Fully developed turbulent dynamo at low magnetic Prandtl numbers
专业英语

questions
How
do you distinguish steel from cast iron? How do you distinguish low alloy steel from high alloy steel?
1.1.1 Iron and Steel
The earth contains a large number of metals which are useful to man. One of the most important of these is iron. Modern industry needs considerable quantities of this metal, either in the form of iron or in the form of steel.
Mechanical Engineering materials
Organic polymer materials Inorganic non-metallic materials
plastic rubber Synthetic Fibers Traditional ceramics Special Ceramics Metal Matrix Composites
1.1.1 Iron and Steel
The ore becomes molten, and its oxides combine with carbon from the coke. The non-metallic constituents of the ore combine with the limestone to form a liquid slag. This floats on top of the molten iron, and passed out of the furnace through a tap. The metal which remains is pig iron.
中国地质大学(北京)考博专业英复习材料

晶) is said to have a porphyritic texture(斑状结构). The classification of fine-grained rocks, then, is based on the proportion of minerals which form phenocrysts and these phenocrysts (斑晶)reflect the general composition of the remainder(残留) of the rock. The fine-grained portion of a porphyritic(斑岩) rock is generally referred to as the groundmass(基质) of the phenocrysts. The terms "porphyritic" and "phenocrysts" are not restricted to fine-grained rocks but may also apply to coarse-grained rocks which contain a few crystals distinctly larger than the remainder. The term obsidian(黑曜岩) refers to a glassy rock of rhyolitic(流纹岩) composition. In general, fine-grained rocks consisting of small crystals cannot readily be distinguished from③ glassy rocks in which no crystalline material is present at all. The obsidians, however, are generally easily recognized by their black and highly glossy appearanceass of the same composition as obsidian. Apparently the difference between the modes of formation of obsidian and pumice is that in pumice the entrapped water vapors have been able to escape by a frothing(起泡) process which leaves a network of interconnected pore(气孔) spaces, thus giving the rock a highly porous (多孔的)and open appearance(外观较为松散). ④ Pegmatite(结晶花岗岩) is a rock which is texturally(构造上地) the exact opposite of obsidian. ⑤ Pegmatites are generally formed as dikes associated with major bodies of granite (花岗岩) . They are characterized by extremely large individual crystals (单个晶体) ; in some pegmatites crystals up to several tens of feet in length(宽达几十英尺)have been identified, but the average size is measured in inches (英寸) . Most mineralogical museums contain a large number of spectacular(壮观的) crystals from pegmatites. Peridotite(橄榄岩) is a rock consisting primarily of olivine, though some varieties contain pyroxene(辉石) in addition. It occurs only as coarse-grained intrusives(侵入), and no extrusive(喷出的) rocks of equivalent chemical composition have ever been found. Tuff (凝灰岩)is a rock which is igneous in one sense (在某种意义上) and sedimentary in another⑥. A tuff is a rock formed from pyroclastic (火成碎 屑的)material which has been blown out of a