电路分析基础复习提纲
电路分析期末复习提纲

《电路分析AI》总复习第一章电路分析的基本概念1、电流、电压、电位、功率的基本概念2、R欧姆定理3、电压源、电流源特性4、KCL、KVL方程,广义KCL、广义KVL、路径法▲5、▲观察法第二章电路的等效分析1、等效电阻(串联、并联、混联、平衡电桥、对称星三角转换、等电位分析法)2、▲实际的压流源等效互换3、输入电阻求法,▲含受控源的伏安法4、运放计算第三章电路分析的规范方法1、支路电流法,万能方法2、▲网孔电流法,含电流源支路的网孔法,含受控源3、▲回路电流法,含电流源越多越适用(一个方程求解的例题),含受控源4、▲节点电压法,含理想电压源的节点电压法,含受控源第四章电路分析的重要定理1、▲叠加定理,含受控源的叠加定理(求R0时,伏安法,开短路法)2、替代定理3、▲戴维南定理,含受控源的戴维南定理,诺顿定理4、最大功率传输定理(注意直流和第七章正弦电路最大功率传输定理的区别)5、▲互易定理第六章正弦电路的基本概念1、瞬时值、有效值、最大值、频率、初相等基本概念2、相量的表示法,代数式和极坐标式相互转换(计算器)3、KCL、KVL的相量形式4、R、L、C元件的伏安关系的相量形式第七章正弦稳态电路的分析1、阻抗Z,导纳Y概念2、▲正弦电路解析法3、▲正弦电路相量图法4、▲正弦电路功率P、Q、S,功率因素λ,功率因素的提高5、▲正弦最大功率传输定理(共轭匹配,模匹配)第八章耦合电感和变压器电路1、耦合电感,同名端,V AR2、去耦等效1)受控源模式2)串联、一点相连、并联3、空芯变压器计算4、▲理想变压器计算,理想变压器阻抗变换作用及最大功率传输问题5、▲全耦合变压器计算。
电路基础分析课程期末复习要点

电路基础分析课程期末复习要点第一章电路的基本概念和定律1、掌握电压、电流、电功率等物理量及电压、电流参考方向的基本概念。
会计算元件的功率。
2、掌握KCL、KVL和元件VCR关系式的含义,深刻理解这两类约束是分析电路的基本依据。
第二章简单电阻电路分析1、掌握两个串联电阻的分压公式和两个并联电阻的分流公式,并用于电路计算。
2、掌握电阻串、并、混联和独立电压源串联、独立电流源并联的等效变换。
3、掌握两种电源电路模型的相互等效变换,并用于含源单口网络的化简。
第三章网孔分析法和结点分析法1、掌握结点分析法和网孔分析法,能熟练用结点分析法分析计算含受控源的电路。
第四章网络定理1、掌握叠加定理、戴维宁定理和最大功率传输定理,并用于电路计算。
2、会进行简单含源单口网络的等效化简。
第五章多端元件和双口网络1、理解理想变压器的性质和表征参数,掌握理想变压器两侧端口电压、电流和阻抗的变换方程。
会分析计算含理想变压器的简单电路。
2、理解双口网络Z、Y、H参数方程及概念。
第六章动态电路的时域分析1、掌握L、C元件电压与电流的关系式u(t) = Ldi/dt, i(t) = Cdu/dt和电路发生转换时L中电流、C 上电压不能突变的概念:i L(0+) = i L(0-) , uc (0+) = uc(0-) 。
2、掌握一阶电路零输入响应、零状态响应、完全响应和稳态响应、暂态响应的概念及其相应表达式。
会判断RLC二阶电路零输入响应的性质(欠阻尼、过阻尼、临界阻尼等)。
3、掌握一阶电路三要素法的解题方法和步骤,会用三要素法分析计算RL和RC动态电路。
第七章正弦稳态分析1、掌握表征正弦量的三要素,有效值电压(电流)与其幅值的关系。
2、掌握两同频正弦量相位差及相位超前与滞后的概念。
3、掌握基尔霍夫定理和R、L、C元件VCR关系式的相量形式及阻抗的概念。
4、掌握正弦稳态电路相量模型的画法。
