制氢工艺技术比较分析

制氢工艺技术比较分析
制氢工艺技术比较分析

制氢工艺技术比较分析

发表时间:2018-12-05T20:54:23.827Z 来源:《电力设备》2018年第22期作者:艾腾筐[导读] 摘要:随着国家的发展,制氢工艺技术的应用受到广泛关注,但是,由于制氢工艺技术种类很多,应用效果与效益存在差异,因此,在应用之前应重视各类工艺技术之间的对比分析,并采用科学化与合理化的方式开展综合研究工作,探索新时期的主要制氢工艺技术方式,为产业化的发展夯实基础。

(新疆美克化工股份有限公司新疆维吾尔自治区巴音郭楞蒙古自治州 841000)摘要:随着国家的发展,制氢工艺技术的应用受到广泛关注,但是,由于制氢工艺技术种类很多,应用效果与效益存在差异,因此,在应用之前应重视各类工艺技术之间的对比分析,并采用科学化与合理化的方式开展综合研究工作,探索新时期的主要制氢工艺技术方式,为产业化的发展夯实基础。

关键词:制氢;工艺技术;比较

氢气属于我国重要工业产品之一,广泛应用在石油领域、化工领域、建材领域、冶金领域、电子领域、医药领域、电力领域、轻工业领域、气象领域与交通领域,在不同领域应用中对氢气的纯度与杂质含量要求不同。因此,为了结合各个领域的氢气需求,应筛选效率较高的制氢工艺与相关配套装置,提升经济效益并保证生产工作灵活性,满足安全管理需求,加大新工艺技术的应用力度。

一、制氢工艺技术方式分析

第一,电解水制氢工艺技术。对于此类工艺技术而言,属于我国常用且发展成熟的制氢方法,主要将水作为原材料,形成氢气与氧燃料生成水的逆过程,达到制氢的目的。因此,在实际制作的过程中,需要提供一定能量,并促进水分解,例如:提供电能,可以促进水分解,制氢效率为86%左右,工艺的应用较为简单,没有污染问题,且经济效益较高,但是,在实际应用过程中,对配电功率的要求很大,单套装置难以完成任务,因此,在很多区域中受到限制。

第二,天然气转化制氢工艺技术。此类方式就是在催化剂的作用之下,使得水蒸气转化成为氢气,通常反应温度为810摄氏度左右。此类工艺技术所制成的氢气含量在74%左右,很多大型加工厂中都在使用天然气作为燃料,对蒸汽进行催化,制取氢气。但是,此类工艺技术在实际应用期间,流程较为繁琐,需要投入的成本很高,消耗的能源也很多,对生态环境会产生一定影响。因此,我国已经开始针对此类工艺技术进行整改,开发间歇式的天然气蒸汽制作工艺技术,在小型设备的支持下,降低制取成本。但是,由于原材料的分布不均匀,导致此类方式的应用受到一定限制。

第三,没碳化制氢工艺技术。此类技术将煤设置在与空气相互隔绝的环境中,温度为950摄氏度左右,制取焦炭,副品就是焦虑煤气,其中含有60%左右的氢气。对于焦炉煤气而言,在去除杂质之后,可以进行氢气的提取,但是,此类工艺技术的应用流程较为复杂,需要投入的资金量较高,存在制约。

第四,煤气化制氢工艺技术。此类技术就是创建固定床类型的汽化炉设备,所制取的煤气中含有40%氢气。在煤气杂质处理之后,可以使用相关装置进行氢气的制取,且费用很低,氢气的提取效率较高,可以应用在生产中。

第五,甲醇水蒸气转化制氢工艺技术。通常情况下,在甲醇与脱盐水蒸汽相互混合之后,将其放置在加压加热的的容器中,可以形成催化与转化作用,生成75%的氢气。在变压吸附的过程中,应使用吸附剂,根据压力变化对吸附剂的剂量进行动态化调整,在高压环境中对原料中杂质进行吸附,在低压环境中对杂质进行脱附处理,保证吸附剂的再生应用。此类技术的使用可以进行脱盐水与循环液缓冲罐中的甲醇、水等混合在一起,在循环液体升压泵的支持下,进行加压处理,将其与甲醇冲关升压泵加压之后的甲醇原料混合在一起,然后设置在换热器设备中,形成自转化器的转化作用,完成第一次热交换。在此之后,将原料液体放置在汽化塔设备中,然后在沸腾器与导热油的作用之下实现二次加热,进行汽化处理。在转化之后进入到脱碳的程度中,在八塔七次均压环境之下,进行真空变压吸附处理,制取出相关气体,将杂质排放在大气中。对于半成品气体而言,还需进入到PSA制氢工艺环节中,实现提纯处理目的,此时的氢气纯度甚至可以达到99.99%。在使用甲醇水蒸气转化制氢工艺技术的过程中,工艺流程较为简单,需要支付的成本很少,且操作灵活性很高,制氢规模在8000nm3/小时左右,有利于进行精细化生产与制作,因此,在实际生产的过程中,应合理使用此类工艺技术,遵循科学化与合理化的工作原则,编制完善的计划方案,在提升整体工作质量与制氢工艺技术应用水平的基础上,更好的完成当前任务,达到预期的工作目的。