volcano and accumulated on the ground as individual fragments called ash. Two terms(igneous and sedimentary) are useful to refer solely to the composition of igneous rocks regardless of their textures. The term silicic (硅质 的)signifies an abundance of silica-rich(富硅) and light-colored minerals(浅 色矿物), such as quartz, potassium feldspar(钾长石), and sodic plagioclase (钠长石) . The term basic (基性) signifies (意味着) an abundance of dark colored minerals relatively low in silica and high in calcium, iron, and
托福听力地质考古主题必考词汇

托福听力讲座高频词汇:地质类crust地壳Core地核mantle地幔Rock岩石mineral矿物aquifer蓄水层layer层sediment沉积;沉淀物fossil化石stratum地层fault断层fold折痕Dating techniques年代测定技术Earthquake地震seismicwaves地震波epicenter 震中magnitude震aftershock余震volcano火山erode腐蚀,侵蚀sedimentaryrock沉积岩limestone石灰岩granite花岗岩Eruption爆发magma岩浆lava火山岩浆Ash火山灰chamber房间crater火山口Activevolcano活火山dormantvolcano休眠火山extinctvolcano死火山bedrock基岩tsunami海啸landslide山崩mudslide泥流avalanche雪崩托福听力讲座高频词汇:考古类Relative dating 相对年龄测定Absolute dating 绝对测年法Radiocarbon dating 放射性碳定年法Radiometric Dating同位素年龄测定radiocarbon dating 放射性碳定年法Radiometric Dating 同位素年龄测定Excavate 发掘Paleolithic [,pel?o‘l?θ?k] 旧石器时代Mesolithic [?mi?z?(?)?l?θ?k] 中石器时代Neolithic [?ni??l?θ?k] 新石器时代' Chronological 年代的Remnant 遗迹Pottery 陶Ceramics 陶Antique 古老的Artifact 手工艺品托福听力:听力笔记的5个方法一、缩进式这是笔记中最常见的方式,能够非常清晰地表明文章的结构。
一般把做笔记的纸分成两部分,一列一列从上往下记。
蒸汽涡轮机英文作文

蒸汽涡轮机英文作文Title: The Steam Turbine - A Pioneering Invention in Energy ConversionThe steam turbine is a remarkable invention that revolutionized the field of energy conversion. This mechanical device extracts energy from pressurized steam and converts it into rotational motion, making it a crucial component in various industrial applications, particularly in power generation.The steam turbine operates on the principle of thermodynamics. Pressurized steam is directed into the turbine, where it expands and rotates the turbine blades. This rotational motion is then harnessed to perform work, such as driving a generator to produce electricity.The efficiency and reliability of the steam turbine have made it a preferred choice in power plants worldwide. Its ability to convert thermal energy into mechanical energy with minimal losses has been a key factor in its widespread adoption. Furthermore, the steam turbine is highly scalable, allowing it to be tailored to meet the specific needs ofdifferent power plants, from small-scale industrial applications to large-scale utility plants.The impact of the steam turbine on society is immense. It has been instrumental in powering industrial revolution, enabling the production of goods and services on an unprecedented scale. Moreover, the widespread use of steam turbines in power generation has contributed to the availability of affordable and reliable electricity, which is crucial for modern society.However, the steam turbine is not without its challenges. The high temperatures and pressures involved in its operation require robust materials and precise engineering. Additionally, the maintenance of steam turbines can be complex and costly.尽管如此,随着technological advancements, the efficiency and durability of steam turbines have been continuously improved, making them more sustainable and cost-effective.In conclusion, the steam turbine stands as a testament to human ingenuity in energy conversion. Its pivotal role in powering industrial revolution and modern society cannot be overstated. With continuous innovation and improvement, the steam turbine remains a crucial component in our energyinfrastructure, driving us towards a brighter and more sustainable future.。