5、掌握一般正弦稳态电路的相量分析方法,尤其会用网孔分析法分析计算正弦稳态电路。
电路基础复习提纲

一、填空题1、不论是电能的传输和转换,还是信号的传递和处理,其中电源或信号源的电压或电流,被称为激励,而激励在电路各部分产生的电压和电流称为响应。
2、KCL是电流连续性原理的体现,KVL则是电位单值性原理的反映。
3、对一个实际电源来说,当没有电流流过,内部没有电能消耗时,其电动势和端电压必定是大小相等,方向相反。
4、对于线性电阻元件,若它的电阻为无穷大,则当电压是有限值时,其电流总是零,这时就把它称为“开路”;若它的电导为无限大,则当电流是有限值时,其端电压总是零,这时就把它称为“短路”。
5、各种电器设备或元器件的电压、电流及功率都规定一个限额,这个限额就称为电器设备的额定值,包括额定电压、额定电流和额定功率。
6、电气设备可能有三种运行状态:当电气设备电压、电流和功率的实际值小于额定值时,称电气设备为欠载运行状态;当电气设备电压、电流和功率的实际值大于额定值时,称电气设备为过载运行状态;当电气设备电压、电流和功率的实际值等于额定值时,称电气设备为满载运行状态。
7、电路中,若某元件开路,则流过它的电流必为零。
8、电感元件也是一种储能元件,某一时刻t的储能只取决于电感L及这一时刻电感的电流值,并与其中电流的平方成正比。
电感元件具有“阻交流、通直流”或“阻高频、通低频”的特性。
9、在线性电路叠加定理分析中,不作用的独立电压源应将其短路。
10、实际电压源的电路模型是理想电压源与电阻串联的组合。
11、正弦交流电的三要素是振幅,频率,初相位。
12在正弦交流电路中,电感电压的相位前电流相位90 。
13、星形连接的三相电源,每一相相电压为220V,则线电压为380V 。
14、工程上凡是谈到周期电压和电流或电动势时,若无特殊说明,都是指有效值。
在交流测量仪表上指示的电压或电流都是有效值,在分析各种电子器件的击穿电压或电气设备绝缘耐压时,要按最大值考虑。
15、电路根据其基本功能可以分为两类,第一类是用来实现电能的传递和转换。
电路分析基础复习提纲

《电路分析基础》复习提纲和练习题第一章:重点知识:关联参考方向、吸收提供功率的计算、节点KCL和回路KVL方程的熟练灵活应用(广义节点的KCL、假想闭合回路的KVL)关联参考方向及对应的欧姆定律关联参考方向(U=RI)非关联参考方向(U=-RI)吸收和提供功率的计算P = UI(关联参考方向)P>0 吸收功率P = -UI P<0 提供功率1、求图示电路中所标的未知量U a=10V I b=-1A I c=1AI d=-1A U e=-10V I f=-1A2、求电流ii+ -u uA5)2(3=--=i3、图1-3电路中,已知i 1=4A ,i 2=7A ,i 4=10A ,i 5=-2A ,则i 3=__3A_, i 6=___9A__。
142536A i 1i 4i 3i 2i 5i 6BCA Dda bc 2A图1-3 图1-44、图1-4电路中,已知元件A 提供功率100W ,其它3个元件B 、C 、D 吸收功率分别为20W 、30W 和50W 。
则U ab =__50V__, U bc =__-40V____, U cd =__15V__, U da =___-25V_。
5、定向图和各支路电流如图1-5所示,求 i 1、i 2、i 3、i 4、i 5 。