二、制氢工艺技术比较

对于电解水制氢工艺技术而言,主要使用的原材料为水,制取规模为300nm3/小时,装置在使用过程中规模很小,建设的周期很多,使用便利性高,操作灵活,但是存在耗电量大的缺点[1]。

天然气转化制氢工艺技术的应用原材料为天然气与水,制取规模为4000nm3/小时左右,工艺流程较为复杂,配套装置的安装与建设时间长,需要支付较高投资成本。

煤焦化制氢工艺技术在应用期间,原材料为煤与水,制取规模为10000nm3/小时左右,但是,煤炭的资源分布不均匀,煤焦化的工艺流程会受到一定影响[2]。

煤气化制取技术在应用过程中,原材料为煤与水,制取规模为10000nm3/小时左右,工艺流程较为复杂,对生态环境会产生污染[3]。

甲醇水蒸气转化技术的原材料为甲醇与水,制取规模为8000nm3/小时左右。在生产过程中,甲醇原材料容易获取,运输与存储便利性高,需要投入的资金成本很低,且基础设施的建设时间很短,能耗较少。同时,此类技术在应用期间的工艺流程很简单,灵活性符合要求[4]。

综合对比分析可以发现,甲醇水蒸气转化制氢工艺技术的应用效果较高,能够打破传统工艺技术局限性,降低成本提升制氢工艺技术应用效果,因此,需予以足够重视,广泛进行推广应用[5]。

结语:

综上所述,对比分析各类制氢工艺技术,甲醇水蒸气转化制氢技术的应用效果较为良好,因此,在实际生产期间应总结丰富经验,合理应用此类工艺技术开展工作,确保满足当前的时代发展需求。

参考文献:

[1]杨小彦,陈刚,殷海龙,等.不同原料制氢工艺技术方案分析及探讨[J].煤化工,2017(6):40-43.

[2]刘晓丽.制氢工艺技术比较[J].当代化工研究,2016(5):78-79.

气制氢装置工艺流程简介及主要设备情况说明

制氢装置工艺流程简介及主要设备情况说明 天然气制氢装置于2008年从中石化洞氮合成氨车间原料气头部分搬迁至神华。当年设计、当年施工,当年投产。目前运行良好。 工艺流程简要说明如下。 界区来的1.5MPa压力等级的天然气或液化干气在0101-LM和116-F脱液和除去杂质,进入原料气压缩机102-J压缩至4.2MPa, 通过调节进入转化炉对流段加热至350℃左右,进入加氢反应器 101-D加氢(有机硫转化为无机硫),氧化锌脱硫反应器108- DA/DB除去无机硫(H2S),然后与装置内中压蒸汽管网来的 3.5MPa等级的蒸汽混合,在转化炉对流段加热至500±10℃,进入一段转化炉101-B,在镍系催化剂和高温的作用下反应,约80%左 右的原料气转化生成CO、CO2、H2,工艺介质的温度从810℃降至330℃,其中的热量在废热锅炉101-CA/CB、102-C中得到回收利用,副产10.0MPa压力等级的蒸汽,减压并入装置内3.5MPa蒸汽管网。降温后的工艺介质进入高变反应器104DA将大部分的CO变换成 CO2,回收部分氢气,再在低变反应器104DB中反应,将少量的 CO变换成CO2和H2,经过热量回收和液体脱除后,工艺介质进入脱碳系统吸收塔1101-E,与上部下来的碳酸钾溶液对流换热、脱除CO2,吸收了热量和CO2的碳酸钾溶液从塔底进入再生塔1101-E 再生,脱除CO2后的工艺介质(氢气含量大于93%)从吸收塔顶去PSA工序,经过变压吸附得到纯度为99.5%以上的氢气,经压缩至3.0MPa送至全厂氢气管网,经过变压吸附吸附下来的富甲烷气作为燃料送至装置内转化炉燃烧。流程简图如下:

炼厂干气制氢工艺流程介绍

干气制氢工艺流程 (一)造气单元 1、进料系统 来自装置外的焦化干气进入原料气缓冲罐,经原料气压缩机压缩至3.2MPa(G)后进入原料气脱硫部分。 2、脱硫部分 进入脱硫部分的原料气经原料气-中变气换热器或开工加热炉(开工时用)升温到230℃左右进入加氢反应器,在其中原料中的不饱和烃通过加氢转化为饱和烃类,床层温度升至380℃左右,此外通过加氢反应,原料中的有机硫转化为无机硫,然后进入氧化锌脱硫反应器脱除硫化氢和氯化氢。经过精制后的气体总硫含量小于0.5PPm,氯化氢含量小于1 PPm,进入转化部分。 3、转化部分 精制后的原料气按水碳比3.5与自产的3.5MPa水蒸汽混合,再经转化炉对流段予热至500℃,进入转化炉辐射段。在催化剂的作用下,发生复杂的水蒸汽转化反应。整个反应过程是吸热的,所需热量由分布在转化炉顶部的气体燃料烧嘴提供,出转化炉840℃高温转化气经转化气蒸汽发生器换热后,温度降至360℃,进入中温变换部分。 4、变换部分 来自转化气蒸汽发生器约360℃的转化气进入中温变换反应器,在催化剂的作用下发生变换反应,将变换气中CO含量降至3%左右。中变气经原料气-中变气换热器、中变气蒸汽发生器、中变气-脱氧水换热器、中变气-除盐水换热器进行热交换回收大部分余热后,再经中变气空冷器冷却至40℃,并经分水后进入中变气PSA单元。 5、热回收及产汽系统 来自装置外的脱盐水与来自酸性水气提塔的净化水混合并经中变气-除盐水换热器预热后进入除氧器。除氧水经锅炉给水泵升压后,再经中变气-脱氧水换热器预热后进入中压汽包。