自动化专业英语 unit3 新能源 全文翻译

可再生能源可再生能源的说明燃烧矿物质燃料提供能源是造成气候变化的主要的原因。
煤,油,天然气的燃烧产生的二氧化碳是其中主要的造成全球气候变暖的温室气体。
为了解决气候变化,找到一种将来使用的可持续的能源,我们急需采取更加有效的技术降低能源消耗,从能释放更少的甚至没有二氧化碳到大气中的可再生能源中获得能源。
可再生能源技术(像风,海浪,潮汐,水电,生物能——栽培和燃烧农作物所产生的能量)能提供清洁的无碳的能源作为矿物燃料(天然气,油,煤)的替代品。
他们通常用来加热和发电。
(生物能除外,尽管它释放二氧化碳,但它只是把植物一生光当中合作用所吸收的二氧化碳释放到空气中)。
与此相反,燃烧化石燃料会释放出地壳中锁藏了几十亿年的二氧化碳到大气中。
矿石能源的供给是有限的,也因此它们的持续利用是无法支撑到底的。
可再生技术是一种持可持续能源的产生办法,事实上,像风,海浪,太阳能等是不可能被耗尽的。
可再生能源可再生能源包括以下:太阳能太阳能给所有生命体提供最基本形式的能量。
太阳能是免费的,用之不竭的。
将太阳能转化成人类可以消耗的能源将产生成本。
几千年以来,太阳能一直被人们用来晒粮食或者为水,建筑物加热。
二十世纪采用的是将阳光直接转换为电能的光电技术。
风能空气的运动自古以来就被用作一种能源。
今天,先进的空气动力学研究已经研究出可以非常经济发电的风力涡轮机。
风力涡轮机常常被成组的放在位于乡间宽阔地带或沿海,山顶等常年有盛行风的农场。
地热能地壳下面的岩石包含了一直在衰减的放射性材料,像铀和钾。
这些材料持续不断的提高热能,在地球表面一万米以下的热能比世界上的所有的油气资源所含的能量多50000倍多。
地热能是发掘地壳下面的热量来加热水。
之后热水用来驱动电涡轮机加热建筑,具有最高地热的区域常位于活跃的或新形成的火山周围。
这些“热点”位于地壳构造边缘,这里的地壳很薄,足够热量通过。
许多这样的“热点”分布在太平洋沿岸。
水电在地球上,水既不能被创造,也不能被毁灭。
石油英语词汇M5

石油英语词汇(M5)moor coal 沼煤moor peat 高位泥炭moor 沼泽moorage 系泊;系泊费moored sonobuoy 锚系声呐浮标Mooreisporites 叉角孢属mooring basin 泊地mooring buoy 系泊浮筒mooring capacity 系泊能力mooring cleat 系泊羊角mooring dolphin 系泊系缆桩mooring force 系泊力mooring head 系泊头mooring island 系泊岛mooring leg 系泊腿mooring line 锚绳mooring pattern 系泊缆布置方式mooring pile 系泊桩mooring pipe 导缆孔mooring platform 系泊平台mooring plug 系泊栓mooring post 系泊柱mooring restraint 系泊约束力mooring ring 系泊环mooring strain 系泊变形mooring swivel 双锚锁环mooring system 系泊系统mooring template 系泊底盘mooring trial 系泊试验mooring tubular 系泊管mooring winch 系泊绞车mooring yoke 系泊轭mooring 停泊mop 地板擦;擦光辊MOP 可动油图MOP 最高工作压力mop-up 擦除;结束MOPA 调制振荡器的功率放大器MOPA 主控振荡器的功率放大器mope pole 下管撬杆MOPF 可动油图标志MOR system 洋中脊系mor 粗腐殖质MOR 存储器输出寄存器morainal apron 冰碛平原moraine deposit 冰碛物moraine 冰碛morainic succession 冰碛层序moral hazard 道德危险moral obligation 道义责任moral 道德的;教训;道德morale 纪律morality 道德;道义;品行morass 沼泽;艰难;困境MORB 中央海岭玄武岩mordant 腐蚀剂mordanting 媒染;腐蚀mordenite 丝光沸石more or less clause 溢短装条款More strength criterion 莫尔强度准则more 更moretane 莫烷moretanoids 莫烷类morfa 沼泽Morgan Guaranty Trust Co. 摩根保证信托公司Morgan's theorem 摩根定理Morisette expansion reamer 刀翼可撑出的扩眼器morning clearing 午前结算morning drilling report 钻井晨报morning shift 早班morning tour 早班morpheme 词头morphine 吗啡morpho- 形状morphogenesis 地貌成因morphogenetic 地貌成因的morphogenic phase 地貌发生幕morphogenic 地貌成因的morphogeny 地貌形成作用morphographic map 鸟瞰地形图morphography 描述地貌学morpholine 吗啉morphologic analysis 地貌分析morphologic basin 地形盆地morphologic characteristics 地貌特征morphologic deep 深坳陷morphologic expression 形态显示morphologic geotectonics 形态大地构造学morphologic landscape unit 地貌景观单元morphologic modeling 形态模型建立技术morphologic prominence 地貌起伏morphologic region 地貌区;地形区morphologic rheology 形态流变学morphologic species 形态种型morphologic variation 形态变异morphologic vertical zoning 地貌垂直分带morphologic =morphological 形态学的morphologic-structural configuration 地形构造轮廓morphology 形态学;地貌学morphometry 地形测量morphorogenic phase 造山幕morphosculpture 刻蚀地貌morphosequent 地表地貌morphostratigraphic unit 地貌地层单位morphostructural analysis 地貌构造分析morphostructure 地貌构造morphotectonics 地貌构造分析morphotropism 变晶现象;准同形性morphotropy 变形性;变晶;应变morphotype 形态类型morriner 蛇形丘Morse code 莫尔斯码Morse lamp 莫尔斯信号灯morsel 少量;分成小块mort 搬出钻井工具mort-lake 弓形湖mortality ratio 死亡率mortality 死亡率mortar texture 碎斑结构mortar 灰浆mortgage bond 抵押债券mortgage loan 抵押贷款mortgage 抵押mortise 榫眼槽;沟;孔;接榫;牢固结合MOS 金属氧化物半导体MOS 金属氧化物硅mos 月数mosaic angle 镶嵌角mosaic assembly 空中照片嵌拼图mosaic block 镶嵌块mosaic breccia 镶嵌角砾岩mosaic color map 镶嵌彩图mosaic crystal 镶嵌晶体mosaic image 镶嵌图象mosaic imaging 镶嵌成象mosaic map 镶图mosaic pattern 镶嵌图案mosaic photo strip 航空连续摄影嵌拼照片mosaic photography 航空嵌拼照相术mosaic texture 镶嵌结构mosaic 拼成的Moscovian series 莫斯科统Moscow 莫斯科mose 沼泽Mosherella 莫希尔牙形石属MOSIC 金属氧化物半导体集成电路mosquito bill 抽油杆泵之下mosquito 蚊子;蚊式;小型moss land 泥炭沼泽moss peat 高位泥炭Moss scale of hardness 莫氏硬度表moss 沼泽mosslike 苔藓状的most advanced industry 尖端产业most favoured license clause 最惠特许条款most favoured nation treatment 最惠国待遇most favoured nation 最惠国most likely duration 最可能持续时间most permeable medium 高渗透多孔介质most permeable system 高渗透系统most permeable zone 高渗透层most probable value 最概然值most significant bit 最高有效位most significant character 最高有效字符most significant digit 最高位most stringent test 最紧检验mot op 电动机拖动的mot 马达mota 粘土mote 微尘;瑕疵moth proofing agent 防蛀剂moth repellent 防蛀剂moth 蛾;摧毁雷达台的导弹;锌褐锰矿;蛀虫mothball 防蠹丸;保藏;后备的;樟脑丸mothballed plant 封存装置mothballed refinery 封存炼厂mothballed 检修好存置备用的mothballing 封存mother cell 母细胞mother crystal 原晶体mother current 主流mother earth 大地mother geosyncline 母地槽mother Hubbard packer 一种手工制封隔器mother liquid 母液mother liquor 母液mother lode 母脉mother machine 机床mother map 底图mother metal 母材mother nuclide 母核mother nut 主螺母mother oil 原生石油mother rock 原生岩mother ship 母舰mother solution 母溶液mother substance 油母质mother water 母液mother 母体;母同位素;根本mother-daughter relationship 母子体关系mother-of-coal 丝炭mother-source rock 原始生油岩motherboard 母板motif 主题;基本花纹;动机motile 活动的motility 游动motion compensator unit 运动补偿装置motion compensator 运动补偿器motion model 运动模型motion parts 运动部分motion response 运动反应motion with variable velocity 变速运动motion 运动motion-compensation ability 运动补偿能力motion-sensitive geophone 动敏式检波器motional feedback amplifier 动反馈放大器motional impedance 动生阻抗motional waveguide joint 活动波导管连接motionless 不动的motivating force 驱动力motivation 动机形成motivator 操纵机构;舵motive power 原动力motive 原动的;运动的;动机;促动motivity 发动力;储能motometer 转速计motor boat 摩托艇motor car engine 汽车发动机motor control panel 马达控制面板motor dory 摩托艇motor driven slush pump 电动泥浆泵motor fireman 发动机司机motor frame 电动机架motor fuel 发动机燃料motor gasoline 车用汽油motor grader 机动平地机motor hand 柴油机工motor hoist 电动提升机motor meter 电动机型积算仪表motor octane number 马达法辛烷值motor oil 内燃机机油motor operated switch 电动开关motor operated 电动的motor rule 电动机定则motor spirit 车用汽油motor starter 电机启动器motor supervision 马达监控motor torque 发动机转矩motor truck 载重汽车motor wire brush 电动钢丝刷motor 电动机motor-bent sub combination 马达-弯接头组合motor-bug 机动小车motor-driven turbine pump 电动涡轮泵motor-driven 电机驱动的motor-generator 电动机-发电机组motorboating 汽船声motorbus 