的性质“凑整”,例如:50-13-7= 50-(13+7)= 303、乘法“凑整”。
利用乘法交换律、结合律、分配律“凑整”,例如:125×4×8×25×78=(125×8)×(4×25)×78= 1000×100×78= 78000004、补充数“凑整”。
末尾是一个或几个0的数,运算起来比较简便。
若数末尾不是0,而是98、51等,我们可以用(100-2)、(50+1)等来代替,使运算变得比较简便、快速。
一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51的“大约弱数”,1叫作51的“补充数”。
把一个数先写成它的大约强(弱)数与补充数的差(和),然后再进行运算,例如:(1)387+99=387+(100-1)=387+100-1=486(2)1680-89=1680-(100-11)=1680-100+11=1580+11=1591(3)69×101=69×(100+1)=6900+69=6969二、基准数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。
四年级奥数第一讲-速算与巧算含答案

第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。
二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。
解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。
解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级速算与巧算方法
随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:
一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。
运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整”运算数据,能使计算比较简便。
1、加法“凑整”。
利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311
=(4673+5327)+(27689+22311)
= 10000+50000
= 60000
2、减法“凑整”。
利用减法的性质“凑整”,例如:
50-13-7
= 50-(13+7)
= 30
3、乘法“凑整”。
利用乘法交换律、结合律、分配律“凑整”,例如:
125×4×8×25×78
=(125×8)×(4×25)×78
= 1000×100×78
= 7800000
4、补充数“凑整”。
末尾是一个或几个0的数,运算起来比较简便。
若数末尾不是0,而是98、51等,我们可以用(100-2)、(50+1)等来代替,使运算变得比较简便、快速。
一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51的“大约弱数”,1叫作51的“补充数”。
把一个数先写成它的大约强(弱)数与补充数的差(和),然后再进行运算,例如:
(1)387+99
=387+(100-1)
=387+100-1
=486
(2)1680-89
=1680-(100-11)
=1680-100+11
=1580+11
=1591
(3)69×101
=69×(100+1)
=6900+69
=6969
二、基准数法
根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。
例如:
17+18+16+17+14+19+13+14
(解题时,可以选择17为基准数,以乘代加解答如下。
)=17×8+1-1-3+2-4-3
=17×8-8 =128
三、公式法
等差数列,是指每两个相邻的数之间差都相等的数列。
等差数列求和,可以用公式:和=(首项+尾项)×项数÷2。
例如:13+14+15+16+17+18+19+20+21+22 =(13+22)×10÷2 =175
另外,如果加数的项数是奇数个,也可以直接用排列在正中间的数(中间项)乘以项数,去求它们的和。
例如:3+5+7+9+11+13+15+17+19 =11×9 ……中间项×项数=99
四、变形法
恒等变形是一种重要的思想和方法,也是一种重要的解题技巧。
它利用我们学过的知识,去进行有目的的数学变形,常常能使题目很快地获得解答。
例如:计算9999×2222+3333×3334 (此题如果直接乘,数字较大,容易出错。
如果将9999变为3333×3,规律就出现了)
9999×2222+3333×3334
=3333×3×2222+3333×3334
=3333×6666+3333×3334
=3333×(6666+3334)
=3333×10000
=33330000
五、图形法
用长方形的长表示一个因数,用长方形的宽表示另一个因数,再用长方形的面积图进行分析,形象直观,新颖别致。
例如:9876×9876-9875×9877
如上图,9876×9876为正方形面积,9875×9877为长方形面积,所以,9876×9876-9875×9877等于正方形面积减去长方形面积,即下边小长方形面积减去右边小长方形面积:原式=9876×1-9875×1=1
9+99+999+9999 489+487+483+485+484+486+488 632-156-232 128+186+72-86
248+(152-127)324-(124-97)
286+879-679 812-593+193
25×125×4×8
325÷25
(360+108)÷36 (450-75)÷15 123×96÷16 200÷(25÷4)158×61÷79×3
26×25 2004×25 125×792
123×9 234×99 256×999 1999+999×999 123×15÷5
125×32×25 1200÷25÷4
120×80÷60。