锅炉水通过自然循环的方式分别经过转化炉对流段的产汽段及转化气蒸汽发生器产生中压蒸汽。所产生的中压蒸汽在转化炉对流段蒸汽过热段过热至440℃离开汽包。一部分蒸汽作为工艺蒸汽使用;另一部分进入全厂中压蒸汽管网。 (二)中变气PSA单元 来自造气单元压力约2.1MPa(G)、温度40℃中变气进入界区后,自塔底进入吸附塔中正处于吸附工况的塔(始终同时有两台),在其中多种吸附剂的依次选择吸附下,一次性除去氢以外的几乎所有杂质,获得纯度大于99.9 的产品氢气,经压力调节系统稳压后送出装置。 当吸附剂吸附饱和后,通过程控阀门切换至其它塔吸附,吸附饱和的塔则转入再生过程。在再生过程中,吸附塔首先经过连续四次均压降压过程尽量回收塔内死空间氢气,然后通过顺放步序将剩余的大部分氢气放入顺放气罐(用作以后冲洗步序的冲洗气源),再通过逆放和冲洗两个步序使被吸附杂质解吸出来。逆放解吸气进入解吸气缓冲罐,冲洗解吸气进入解吸气缓冲罐,然后经调节阀调节混合后稳定地送往造气单元的转化炉作为燃料气。

制氢的全部方法

制氢的全部方法 一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。 二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制

甲醇制氢工艺简介

甲醇制氢工艺简介 1前言 氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品与农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。 对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。 西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。第一套600Nm3/h制氢装置于1993年7月在广州金珠江化学有限公司首先投产开车,在得到纯度99、99%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。此项目于93年获得化工部优秀设计二等奖、94年获广东省科技进步二等奖。 2工艺原理及其特点 本工艺以来源方便的甲醇与脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢与二氧化碳转化气,其原理如下: 主反应: CH3OH=CO+2H2 +90、7 KJ/mol CO+H2O=CO2+H2 -41、2 KJ/mol 总反应: CH3OH+H2O=CO2+3H2 +49、5 KJ/mol 副反应: 2CH3OH=CH3OCH3+H2O -24、9 KJ/mol CO+3H2=CH4+H2O -+206、3KJ/mol 上述反应生成的转化气经冷却、冷凝后其组成为 H2 73~74% CO2 23~24、5% CO ~1、0% CH3OH 300ppm H2O 饱与 该转化气很容易用变压吸附等技术分离提取纯氢。 广州金珠江化学有限公司600Nm3/h制氢装置自93年7月投产后,因后续用户双氧水的扩产,于97年4月扩产1000Nm3/h制氢装置投产,后又扩产至1800Nm3/h,于2000年3月投产。本工艺制氢技术给金珠江化学有限公司带来良好的经济效益。 目前国内应用此技术的企业已近百家,通过几年来的运转证明,本工艺技术成熟、操作方便,运转稳定、无污染。 本工艺技术有下列特点: 1、甲醇蒸汽在专用催化剂上裂解与转化一步完成。 2、采用加压操作,产生的转化气不需要进一步加压,即可直接送入变压吸附分离装置,降低了能耗。 3、与电解法相比,电耗下降90%以上,生产成本可下降40~50%,且氢气纯度高。与煤造气相比则显本工艺装置简单,操作方便稳定。煤造气虽然原料费用稍低,但流程长投资大,且污染大,杂质多,需脱硫净化等,对中小规模装置不适用。 4、专用催化剂具有活性高、选择性好、使用温度低,寿命长等特点。 5、采用导热油作为循环供热载体,满足了工艺要求,且投资少,能耗低,降低了操作费用。 3工艺过程

制氢装置工艺流程说明

制氢装置工艺流程说明 1.1 膜分离系统 膜分离单元主要由原料气预处理和膜分离两部分组成。 混合加氢干气经干气压缩机升压至 3.4MPa,升温至110℃,首先进入冷却器(E-102)冷却至45℃左右,然后进入预处理系统,预处理系统由旋风分离器(V-101)、前置过滤器(F-101AB)、精密过滤器(F-102AB)和加热器(E-101)组成。 预处理的目的是除去原料气中可能含有的液态烃和水,以及固体颗粒,从而得到清洁的饱和气体,为防止饱和气体在膜表面凝结,在进入膜分离器前,先进入加热器(E-101)加热到80℃左右,使其远离露点。 经过预处理的气体直接进入膜分离器(M-101),膜分离器将氢气与其他气体分离,从而实现提纯氢气的目的。 每个膜分离器外形类似一管壳式热交换器,膜分离器壳内由数千根中空纤维膜丝填充,类似于管束。原料气从上端侧面进入膜分离器。由于各种气体组分在透过中空纤维膜时的溶解度和扩散系数不同,导致不同气体在膜中的相对渗透速率不同,在原料气的各组分中氢气的相对渗透速率最快,从而可将氢气分离提纯。 在原料气沿膜分离器长度方向流动时,更多的氢气进入中空纤维。在中空纤维芯侧得到94%的富氢产品,称为渗透