公共汽车motorcar 汽车;机动车厢motorcycle 摩托车motordynamo 电动直流发电机motoring test 空转试验motoring 汽车运输;电动回转;倒拖;汽车的motorist 汽车司机;乘汽车旅行者motorization 机动化motorized grader 平地机motorized pipe anchor 电动管锚motorized valve 电动阀motorized 装电动机的;机动化的motorlorry 运货汽车motorman 动力机工motormen motorman的复数motorway 汽车道;快车道mottle 斑点mottled sandstone 杂色砂岩mottled tone pattern 斑点状色调图形mottled 斑点状的mottling 斑块mould oil 滑模油mould =moldmouldboard 型板moulded displacement 型排水量moulded draft 型吃水moulder =moldermoulders oil 陶瓷脱模油moulding compound 模塑料moulding floor 翻砂车间moulding sand 型砂moulding wax 滑模蜡moulding =moldingmoulinet 扇闸mound breakwater 斜坡式防波堤mound seismic reflection configuration 丘形地震反射结构mound 丘mounded facies 丘状相mounded tank 半埋设罐mounded 半埋设的moundy 丘状mount 山mountain apron 山麓冲积裙mountain arc 山弧mountain bog 山地沼泽mountain chain 山脉mountain climate 山地气候mountain coast 山地海岸mountain cork 石棉mountain creep 崩坍mountain effect 山地效应mountain flour 石粉mountain folding 造山作用mountain front 山前带mountain glacier 高山冰川mountain knot 山结mountain leather 石棉mountain making 造山作用mountain meal 硅藻土mountain of dislocation 断层山mountain pitch 山沥青mountain ridge 山脊mountain root 山根mountain slip 地滑mountain soap 皂石mountain station 山区站mountain stream 山区河流mountain tar 胶结沥青mountain topography 山地地形mountain waste 山地岩屑mountain wax 地蜡mountain 山mountain-building movement 造山运动mounted mosaic 裱装镶嵌图mounted 安装好的mounting cost 安装费mounting deflection 安装挠曲mounting flange 固定法兰mounting hole 安装孔mounting list 安装说明mounting plate 装配板mounting pole 安装扒杆mounting 安装;配件mourishment 食物;滋养品mouse ahead 缩小井径钻进mouse hole 小鼠洞mouse trap 鼠笼式打捞器mouse 耗子;灰褐色;鼠标器MOUSE 无人最小人造地球卫星mousehole drilling 钻小鼠洞mouth bar 河口坝mouth down 口朝下mouth of hook 钩口mouth of shears 冲剪口mouth of tongs 大钳口mouth piece 接口管mouth 口;炉口;输出端movability 移动性movable bed 易搬运物质的河床movable center 弹性顶尖movable coil 动圈movable contact 活动触头movable electrode 可动电极movable element 活动元件movable fit 动配合movable gas saturation 可动气饱和度movable head 可动式磁头movable hydrocarbon 可动油气movable mark 可动刻度标志movable oil index 可动油指数movable oil plot flag 可动油图标志movable oil plot 可动油图movable oil 可动油movable plate 活动片movable platen 移动模板movable pore volume 流体可驱移的孔隙容积movable property 动产movable pulley 动滑轮movable receiver 活动型接收机movable space 活动间距movable support 可动支架movable water 可动水movable 活动的move about 动来动去move up-dip 向上倾移动move 移动move-off 移开move-on 装上movement capacity 运输能力movement plan 运输计划movement velocity 运动速度movement 运动moveout equation 时差方程moveout filtering 时差滤波moveout function 时差函数moveout scan 时差扫描moveout term 时差项moveout velocity 时差速度moveout-equivalent canonical profile 时差等效标准剖面mover 原动机;推进器movie 电影moving armature geophone 电动式地震检波器moving average cost method 滑动平均成本法moving average 移动平均moving axis 动轴moving ball type viscometer 动球式粘度计moving bed flow pattern 运动砂床流动型式moving bed 移动床moving blade 动叶片moving boundary 移动边界moving casing 活动套管moving component 运动部件moving conductor geophone 电动式地震检波器moving contact 动触点moving coordinate system 运动坐标系moving fault 活动断层moving phase 流动相moving plate 移动板块moving platform correction 活动平台校正moving source-receiver method 移动电源-接收器电磁勘探法moving time 搬家时间moving vane 动叶片moving water 流水moving wave 行波moving window 滑动窗口moving 移动moving-average operator 