6A4A2A2Ai 1i 2i 3i 4i 5(-6A 、4A 、2A 、2A 、-2A)图1-56、电路图如图1-6所示,求U cd 、U be (U cd = -9V U be = -11V )图1-67、电路图如图1-7所示,求电压 u(u =-15V ) 图1-75+-V+- ?=u -+V10-+V208、电路图如图1-8所示,已知Us 1=10V 、Us 2=4V 、Us 3=20V 、R 1=2 、R 2=4 、R 3=5 、求开路电压U ab 。
(-12V )图1-89、求图示电流i 和电压u-++-4V 5Vi =?3Ω-++4V 5V1A+-u =?3Ω10、图1-10电路中,电流I =__2A__,受控源吸收的功率为 P 吸收 =___-20W_。
电路分析基础提纲

课程内容半导体器件的基本知识以半导体器件为核心组成的各种分立元件电子电路的工作原理,特点和基本分析方法及由分立元件构成基本任务:信号的产生、传输、处理第1章 绪论第一阶段,20世纪20年代开始出现的以电第二阶段,1947年贝尔实验室的布拉丁等第三阶段,1958年,世界上利用单晶硅材第四阶段,20世纪70年代集成电路从小规定义:电子系统指有若干相互连接、相互1.3.2.1什么是信号1.3.2.2模拟信号和数字信号1.3.2.3信号源及其等效电路1.3.2.4信号的频谱半导体中的载流子及其导电机理PN结的原理和特性半导体二极管、双极型晶体管和场效应管二极管的应用电路2.1.1半导体及其特性2.1.2本征半导体具有晶体结构的纯净2.1.3杂质半导体为了提高半导1.N型半导体2.P型半导体2.1.4PN结 2.1.4.1PN结的形成2.4.1.2PN结的单向导2.2.1二极管的及结构、类型及符号2.2.2二极管的伏安特性及主要的性能参数第二章 半导体器件基础(1)稳定电压:是二极管正常(2)稳定电流:实际中稳压管(3)最大稳定电流(4)最大允许耗散功率(5)动态电阻(6)电压温度系数:<6为负,2.3.2.1半导体能带结构2.3.2.2发光二极管及其工作原1.整流电路2.开关电路3.限幅电路4.继电器驱动管保护电路5.自动电平控制电路2.5.2双极型晶体管的工作原理1.放大交流信2.内部载流子运动过3.电流分配关系1.输入特性曲线2.输出特性曲线1.电流放大倍数2.极间反向电流3.极限参数2.6.1N沟道结构场效应管的结构2.6.1.1N沟道2.6.2.2N沟道结构场2.6.2.1N沟道增强型2.6.2.2N沟道耗尽型2.7.1FET的主要参数1.直流参数2.7.2FET的特点 2.交流参数3.极限参数2.7.3场效应管的简单测试方法2.7.4MOS场效应管使用注意事项第3章 晶体管放大电路基础 3.1放大电路的基本概念 3.1.1放大器的基本概念3.1.2放大器的主要性能指标3.2放大电路及其基本分析方法3.2.1晶体管放大电路的3钟组态3.2.2共发射极放大电路的组成3.2.3共发射极放大电路的分析3.3放大电路静态工作点的稳定3.3.1温度对放大电路静态工作点3.3.2分压偏置式共发射极放大电路3.4共集电极和共基极放大电路3.4.1共集电极放大电路3.4.2共基极放大电路3.5多级放大电路 3.5.1多级放大电路的级间耦合1.多级放大电3.5.2多级放大电路的分析和计算3.6放大电路的频率响应 3.6.1频率响应基本概念3.6.2BJT的高频小信号混合π型4..1.1功率放大电路的特点和要求4.1功率放大器的特殊问题4.1.2提高功率放大电路效率的主要途径4.2.1无输出电容的双电源互补对称功率放大电路第四章 功率放大器 4.2一类互补对称功率放大电路4.2.2功率参数分析 1.输出功率P02.管耗Pt1,Pt23.直流电源提供的功率PE4.效率η5.