气,压力为1.3 MPa(G),该气体经产品冷却器(E-103)冷却到40℃后进入氢气管网。 没有透过中空纤维膜的贫氢气体在壳侧富集,称为尾气,尾气进入制氢下工序。 本单元设有联锁导流阀(HV-103)和联锁放空阀(HV-104),当紧急停车时,膜前切断阀(HV-101)关闭,保护膜分离器,同时HV-103和HV-104自动打开,保证原料气通过HV-103直接进入制氢装置,确保制氢装置连续生产;通过HV-104的分流,可以保证通过HV-103进入制氢装置的气体流量不至于波动过大,使制氢装置平稳运行。 1.2 脱硫系统 本制氢装置原料共有三种:轻石脑油、焦化干气、加氢干气(渣油加氢干气、柴油加氢脱硫净化气、加氢裂化干气)。 以石脑油为原料时,石脑油由系统管网进入,先进入原料缓冲罐(V2001),然后由石脑油泵(P2001A、P2001B、P2001C、P2001D)抽出经加压至4.45MPa后进入原料预热炉(F2001)。钴-钼加氢脱硫所需的氢气,由柴油加氢装置来,但是一般采用南北制氢来的纯氢气或由PSA返回的自产氢经压缩机加压后在石脑油泵出口与石脑油混合,一起进入原料预热炉。 以加氢干气和焦化干气为原料时,干气首先进入加氢干气分液罐(V2002),经分液后进入加氢干气压缩机(C2001A、

制氢方法简介

各种制氢方法简介 ........................................................................................... 氢能是一种二次能源,在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少。因此必需将含氢物质力UI后方能得到氢气。最丰富的含氢物质是水(H2O),其次就是各种矿物燃料(煤、石油、天然气)及各种生物质等。因此要开发利用这种理想的清洁能源,必需首先开发氢源,即研究开发各种制氢的方法。从长远看以水为原料制取氢气是最有前途的方法,原料取之不尽,而且氢燃烧放出能量后又生成产物水,不造成环境污染。各种矿物燃料制氢是目前制氢的最主要方法,但其储量有限,且制氢过程会对环境造成污染。其它各类含氢物质转化制氢的方法目前尚处次要地位,有的正在研究开发,但随着氢能应用范围的扩大,对氢源要求不断增加,也不失为一种提供氢源的方法。 1.电解水制氢 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定的能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75~85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。目前水电解的工艺、设备均在不断的改进:对电解反应器电极材料的改进,以往电解质一般采用强碱性电解液,近年开发采用固体高分子离子交换膜为电解质,且此种隔膜又起到电解池阴阳极的隔膜作用;在电解工艺上采用高温高压参数以利反应进行等。但水电解制氢能耗仍高,一般每立方米氢气电耗为4.5~5.5kWh左右。电能可由各种一次能源提供,其中包括矿物燃料、核能、太阳能、水能、风能及海洋能等等,核能、水能和海洋能其资源丰富,能长期利用。我国水力资源丰富,利用水力发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高、成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电解制得氢气并用氢作为中间载能体来调节、贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制得氢气作原料而非作为能源。对电解反应中电极过程、电极材料等方面课题南开大学、首都师范大学等单位均曾开展研究,随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。 以水为原料的热化学循环分解水制氢方法,避免了水直接热分解所需的高温(4000K以上),且可降低电耗,受人们的重视小该方法是在水反应系统中加入一中间物,经历不同的反应阶段,最终将水分解为氢和氧,中间物不消耗,各阶段反应温度均较低。如美国通用原子能公司(GA公司)提出的硫一碘热化学制氢循环: 近年已先后研究开发了20多种热化学循环法,有的已进入中试阶段,我国在该领域基本属空白,应积极赶上。 光化学制氢是以水为原料,光催化分解制取氢气的方法。光催化过捏是指含有催化剂的反应体系,在光照下由于有催化剂存在,促使水解制得氢气。在70年代开始国外有研究报道,我国中科院感光所等单位也开展了研究。该方法具有开发前景,但目前尚处于基础研究阶段。 2.矿物燃料制氢 以煤、石油及天然气为原料制取氢气是当今制取氢气最主要的方法。制得氢气主要作为化工原料,如生产合成氨、合成甲醇等。有时某些含氢气体产物亦作为气体燃料供城市煤气。用矿物燃料制氢的方法包括含氢气体的制造、气体中CO组份变换反应及氢气提纯等步骤。该方法在我国都具有成熟的工艺,井建有工业生产装置。 (1)以煤为原料制取氢气 以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在900-1000°C制取焦碳,副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)、甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤

城市燃气门站工艺简介

城市燃气门站工艺简介 城市天然气门站、储配站是城市天然气输配系统的重要基础设 施。其中门站是城市输配系统的气源点,也是天然气长输管线进入城市燃气管网的配气站,其任务是接收长输管线输送来的燃气,在站内进行过滤、调压、计量、加臭、分配后,送入城市输配管网或直接送入大用户。而天然气高压储配站的主要功能是储存燃气、减压后向城市输气管网输送燃气。为了保证储配站正常工作,高压干管来气在进入调压器前也需过滤、加臭和计量。 一、城市门站、储配站的工艺流程 城市门站、储配站应具有过滤、调压、计量、气质检测、安全放 散、安全切断、使用线和备用线的自动切换等主要功能,且要求在保证精确调压和流量计量的前提下,设计多重的安全措施,确保用气的长期性、安全性和稳定性。 1、工艺流程设计 在进行门站、储配站的工艺设计时,应考虑其功能满足输配系统输气调度和调峰的要求,根据输配系统调度要求分组设计计量和调压装置,装置前设过滤器,调压装置应根据燃气流量、压力降等工艺条件确定是否需设置加热装置。进出口管线应设置切断阀门和绝缘法兰,站内管道上需根据系统要求设置安全保护及放散装置。在门站进

站总管上最好设置分离器,当长输管线采用清管工艺时,其清管器的接收装置可以设置在门站内。 站内设备、仪表、管道等安装的水平间距和标高均应便于观察、操作和维修。要设置流量、压力和温度计量仪表,并选择设置测定燃气组分、发热量、密度、湿度和各项有害杂质含量的仪表。 储配站所建储罐容积应根据输配系统所需储气总容量、管网系统的调度平衡和气体混配要求确定,具体储配站的储气方式及储罐形式应根据燃气进站压力、供气规模、输配管网压力等因素,经技术经济比较后确定。确定储罐单体或单组容积时,应考虑储罐检修期间供气系统的调度平衡。 2、城市门站工艺流程 门站的工艺流程图 清粋球通过推示器

水电解制氢工序操作规程

水电解制氢工序操作规程 编制: 审核: 批准: 生效日期:2013年10 月

目录 第一节生产的目的及工作原理 一、生产的目的 二、工作原理 (一)电解工作原理.......................................... (二)纯化工作原理.......................................... 第二节质量标准及技术参数 一、原料质量标准 (一)脱盐水质要求:........................................ (二)氢氧化钾.............................................. (三)冷却水................................................ (四)电源.................................................. (五)氮气.................................................. (六)仪表气源.............................................. 二、工艺及设备技术参数 (一)电解槽工艺技术参数.................................... (二)纯化装置工艺技术参数.................................. 三、产品质量标准错误!未定义书签。 第三节工艺流程简介 一、制氢装置工艺流程简介 (一)碱液循环系统.......................................... (二)氢气系统.............................................. (三)氧气系统.............................................. (四)原料水补充系统........................................ (五)冷却水系统............................................ (六)充氮和氮气吹扫系统.................................... (七)排污系统 (八)整流系统 (九)控制系统 二、纯化系统工艺流程简介 (一)工艺流程简图.......................................... (二)工艺流程解释.......................................... 第四节电解液配置岗位操作法 一、制氢系统的操作 (一)开车前的准备 (二)、电解液的配制 (三)稀碱运行(1#电解槽为例,其它电解槽运行同1#电解槽) (四)浓碱运行(以1#电解槽为例,其他电解槽运行同1#) (五)自控部分的调试 (六)装置正常运行工作 (七)停车操作 (八)应急停车操作

水电解制氢装置工作原理结构及工艺流程

水电解制氢装置 工作原理结构及工艺流程 1.水电解制氢装置工作原理 水电解制氢的原理是由浸没在电解液中的一对电极中 间隔以防止气体渗透的隔膜而构成的水电解池 ,当通以一定 的直流电时,水就发生分解,在阴极析出氢气 ,阳极析出氧气。 其反应式如下: 阴 极: 2H 2O +2e →H 2↑+2OH - 阳 极: 2OH - -2e →H 2O +1/2O 2↑ 直流额定电压(V ) 28 56 总反应: 2H 2O →2H 2↑+O 2↑ 产生的氢气进入干燥部分,由干燥剂吸附氢气携带的水 分,达到用户对氢气湿度的要求。 本装置干燥部分采用原料氢气再生,在一干燥塔再生的 同时,另一干燥塔继续进行工作。 2.水电解制氢装置的用途与技术参数

纯水耗量(kg/h) 5 10 主电源动力电源容量40 75 (KVA) 原料水水质要电导率≤5μs/cm 氯离子含量<2mg/l 悬浮求物<1mg/l 3 冷却水用量(m/h) 3 整流柜冷却水出口背压<0.1Mpa 电解槽直流电耗≤4.8KWh/m3H2 碱液浓度26~30%KOH 自控气源压力0.5~0.7Mpa 气源耗量 3.5m3/h 主电源动力电电压N380V50HzC相~220V50Hz 整流柜电源0.5KV380 三相四线50Hz 控制柜电源AC220V50Hz 冷却水温度≤32℃ 冷却水压力0.4~0.6MPa

冷却水水质≤6德国度 氢气出口温度≤40℃ 干燥温控温度250℃~350℃ 干燥加热终止温度180℃ 干燥器再生周期24h 环境温度0~45℃ 表1 制氢装置主要技术参数表 2.1设备的用途 CNDQ系列水电解制氢干燥装置是中国船舶重工集团 公司第七一八研究所新研制 成功并独家生产的全自动操作的制氢干燥设备,其主要技术指标达到或超过九十年代末世界先进水平,适用于化工、冶金、电子、航天等对氢气质量要求高的部门,是目前国内最先进的并可替代进口的制氢设备。 2.2主要技术参数 CNDQ5~10/3.2型水电解制氢干燥装置的主要技术参数 如表1