移动平均算子moving-coil galvanometer 动圈式检流计moving-coil geophone 动圈式检波器moving-interface survey 移动界面测量moving-receiver method 移动检波器法moving-source method 震源移动法moving-window correlation analysis 移动窗相关分析moviola 声象同步装置mower 割草机MOWS 完全自给的钟形潜水舱MOX 金属氧化物MOX 金属氧化物电阻moyite 钾长花岗岩Moyno pump 莫伊诺单螺杆泵MP method 微孔法MP separator 中压分离器MP steam 中压蒸汽MP 安全设施MP 测量点MP 敷金属纸MP 管汇压力MP 计量泵MP 甲基菲MP 熔点MP 微孔MP 压力计压力MP 造山期MP 中等压力MP 主控制盘MP 最高压力MPA 多倍精度计算MPA 已调脉冲放大器MPa 兆帕MPC 敷金属纸质电容器MPC 最大允许浓度MPD 最大允许剂量MPE 电子仪器零件的机械化生产MPE 多相喷射器MPE 最大容许照射mpg 英里加仑mph 米小时mph 英里小时mphps 英里小时秒MPI fluorescent magnetic particles 荧光磁粉MPI 磁粉探伤法MPI 甲基菲指数MPI 最大容许进气量MPL 可移动的岩石物理学实验室MPL 微电极-邻近侧向测井MPL 岩石力学性质测井曲线mpm 英里分MPN 或然数MPR 多频率电磁波传播电阻率测井仪MPR 甲基菲菲比值MPR 最大压力限制MPR 最大允许产量MPS 多用途潜水器MPSS 多功能半潜式装置MPT 邻近侧向-微电极测井仪MPU 微处理机MPY 密耳年MQR 乘商寄存器MRIL 核磁共振成象测井Ms Th 新钍MS 安全系数MS 材料规格MS 磁致伸缩MS 存储系统MS 分子筛ms 毫秒MS 结构钢MS 均方ms 米秒MS 米制ms 通信;消息;文电MS 微秒ms 英里秒MS 质谱分析法ms 质谱仪MS 中碳钢MS 总开关MSA 美国矿物学会MSA 主台放大器MSA 最小声幅MSB 总配电盘MSB 最高有效位MSc 理科硕士MSC 最高有效字符MSCF 千标准立方英尺Mscfd 千标准立方英尺日MSD 多频信号检波器MSD 均方地层倾角程序MSD 均方偏差MSD 质谱检定MSD 最高有效位MSDTA 质谱差热分析MSE 均方误差msec 毫秒msec 米秒Msec 微秒Msec 兆秒MSER 均方误差比MSF 多级闪蒸MSF 信息转换设备MSF 中波标准频率MSFL 微球形聚焦测井MSFT 微球形聚焦测井下井仪MSG 泥浆比重MSG 最小滑动门MSI 多参数能谱测井仪MSI 中规模集成MSI 最小泥质指数MSL 平均海平面MSP 多炮点处理MSP 最大作业压力MSP 最高地面压力MSR 磁移位寄存器msr 均方根MSR 微波扫描辐射计MSR 中等抗硫酸盐型MSS 多级分离MSS 多谱线扫描器mss 通信;消息;文电MSS 原稿MSS 制造商标准化学会MST 磁导向工具MST 单片系统工艺MST 通用型板MST 微电阻率扫描测井下井仪MST 最低软化点MST 最小生成树mst. 测量MSTA 质谱热分析MSTB 千储罐桶数MSV 多用供应船MSW 金属绕圈MSYN 主同步信号MT 百万吨级MT 磁带MT 大地电磁的MT 多节地层测试器MT 公吨MT 机动车运输MT 联运MT 模变换器MT 泥浆类型MT 平均时MT 汽车运输MT 主定时器;主要时间延迟调节器MT 最大扭矩mt. 测定Mt. 矩Mt. 山MTBF 故障平均间隔时间MTBM 维修平均间隔时间MTC 磁带机控制器MTC 厘米纵倾力矩MTD 测试深度MTD 磁带磁鼓MTD 平均温差MTE 多系统试验设备MTF 调制传递函数MTF 机械定时引信MTF 挪威工程材料协会mtg. 安装mtg. 抵押;抵押契约mtg. 会议MTH 磁带信息处理机mth. 月MTI 磁带机接口MTI 活动目标显示器MTI 每英寸纵倾力矩MTIT 大地电磁阻抗张量MTL Valve Tray 塔板定位架浮阀塔盘MTL 平均容许限度;平均耐药量mtl. 材料MTM 操作方法时间测量Mtoe 百万吨油当量MTP 顶部最高压力MTP 最高油压Mtpa 百万吨年MTR 材料试验反应堆MTR 磁带记录器MTR 多路跟踪雷达MTR 多路无线电信标MTR 泥浆马达MTRBRG 泥浆马达轴承MTS 磁带机子系统MTS 海洋技术学会MTS 压力计-温度计探测器Mts. 山脉MTTF 平均无故障时间MTTFF 首次故障前平均时间MTTR 平均维修时间MTU 磁带机MTU 主终端设备MU 测量装置;测量单位MU 存储器MU 机械利用MU 监视器MU 质量单位mu-factor μ系数mu-metal μ磁性合金much 许多;大量much-faulted anticline 断裂程度很大的背斜mucilage 粘液;粘胶mucin 粘蛋白muciparous 分泌粘液的muck car 泥车muck 腐殖土muck-stick 铲子mucker 挖沟机mucking 清理管沟muckite 小粒黄色琥珀mucosity 粘性mucous membrane 粘膜MUCP 多级离心泵mucus 粘液mud acid treatment 土酸处理mud acid 土酸mud additive 泥浆添加剂mud aggregate 泥粒集合体mud agitator 泥浆搅拌器mud anchor 砂锚mud arrival 泥浆波mud baffle 泥浆挡板mud balance 泥浆比重秤mud bank 泥滩mud bin 泥浆贮藏箱mud bit 钻泥层用钻头mud blanket 毯状泥层mud board 底泥板mud body 泥浆结构mud boulder 泥球mud breccia 泥角砾岩mud bridges 泥饼桥mud buoyancy correction 泥浆浮力校正mud buoyancy 泥浆浮力mud cake buildup 泥饼形成mud cake 泥饼mud channel 泥浆管路mud channeling 泥浆窜流mud circulating system 泥浆循环系统mud clean-up acid 除泥浆酸mud cleaner 泥浆清洁器mud column 泥浆柱mud conditioner 泥浆处理剂mud cone 泥火山mud control 泥浆性能的控制;用泥浆控制井眼mud crack cast 泥裂铸型mud crack 泥裂mud cup 泥浆杯mud damage 泥浆对地层的损害mud decontaminant 泥浆净化剂mud degasser 泥浆除气器mud degassing still 泥浆脱气蒸馏mud density indicator 泥浆密度指示器mud desander 泥浆除砂器mud ditch 泥浆槽mud driven turbine-alternator 泥浆驱动的涡轮发电机mud filter cell 储浆杯mud filtrate 泥浆滤液mud flow fill indicator 灌泥浆指示器mud flow monitor 泥浆流量监测仪mud