功率管的选择4.2.3无输出变压器的单电源互补对称功率放大电路4.3甲乙类互补对称功率放大电路 4.3.1乙类功放的交越失真4.3.2消除交越失真的措施4.3.3具有推动级的单电源甲乙类互补对称4.3.4采用复合管的单电源甲乙类准互补对4.4集成功率放大器件及其应用4.4.1TA2006集成功率放大器简介4.4.2TDA2006集成功放的典型应用2.单电源应3.BTL应用1)电路结构与元器件参数具有对称性2)用有源器件代替无源器件5.1集成电路的特点3)采用复合结构的电路4)外界分立元件少5)极间采用直接耦合的方式,并利用二极管进行温5.2电流源电路 5.2.1镜像电流源5.2.2比例电流源5.2.3微电流源第5章 集成运算放大器 5.2.4改进型电流源5.3差分放大电路 5.3.1直接耦合多级放大电路的零点漂移问题5.3.2差分放大电路的组成原理5.3.2.1电路5.3.2.2零点漂移的抑5.3.2.3改进型差分放5.3.3差分放大电路的静态分析5.3.4差分放大电路动态分析 5.3.4.1差模输入5.3.4.2共模输入5.3.4.3比较输入5.3.4.4单端输入的差5.3.5带恒流源的差分放大电路5.3.6差分放大电路的应用举例——感应式测5.4集成运放的组成原理和主要技术参数 5.4.1集成运算放大器的组成5.4.2集成运放的主要技5.4.3理想运放的特点及答疑伍舜德楼302方法及由分立元件构成的简单电子电路的设计方法平时成绩:30%(作业10%,设计作品10%,实验考勤10%)术,在20世纪得以高速发展并广泛应用。
电路基础复习大纲

UZI
23
(五)正弦交流电路中基ຫໍສະໝຸດ 霍夫定律的相量形式 IK 0
U K 0(或 Z K I K = E X)
将直流电路的规律扩展到正弦交流电路中进行分析计算的方法是: 将直流电路中的E、U、I、R分别用交流电路中的 将直流电路中的代数运算用交流电路中的复数运算代替。 来代替。
8
(五)理想电路元件及伏安特性 1.理想电路元件分类
储能元件(电感、电容) 理想电 路元件 无源元件 有源元件 耗能元件(电阻) 理想电压源 理想电流源 2.伏安特性 在电压和电流的参考方向一致的条件下,电 阻元件、电感元件、电容元件的伏安特性是:
u Ri
di u L dt
du iC dt
5
(三)电路的状态 有3种状态 开路 短路 有载
1.开路
即电源开路,这时电流为零,电源端电压等于 理想电压源的电压US,电路不消耗功率。 2.短路 短路通常是一种事故,这时电源端电压为零, 短路电流IS=E/R0,电路功率全部消耗在电源内 阻上。
6
3.有载
是电路的一般工作状态,这时电源发出的功率 减去内阻消耗的功率等于外电路上消耗的功率。 4.额定值 是制造厂为了使产品能在给定的工作条件下正 常运行而规定的允许值。电气设备和元器件在额 定状态下工作是最合理的。 (四)基尔霍夫定律 基尔霍夫电流定律 基尔霍夫电压定律
3.某电源单独作用时,将其他理想电压源短路,其他理想电流源开路,而电 源的内阻均须保留。
14
(四) 戴维宁定理
1.内容:将有源二端线性网络等效为电压源模型的方法,叫做戴维宁定 理。
2.任何一个有源二端线性网络都可以用一个由电压US的理想电压源和内 阻R0相串联的电压源模型来等效代替。此理想电压源电压US等于有源二端 网络的开路电压,内阻R0等于有源二端网络中所有电源均除去后所得到的 无源二端网络的等效内阻。
电路分析基础 总复习

《电路分析基础》总复习第一章基本知识及基本定律1.电压、电流定义;真实方向,参考方向;关联与非关联参考;吸收功率计算=p ui吸(关联),=-p ui吸(非关联);吸收功率正负的含义。
2. 理想电压源和理想电流源特性。
KCL及KVL及其应用。
单口网络端口V AR列写。
3. 受控源特性。