变压吸附制氢工艺

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余

氨分解炉的氨分解制氢设备工艺流程简述

一、氨分解制氢流程简述: 利用液氨为原料,氨经裂解后,每公斤液氨裂解可制得2.64Nm3混合气体,其中含75%的氢气和25%的氮气。所得的气体含杂质较少(杂质中含水汽约2克/立方米,残余氨约1000ppm),再通过分子筛(美国UOP)吸附纯化器,气体的露点可降至-60℃以下,残余氨可降至3PPM以下.氨裂解制氢炉可用于有色金属,硅钢、铬钢和不锈钢等金属材料和零件的光亮退火、硅钢片的脱碳处理、铜基、铁基粉末冶金烧结、电真空器件的金属零件烧氢处理、半导体器件的保护烧结和封结、钯合金膜扩散纯化氢气的原料气等。 原料氨容易得到,价格低廉,原料消耗较少。氨裂解来制取保护气体具有投资少,体积小,效率高等优点(苏州宏博净化设备提供氨分解制氢一站式气体解决方案) 二、氨分解制氢工作原理: 氨(气态)在一定温度下,经催化剂作用下裂解伟75%的氢气和25%的氮气,并吸收21.9千卡热量,其主要反应为:2NH3=3H2+N2-21.9千卡,整个过程因是吸热膨胀反应,提高温度有利于氨裂解,同时它又是体积扩大的反应,降低压力有利于氨的分解,氨分解制氢设备为使用最佳状态。 三、氢气纯化工作原理: 当氨分解制氢设备所产生的氢气合格时再进入氢气纯化作进一步提纯处理,裂解氢气的纯度很高,其中挥发性杂质只有微量的残氨和水分,可见只须除去微量残氨和水分,即可获得高纯度气体。 气体提纯采用变温吸附技术。变温吸附(TSA)技术是以吸附剂(多孔固体物质),内部表面对气体分子在不同温度下吸附性能不同为基础的一种气体分离纯化工艺。常温时吸附杂质气,加温时脱付杂质气,分子筛表面全是微孔,在常温常压下可吸附相当于自重20%静态时吸附的水分和杂质,

电解制氢工序操作规程2

四川瑞能硅材料有限公司 CDI车间 电解制氢工序操作规程 编制:宋涛 审核: 批准:

生效日期:2010年10 月

目录 第一节生产的目的及工作原理 一、生产的目的 二、工作原理 (一)电解工作原理.......................................... (二)纯化工作原理.......................................... 第二节质量标准及技术参数 一、原料质量标准 (一)脱盐水质要求:........................................ (二)氢氧化钾.............................................. (三)冷却水................................................ (四)电源.................................................. (五)氮气.................................................. (六)仪表气源.............................................. 二、工艺及设备技术参数 (一)电解槽工艺技术参数.................................... (二)纯化装置工艺技术参数.................................. 三、产品质量标准错误!未定义书签。 第三节工艺流程简介 一、制氢装置工艺流程简介 (一)碱液循环系统.......................................... (二)氢气系统.............................................. (三)氧气系统.............................................. (四)原料水补充系统........................................ (五)冷却水系统............................................

LNG气化站工艺流程图模板

LNG气化站工艺流程图模 板 1

LNG 气化站工艺流程图 如图所示, LNG经过低温汽车槽车运至LNG卫星站, 经过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压, 利用压差将LNG送至卫星站低温LNG储罐。工作条件下, 储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器, 与空气换热后转化为气态天然气并升高温度, 出口温度比环境温度低10℃, 压力为0.45-0.60 MPa, 当空温式气化器出口的天然气温度达不到5℃以上时, 经过水浴式加热器升温, 最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网, 送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气( Liquefied Natural Gas) 的简称, 主要成分是甲烷。先将气田生产的天然气净化处理, 再经超低温( -162℃) 加压 2

液化就形成液化天然气。 LNG无色、无味、无毒且无腐蚀性, 其体积约为同量气态天然气体积的1/600, LNG的重量仅为同体积水的45%左右。 一、 LNG气化站主要设备的特性 ①LNG场站的工艺特点为”低温储存、常温使用”。储罐设计温度达到负196( 摄氏度LNG常温下沸点在负162摄氏度) , 而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好, 阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好, 而且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力, 因此低温液体泵要求提高频率和扩大功率要快, 一般在几秒至十几秒内就能满足要求, 而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震, 耐台风和满足设计要求, 达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范; 气化器和低温烃泵在国内均无相关法规加以规范, 在其制造过程中执行美国相关行业标准, 在压 3