flow on trips 起下钻时泥浆外溢mud flow rate meter 泥浆流量计mud flowage 泥流mud fluid 泥浆mud flume 泥浆槽mud foreshore 泥质前滨mud furrow 泥裂沟mud gas 泥浆气mud glacier 泥川mud gun 泥浆枪mud hog 泥浆泵mud hopper 泥浆漏斗mud hose 泥浆软管mud house 泥浆房mud hydraulics 泥浆水力学mud in 在充满粘泥浆井中下入mud ingredient 泥浆拼料mud laden fluid 泥浆mud launder 泥浆槽mud line casing support system 泥线套管支承系统mud line suspension system 泥线悬挂系统mud line 泥浆管线;泥线mud lining 结泥饼mud logging 气测井mud loss 泥浆漏失mud lubrication 泥浆压井mud lubricator 泥浆压井器mud making formation 造浆地层mud mixer 泥浆搅拌器mud mixing appliance 配泥浆的设备mud motor 井下动力钻具mud motor-bent sub 泥浆马达-弯接头mud off 泥封mud particles 泥浆中的固体颗粒mud pebble 泥砾mud pellet 泥粒mud piston 泥浆泵活寒mud pit 泥浆池mud plant 泥浆站mud pocket 泥浆包mud pressure indicator 泥浆压力计mud program 泥浆设计mud property ratio 泥浆性能指数mud property 泥浆性能mud pulse valve 泥浆脉冲阀mud pump shock pressure 泥浆泵振动压力mud pumpability 泥浆可泵性mud purification 泥浆净化mud reclamation 泥浆回收mud relief valve 泥浆泵安全阀mud removal agent 泥浆清除剂mud rim 锅炉灰坑的衬泥边缘mud ring 泥饼圈mud rock 泥岩mud salinity 泥浆矿化度mud sample 泥浆试样mud saver bucket 护罩mud saver 泥浆护罩mud scale 泥浆比重计mud scow 移动式钻井泥浆罐;向沼泽地运送管子和设备的大型滑橇mud screen 泥浆筛mud separator 泥浆分离器mud settling sump 泥浆沉淀池mud shaker 泥浆振动筛mud shale 泥页岩mud sheath 泥饼mud sill 排架座木;底基;底梁mud siren 泥浆警报器mud slip 泥浆冲出钻屑mud socket 捞砂筒mud solid 泥浆中的固相物质mud stability 泥浆稳定性mud stalagmite 泥石笋mud stream 泥浆流mud suction hose 泥浆吸入软管mud sump 泥浆池mud system 泥浆循环系统;泥浆体系mud tank 泥浆罐mud thickener 泥浆增稠剂mud thinner 泥浆减稠剂mud travel time 泥浆旅行时间mud turbine generator 泥浆涡轮发电机mud up 泥浆封住油层mud viscosity 泥浆粘度mud volcano 泥火山mud volume totaliser 泥浆体积累加器mud weight balance 泥浆比重天平mud weight indicator 泥浆比重指示计mud weight 泥浆比重MUD WT IN 进口泥浆比重MUD WT OUT 出口泥浆比重mud 泥浆mud's college education 配制优质泥浆mud-cooling tower 泥浆冷却塔mud-cracked clay 泥裂粘土岩mud-daubed 用泥浆修补的mud-filled 充满泥浆的mud-flow indicator 泥浆流量指示器mud-framework reef 泥格架岩礁mud-gas cutting 泥浆气侵mud-gas logging 泥浆气侵录井mud-gas separator 泥浆-天然气分离器mud-log 井下泥浆测量曲线mud-motor orientation angle 泥浆马达定向角mud-pressure pulses 泥浆压力脉冲mud-propelled turbine 泥浆驱动的涡轮mud-pulse telemetry 泥浆脉冲遥测技术mud-pulse transmitter 泥浆脉冲发射器mud-pulse 泥浆脉冲mud-rock flow 泥石流mud-supported biomicrite 灰泥支撑的生物微晶灰岩mudapron 挡泥板mudcake correction 泥饼校正mudcake effect 泥饼影响mudded off 泥封的mudding action 造壁作用mudding in 在充满泥浆井中下mudding off 造壁mudding up 泥浆制备mudding 泥封muddle 混乱;浑浊muddy intercalation 泥质夹层muddy limestone 泥灰岩muddy rip-up clast 泥浆撕裂碎屑muddy sand 泥质砂层muddy 泥质的mudflat 泥质潮滩mudflow 泥流mudguard 挡泥板mudhole 除泥孔;澄泥箱mudjack 压浆mudlark 清沟工mudlegs 存污管段mudline 泥线mudlump 泥火山mudprone facies 泥坡相mudprone 泥坡的mudpump 抽泥;泥浆泵mudslide platform 抗泥崩平台mudslide 泥崩mudslides 海底泥滑动mudspate 泥流mudstone 泥岩;泥状灰岩mudsupported 灰泥支撑的muff 套筒;保温套;衬套;轴套muffle burner 马弗炉喷燃器muffle furnace 马弗炉muffle 包;蒙住;消声器;马弗炉muffler tail pipe 回气管尾管muffler 消声器;马弗炉;消弧片mugearite 橄榄粗安岩mulching film 地膜muldakaite 次闪辉绿岩mulde 凹地mule foot a bit 钻头偏磨mule head 驴头mule shoe guide 斜口引鞋mule shoe latch 斜口管鞋爪mule skinner's delight 小钻杆mule 骡;牵引车mule's foot 驴蹄形绳结mule-head hanger 驴头上挂抽油杆的装置mule-shoe nipple 斜口管鞋短节muleshoe orientation method 斜口管鞋定向法muleshoe orienting device 斜孔造斜工具muleshoe slinger lock 斜口管鞋投掷锁定器muleshoe sub 斜口接头mull 细软薄布;细腐殖质;混乱;弄糟;研磨muller 研磨机mullet 钻井投资者mullion