受控源与独立源的区别。
3. 两类约束关系为拓扑结构约束(KVL,KCL)和元件特性约束。
二者相互独立:拓扑结构约束与元件特性无关,元件特性约束与拓扑结构无关。
第二章等效变换分析法1. 单口网络等效条件:端口伏安关系相同。
等效指对外电路等效,对内部一般不等效。
2. 额定电压、额定电流、额定功率概念;电阻串、并联等效、分压分流公式、电阻功率计算,纯电阻网络等效电阻求取。
3. 含源单口网络等效化简法。
包括:○1实际电源两种模型(串联模型和并联模型)之间的等效变换,○2与理想电压源直接并联的二端网络(元件)对外视为不起作用;○3与理想电流源直接串联的二端网络(元件)对外视为不起作用。
4、单口网络等效电阻求取方法。
(1)外加激励法求等效电阻i i iU R I =。
(内部独立源先置零:电压源视为短路,电流源视为开路,受控源不置零)(2)开路短路法:oc o scU R I = 5. *电源转移法、 T~π变换(此部分了解)第三章 线性网络一般分析法及网络定理1. 独立节点数和独立回路数:n 个节点b 条支路的连通电路,可以建立的独立的KCL 方程数目为n -1个,独立回路的KVL 方程数目为b-(n -1)个。
2. 节点电位分析法(1)基本情况: n s s=G U I (2)含受控源时:先当独立源看待按常规法列方程,再补充控制量与节点电位关系。
(3)含无伴理想电压源时:法一:引入无伴电压源支路电流x I ;补充该支路两节点电位约束关系法二:以无伴电压源一端为参考节点,另一端电位直接可得。
3. 回路(网孔)电流分析法(1)基本情况: l ss =RI U(2)含受控源时:先当独立源看待按常规法列方程,再补充控制量与回路电流关系。
电路知识点提纲

电路复习第一章电路模型和电路定律一.电流和电压的参考方向1 电流、电压的参考方向如何表示2 什么是关联、非关联参考方向二电路吸收、发出功率的判断三电阻元件的VCR1 关联参考方向时的VCR2 非关联参考方向时的VCR3 电阻和电导的关系及各自的单位4 电阻功率表达式(关联和非关联两种)5 电阻的开路和短路(在什么情况下看作开路,在什么时候看作短路)四理想电压源、电流源1 认识对应的电路符号2 基本性质3 各自功率五受控源1 电路符号2 四种类型及与独立源的区别六KCL KVL定律的内容及应用第二章电阻电路的等效变换一电阻的串、并联1 电阻串、并联公式2 串联分压公式、并联分流公式3 串、并联电路总功率4 会求串、并联电路的等效电阻二理想电压源和电流源的串、并联三实际电压源和电流源的等效互换1会画等效之后的电路2 会求等效电路的参数(利用等效条件来求)四输入电阻第三章一会求独立回路的个数二会用网孔电流法列回路方程三会用结点电压法列结点方程第四章一叠加定理1 定理内容2 应用叠加定理时,不作用的独立源怎么处理、受控源怎么处理?二戴维宁定理和诺顿定理(重点戴维宁)1 定理内容2 会画戴维宁、诺顿等效电路3 会求Uoc、Req、Isc三最大功率传输定理1 定理内容2 满足最大功率传输时的条件3 最大功率表达式第六章一电容电感的性质二电容电感的VCR关系(关联和非关联两种)三在直流电路里,电感、电容等效为什么?四电感、电容储存的能量公式第七章一一阶电路1 换路定律2会根据换路定律求初始条件3 会区分零输入响应、零状态响应及全响应4 会画t=0-、t=0+、t= 时对应的电路,并根据相应的电路求该时刻的参数值。