水电解制氢流程及操作要点

水电解制氢流程及操作要点 二、操作要点 1、水电解槽工作温度。通过氧侧温度变送器把温度信号传送给PLC系统,数据经处理后,控制气动薄膜调节阀来监控碱液温度而实现工作温度保持在80~90℃。工作温度过高会加速水电解槽内腐蚀,缩短石棉橡胶垫的使用寿命,影响运行周期;温度过低会使电解液电阻增加,极间电压升高,能耗增大。 2、水电解槽工作压力。通过压力变送器把压力信号传递给PLC系统,数据经处理后,控制氧侧气动薄膜调节阀来控制槽体压力。根据设备需求设定工作压力大小。 3、水电解槽氢氧液位差。由差压变送器把液位差信号传递给PLC系统,经数据处理后,控制氢侧气动薄膜调节阀来控制液位差小于1000Pa。若液位大于1000Pa则一侧压力高、液位低,水电解槽碱液循环回路中断,槽体发生喷碱现象,甚至石棉隔膜布露出液面,造成氢氧气混合的危险。 4、水电解槽分离器液位。水电解过程中不断地消耗纯水,因而要及时补给。一般控制分离器液位在1/3~2/3,由补水泵自动启闭控制。 5、除氧器温度。除去水电解制氢中的微量氧气,常温控制。一般情况下除氧器实际温度显示为产品氢气与微量氧气反应生成水放出热量的温度。若含氧量超标,可将除氧器中的催化剂进行活化再生后继续投入使用。 6、当出现下列情况之一时,应停机检查: ●氢气或氧气的纯度下降至允许值下限时; ●当回收利用氧气时,氧气中氢浓度超过规定值时;

●水电解槽的电解小室电压,经多次测定均不正常时; ●水电解槽出口氢侧/氧侧气体压力不平衡,其压力差超过允许值时; ●氢气压缩机进气侧的氢气压力低于允许值时; ●电力供应故障; ●监测的空气中氢浓度超过1.0%时。 7、气密性试验,对压力型水电解制氢系统以洁净空气或氮气进行气密性试验。气密性试验压力为设计压力,试验开始后逐渐升压,达到规定压力后,保持30min,检查所有连接处,焊缝、法兰、垫片等处,以无漏气为合格。对常压型水电解制氢系统的气密性试验压力为0.05MPa或注满水静置试验。 8、水电解槽的总直流电流(电压)用直流电压表检测。电流(电压)表的精度等级不低于0.5级。 9、产品进出厂时,应进行充氮保护,充氮压力≥0.05MPa。此类设备的开口处应进行封堵。 10、制氢设备性能试验应在设备连续稳定运行4h后进行,测试气体产量、纯度和单位制氢直流电耗须同步进行,每30min测试一次,连续测4次,取其平均值。 氢、氧气体纯度测试的取样部位应在制氢设备的氢、氧气体取样口。用电流表测试流过电解槽总直流工作电流,测试部位在电解槽两端或直流变换器的直流接线点。电解槽的直流工作电压的测试部位在电解槽正负极接点。 11、制氢设备应存放在通风、干燥的库房内或有遮盖的场所,离地至少100mm;存放期超过规定时间,按产品说明书的有关规定进行检查、维护。

LNG气化站工艺流程图

如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。

②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐 LNG低温储罐由碳钢外壳、不锈钢内胆和工艺管道组成,内外壳之间充填珠光沙隔离。内外壳严格按照国家有关规范设计、制造和焊接。经过几十道工序制造、安装,并经检验合格后,其夹层在滚动中充填珠光沙并抽真空制成。150W低温储罐外形尺寸为中3720×22451米,空重50871Kg,满载重量123771№。 (1)储罐的结构 ①低温储罐管道的连接共有7条,上部的连接为内胆顶部,分别有气相管,上部进液管,储罐上部取压管,溢流管共4条,下部的连接为内胆下部共3条,分别是下进液管、出液管和储罐液体压力管。7条管道分别独立从储罐的下部引出。 ②储罐设有夹层抽真空管1个,测真空管1个(两者均位于储罐底部);在储罐顶部设置有爆破片(以上3个接口不得随意撬开)。 ③内胆固定于外壳内侧,顶部采用十字架角铁,底部采用槽钢支架固定。内胆于外壳间距为300毫米。储罐用地脚螺栓固定在地面上。 ④储罐外壁设有消防喷淋管、防雷避雷针、防静电接地线。 ⑤储罐设有压力表和压差液位计,他们分别配有二次表作为自控数据的采集传送

制氢流程

10000Nm3/h制氢装置 装置概况 装置建设规模10000Nm3/h纯氢,按年开工8000小时计算,相当于年产纯氢0.72万吨;装置上线为13000Nm3/h纯氢。 装置组成 本装置有以下几部分装置组成 原料压缩、预热; 原料加氢、脱硫; 原料气转化及中温变换; 中变气换热、冷却及换热分液 中变气变压吸附提纯; 酸性水处理及蒸汽发生; 生产方法及流程特点 本装置采用烃类水蒸气转化法造气和变压吸附氢提纯的工艺流程,该流程简单、成熟可靠、产品氢气纯度高。 主要产品及副产品 本装置产品为工业氢气,产量为10000Nm3/h纯氢;装置副产变压吸附尾气全部用作转化炉燃料。 原材料及产品性质 原材料性质 本装置的主要原料为脱硫后的焦化干气及加氢干气(称为混合干气)催化干气作为本装置的备用原料,主要原料性质如下: 产品性质 工业氢气温度40℃压力2.0MPa 组成见表 物料平衡