5 掌握三要素法会用三要素法求零输入、零状态、全响应二二阶电路1 会列电路方程2 会求初始值3 会列特征方程并求特征根4 会根据特征根判断电路状态(临界阻尼、过阻尼、欠阻尼?)第八章一正弦量1掌握正弦量的时域表达形式2 会判断两个同频信号相位超前、滞后关系3 会正确计算两个正弦量的相位差二电流电压有效值和最大值的关系三向量法1 会用向量的形式来表示正弦量(会在时域和向量形式之间变换)2 同频正弦量的加减运算变为对应相量的加减运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d ()d ()()()()d d q t u t q t C u t i t C t t=⋅⇒==第一章1. 参考电压和参考电流的表示方法。
(1)电流参考方向的两种表示:A )用箭头表示:箭头的指向为电流的参考方向。
(图中标出箭头)B )用双下标表示:如 i AB , 电流的参考方向由A 指向B 。
(图中标出A 、B )(2) 参考电压方向: 即电压假定的正方向,通常用一个箭头、“+”、”-”极性或“双下标”表示。
(3)电路中两点间的电压降就等于这两点的电位差,即U ab = V a - V b 2. 关联参考方向和非关联参考方向的定义若二端元件上的电压的参考方向与电流的参考方向一致(即参考电流从参考电压的正极流向负极),则称之为关联参考方向。
否则为非关联参考方向。
3. 关联参考方向和非关联参考方向下功率的计算公式:(1)u, i 取关联参考方向:p = u i (2)u, i 取非关联参考方向:p =- ui按此方法,如果计算结果p>0,表示元件吸收功率或消耗功率;p<0,表示发出功率或产生功率。
关联参考方向和非关联参考方向下欧姆定律的表达式:(1)电压与电流取关联参考方向: u = Ri (2)电压与电流取非关联参考方向: u =–Ri 。
4.电容元件 (1)伏安特性(2)两端的电压与与电路对电容的充电过去状况有关(3)关联参考方向下电容元件吸收的功率(4)电容元件的功率与储能 d ()()()()()d C u t p t u t i t C u t t=⋅=⋅21()d d ()2C C W p t t C u u C u t ==⋅=⋅⎰⎰5.电感元件(1)电感元件的电压-电流关系——伏安特性(2)电感两端的电压与流过的电流无关,而与电流的变化率成正比(3)电感元件的功率与储能6.实际电压源随着输出电流的增大,端电压将下降,可以用理想电压源U S 和一个内阻R 0串联来等效。
7.实际电流源可以用理想电流源与一个电阻并联来等效. 电流源两端电压愈大,流过内阻的电流越大,输出的电流就愈小。
8.基尔霍夫电流定律(KCL )的内容及表达式。
KCL :对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电流的代数和为零。
即例:对图示电路有:KCL 的推广:KCL 不仅适用于电路的节点,也适用于电路中任意假设的封闭面。
即流入(或流出)任一封闭面的所有支路电流的代数和为零。
例:对图示电路有:∑=0)(t i d ()()()()()d L i t p t u t i t L i t t =⋅=⋅21()d d ()2L L W p t t L i i L i t ==⋅=⋅⎰⎰9.基尔霍夫电压定律(KVL )的内容及表达式。
KVL 指出: 对于任一集总电路中的任一回路,在任一时刻,沿着该回路的所有支路电压降的代数恒和为零。
即Notes: 1)电位升高取负号,电位降低取正号, 2)电压与电流取关联参考方向: u = Ri ,否则,电压与电流取非关联参考方向: u =–RiKVL 推论:电路中任意两点间的电压等于两点间任一条路径经过的各元件电压的代数和。
即两点间的压降与路径无关。
例:对图示电路有:第二章1.电阻串联电路的特点。
(a) 各电阻顺序连接,流过同一电流 (KCL); (b) 总电压等于各串联电阻的电压之和 (KVL)。
(c ) 串联电路的总电阻等于各分电阻之和。
(d) 串联电阻上电压的分配:注意:如果u k 的参考方向与总电压u 的参考方向相反,则前面应有一负号。
2. 电阻并联电路的特点。
(a) 各电阻两端分别接在一起,两端为同一电压 (KVL); (b) 总电流等于流过各并联电阻的电流之和 (KCL)。
(c ) 等效电阻 :(d) 并联电阻的电流分配注意:如果i k 的参考方向与i 的参考方向相反,则前面应有一负号。
3.理想电压源和理想电流源的串并联。
∑=0iu1Nkk R R==∑等效E B Ci i i =+(1) 理想电压源的串联: u S =∑u Sk ( 注意参考方向)理想电压源的并联: 电压相同的电压源才能并联,且并联后的电压等于原来的电压。
(2) 理想电流源的串联:电流相同的理想电流源才能串联,串联后的电流等于原来电流源的电流。
理想电流源的并联: 可等效成一个理想电流源 i S ( 注意参考方向) (3)理想电压源与任何电路的并联,对外都等效于该电压源。
理想电流源与任何电路的串联,对外都等效于该电流源。
4.电源等效变换。
.例:(1)试求电流I 5;(2)如C 点接地,求A 、B 、D 三点的电位。
5.支路电流法6.节点电压法。
sks s s sks i i i i ii +⋅⋅⋅+-==∑21 ,节点电压法解题时对纯理想电压源的处理1) 先把受控源当作独立源列写方程;再把控制量用节点电压表示。
2)对只含一条纯理想电压源支路的电路(即该支路只有电压源,无电阻等其他元件) ,可取纯理想电压源支路的一端为参考节点。
3)技巧三:对含两条或两条以上纯理想电压源支路(即该支路只有电压源,无电阻等其他元件),但它们汇集于一节点的电路,可取该汇集点为参考节点。
4)如果电路中含有一个以上的纯理想电压源支路,且它们不汇集于同一点,选取参考节点的原则是使某一节点的电压成为已知量. 例:图示电路含有5个结点,8条支路。
如果用支路电流法求解要解8个联立方程。
用结点分析法求解电源功率。
7.叠加原理:在任何线性电路中,当有多个理想电源共同激励时,电路的总响应可以分解成各个理想电源单独激励电路时产生的响应之和(叠加)。
在求解每个独立电源单独激励的响应时,其它独立电源必须置0,即独立电压源用短路结点 1:(1+0.1+0.1)U 1-U 2-0.1U 4=1 结点 2: -U 1+(1+1+0.5)U 2-0.5U 3=-0.5 结点 3: -0.5U 2+(0.5+0.5+0.25)U 3-0.25U 4=0.5 结点 4: -0.1U 1-0.25U 3+(0.1+0.25+0.25)U 4=0解方程得各结点电压:U 1=1.2267V U 2=0.4239VU 3=0.6659V U 4=0.4819V计算电源功率:P 1A = -1⨯U 1= -1.2267W ,P 0.5A =0.5⨯(U 2-U 3) = -0.121W1A10Ω1Ω0.5A10Ω2Ω1Ω2Ω4Ω4Ω12342S max14U P R =⋅代替、独立电流源用开路代替,只保留激励独立电源一个。
8.戴维宁定理(1)定理内容:任意线性(端电压与端电流之间满足线性代数关系)含源二端电阻网络,可以等效为一个理想电压源与一个电阻的串联组合。
(2)解题步骤:(3)求等效内阻内阻R 0方法1)电阻化简法:当单口网络中不含受控源,可利用电阻的串并联变换求出独立电源零处理后内阻R 0。
2)外加电源法: 如果含源单口网络中含有受控源,则将内部独立源全部置零后,在其端口外加电压源U 时,求出端口电流I ,则Ro=U /I 。