制氢装置物料平衡 主要设备: 设备总台数77台 反应器:5台塔:1座加热炉:2座换热器:7台 空冷器:2片废热锅炉:1台(即转化炉对流段)蒸汽发生器:2台 压缩机:2台泵:6台(两台磷酸盐加药泵与溶解槽撬装)风机:4台 容器:17台(包括两台磷酸盐溶解槽)烟囱:1座蒸汽减温器:1台 其他小型设备:26台 工艺流程说明 来自焦化装置的压力为0.6MPa(G)的脱硫后混合干气在压缩机入口分液罐分液后,通过原料气压缩机(K-2201)升压到 3.1MPa后,经原料气-中变气换热器或开工加热炉(F-2201)升温到280℃左右进入绝热加氢反应器(R-2201),在其中有机硫加氢转化为硫化氢,烯烃加氢饱和后,出口温度达到约360℃,进入脱硫反应器(R-2202)吸附其中的氯化物和硫化氢后总硫含量小于0.5ppm,氯化氢小于1ppm。 当采用催化干气做原料时,来自界区外的0.6MPa(G)催化干气在压缩机入口分液罐分液后,通过原料气压缩机(K-2201)升压到3.1MPa后,经原料气-中变气换热器或开工加热炉(F-2201)升温到230℃左右进入变温反应器(R-2204),在其中有机硫加氢转化为硫化氢,大部分烯烃加氢饱和,该反应器反应放热由来自汽柴油加氢装置的加氢柴油取走,使反应出口温度为270℃左右;然后再进入绝热加氢反应器(R-2201)。 经过上述预处理后的原料气与装置自产蒸汽混合(按H2O/C比3.7的比例)后,在转化炉(F-2202)原料预热段加热到480~520℃进入转化炉管,原料气和蒸汽在管内的催化剂作用下反应生成H2,CO,CO2和部分甲烷,转化炉出口温度为800~820℃,压力为2.4MPa(G),残余甲烷约为6.08%(干基)。 820℃左右的转化气在转化气蒸汽发生器(E-2211)中发生3.5MPa中压蒸汽,同时自身冷却到360℃左右进入中变反应器(R-2203),在反应器中,转化气的CO与水蒸气继续进行变换反应生成H2和CO2,出口的CO小于3%(干基V%)。中变反应器出来的中变气经与原料气换热、中变气蒸汽发生器(E-2205)发生3.5MP中压蒸汽后,经过中变气-脱氧水换热器(E-2201)换热后进入中变气第一分液罐(D-2203),分液后的中变气再与除盐水在中变气-除盐水换热器(E-2202)换热并在中变气第二分液罐(D-2204)分液,分液后的中变气再经中变气空冷器(EC-2201)冷却至65℃后进入中变气第三分液罐(D-2205)分液,分液后的中变气最后经中变气后冷器(E-2206)冷却至40℃后进入中变气第四分液罐(D-2206)分液,分液后的中变气进入变压吸附部分。 中变气在变压吸附部分中经物理吸附,在吸附罐顶引出产品氢气送出装置。PSA排出的

天然气站工艺操作流程

长兴站工艺操作规程 第一条范围 本规程规定了长兴站发送清管器、进气、供气、支路切换、汇管排污、站场ESD、站场高低压放空、干线放空、站场停运、越站等工艺的操作。 第二条发送清管器 注意事项: 1、开启阀门时切忌过猛,认真检查压力表,示数不为零时(特别是阀门内漏严重),不得打开盲板。 2、注意打开盲板过程中的几点要求。 3、根据实际情况对发球筒内部及盲板进行除锈、清洁。 一、确认杭州站已切换为收球流程,长兴站为正常输气流程; 二、确认XV14401、BV14403关闭; 三、开BV14412、ZFV14403、BV14406; 四、确认发球筒上的压力表PI14402示值为0,开启快开盲板; 五、放入清管器到发球筒大小头处,关闭快开盲板,依次关ZFV14403、BV14412; 六、开XV14401,待清管器前后的压力平衡后,开BV14403,依次关BV14406、BV14401发送清管器; 七、待清管指示器YS4401、YS4402发出清管器通过信号,并确认清管器已发出后,开BV14401,依次关XV14401、BV14403,

恢复正常输气流程; 八、通知下游各站,清管器已经发出; 九、开BV14412、缓开ZFV14403放空发球筒内天然气,当压力表PI14402示值为0,开启快开盲板检查确认清管器出站,快开盲板复位、依次关ZFV14403、BV14412; 十、做好记录,清理现场。 第三条进气(BV14201、BV14202、BV14203为常开状态) 一、总计量1支路(FT14201)进气 1、确认BV14101、BV14201-1、BV14202-1、BV14203-1、ZV14201、ZV1420 2、ZV1420 3、BV14211、WV14201、BV14208、ZFV14204关闭;确认BV14102、BV14401开启;(原BV14102进气前、后均为关闭状态,现一直为开启状态。) 2、开ZV14201,缓慢开启BV14201-1调节流量; 3、进气结束,依次关BV14201-1、ZV14201。 二、总计量2支路(FT14202)进气 1、确认BV14101、BV14201-1、BV14202-1、BV14203-1、ZV14201、ZV1420 2、ZV1420 3、BV14211、WV14201、BV14209、ZFV14205关闭;确认BV14102、BV14401开启; 2、开ZV14202,缓慢开启BV14202-1调节流量; 3、进气结束,依次关BV14201-1、ZV14201。 三、总计量3支路(FT14203)进气 1、确认BV14101、BV14201-1、BV14202-1、BV14203-1、ZV14201、ZV1420 2、ZV1420 3、BV14211、WV14201、BV14210、

相关文档
最新文档