3)开路短路法: 若含源单口网络的开路电压为u OC ,短路电流为i SC ,则戴维南等效电路的串联电阻为:R o=u oc /i sc9.诺顿定理:任何一个含源线性单口网络,对外电路来说,可以用一个电流源和电阻的并联来等效替代;其中电流源的电流等于该端口的短路电流,而电阻等于把该端口的全部独立电源置零后的等效电阻。
9.最大功率传输定理:若(等效)电源参数确定(U S 和R 0),当且仅当负载电阻R L = R 0时负载从电源获得最大功率。
已知:E 1=5V ,I S =1A ,R 1=4Ω,R 2=20 Ω ,R 3=3 Ω ,R 4=3 Ω 。
用叠加定理求电阻R 4中的电流。
1345A6E I R R '==+518()A A 1.33A626I I I '''=+=+==电压源单独激励 S I’ 电流源单独激励, I” 3341''A 2S R I I R R ==+ 总响应+- E 1 I S R 1 R 2 R 3 R 4 I经常与电源变换、戴维宁定理或诺顿定理组合在一起解决实际问题。
第三章1. 表示正弦量的各物理量(振幅、角频率、相位、初相位、频率、周期、幅值、有效值)。
2. 同频率正弦量的相位差及物理意义。
几种特殊的相位关系。
3. 正弦量的三种相量表示法。
向量图。
向量可在复平面(横坐标单位为1,纵坐标单位为j)上用有向线段来表示,有向线段的长度和与横轴的夹角分别表示向量的有效值和初相位.同频率正弦量的加、减运算可借助相量图进行。
相量的加减运算满足平行四边形法则。
4.电阻元件的交流电路的向量关系。
电阻的瞬时功率和平均功率。
向量关系: U = RI ψu = ψi 5.电感元件的交流电路的向量关系。
电感的瞬时功率和平均功率。
感抗的定义。
向量关系: U L = X L I L Ψu = Ψi + 90︒6.电容元件的交流电路的向量关系。
电容的瞬时功率和平均功率。
容抗的定义。
7.复阻抗的定义。
单一参数元件的阻抗。
复阻抗的定义:在交流电路中,任何无源线性二端网络可用复阻抗来代替。
复阻抗的大小等于断口电压向量与电流向量的比值。
8.阻抗的串联后的总阻抗和分压公式。
阻抗的并联后的总阻抗和分流公式••=∠=I R RI U ψLL L L I L j j I X U ω==.CC C c I C j I jX U ω1.=-=fCC X C πω211==定义9.正弦稳态电路的分析与计算10.R 、L 、C 元件的平均功率P 和无功功率Q 、视在功率S 和功率因素。
10.RLC 串联谐振的频率和特点、品质因素。
RLC 串联电路的阻抗发生谐振的条件:特点:1)电压与电流同相,电路呈电阻性 2)电路阻抗最小,电流最大3)串联谐振时,电感和电容上的电压4)品质因素 11.RLC 并联谐振的频率和特点、品质因素。
发生谐振的条件:φωω∠=-+=-+=||)(j )1(j Z X X R C L R Z C L LC 10==ωωRU L I L U U C L ⋅=⋅==0max 00ωωCLR RC ωR L ωU U U U Q c L 1100=====)11(111111CL CLX X j R jX jX RZ -+=-++=CL ωω1=三相电路 1. 对称三相电源的连接 (1)星形联接(Y 接)(2)对称三相电源三角形联接(∆ 接):2.三相负载的联接: (1)三相负载的星形联接线(相)电流 (2)三相负载∆联接方式:3. 三相对称电路的平均功率PϕP 为相电压与相电流的相位差角(阻抗角) 无功功率 视在功率 瞬时功率。