structure 窗棂构造mullite 模来石mulser 乳化机multcan 多分管的;分管型燃烧室multeity =multiplicitymulti phase region 多相区multi- 多multi-access 多路存取multi-address code 多地址码multi-address computer 多地址计算机multi-address imstruction 多地址指令multi-address message 多地址信息multi-address order code 多地址指令码multi-amplifier 多级放大器multi-aperture device 多孔磁心;多孔器件multi-aperture 多孔的multi-armed centralizer 多臂扶正器multi-associative processor 多路相联处理机multi-attribute-utility 多属性效用multi-azimuth 多方位multi-bank 多组的multi-beam scan imaging method 多波束扫描成象法multi-beam sonar 多波束声呐multi-beam 多波束multi-blade 多刃的multi-block linear polymer 多嵌段线性聚合物multi-bore well 多底井multi-bucket dredger 多斗挖泥机multi-bucket excavator 多斗挖掘机multi-buoy mooring system 多浮筒系泊系统multi-cell electrodialyzer 多室电渗析器multi-chain condensation polymer 星形缩聚物multi-channel acquisition 多道采集multi-channel data acquisition system 多道数据采集系统multi-channel magnetic tape 多道磁带multi-channel memorizer 多道存储器multi-channel oscillograph 多路示波器multi-channel 多道multi-color spectrum 多色谱multi-combination meter 多用途复合仪表multi-combustion chamber heater 多燃烧室加热炉multi-compartment bed 多级床multi-connector 复式连接器multi-core magnetic memory 多磁心存储器multi-cycle composite basin 多旋回复合盆地multi-dimensional multi-phase flow 多维多相流动multi-dimensional scaled physical model 多维相似物理模型multi-dimensional signal 多维信号multi-disk flexible coupling 多盘弹性联轴节multi-domain approach 多域法multi-domain F-K filtering 多域F-K滤波multi-domain technique 多域技术multi-effect evaporator 多效蒸发器multi-effect 多效的multi-element filter unit 多芯过滤装置multi-expansion 多次膨胀multi-file volume 多文件磁带卷multi-finger caliper 多臂井径仪multi-fracture gas pool 多裂缝气藏multi-frequency 多频multi-gain buffer 多增益缓冲器multi-holed jet 多孔喷丝头multi-industry 跨行业multi-input 多端输入multi-job 多道作业multi-line acquisition 多线采集multi-line 多线multi-list processor 多道程序处理机multi-lobe 多叶片的multi-lobed filament 多叶形长丝multi-nozzle 多喷嘴multi-operator welding set 多站电焊机multi-orifice valve 多孔阀multi-pass compiler 多遍编译程序multi-pass operations 多次操作multi-pass swivel 多路旋转接头multi-pass welding 多道焊multi-pede traverse system 多头横动体系multi-pen plotter 多笔绘图仪multi-point open-flow potential test 多点无阻流量测试multi-point-scanner 多点扫描器multi-pore media 多重孔隙介质multi-position valve 多位阀multi-product line 多油品管线multi-programmed computer 多道程序计算机multi-programmed time-sharing system 多道程序分时系统multi-purpose adhesive 万能胶multi-purpose computer 通用计算机multi-purpose gear oil 通用齿轮油multi-purpose semisubmersible 多功能半潜式装置multi-purpose tool 多功能工具multi-purpose tubing 多用途油管multi-repeat station 多次重复测点multi-row 多行multi-run station 多管计量站multi-run welding 多道焊multi-screw pump 多螺杆泵multi-shut-in tool 多次关井器multi-speed rheometer 变速流变仪multi-stage decision procedure 多阶段决策程序multi-stage motor 多级马达multi-stage uniaxial orientation 多级单轴取向multi-start 多头;多头的multi-step thread 多头螺纹multi-strand wire rope 多股钢丝绳multi-string cutter 多层管柱割刀multi-string target 多层管柱试验靶multi-stylus 多笔尖multi-tensioner 多向张力器multi-terminal network 多端网络multi-tier conveyor drier 多层输送带式干燥机multi-trayed vessel 多盘式容器multi-tube cooler 多管冷却器multi-tube orifice meter 多管孔板流量计multi-tubular reactor 多管式反应器multi-usage 多用途multi-user operating system 多用户操作系统multi-variate random process 多变量随机过程multi-vessel configuration 多级液罐组合配置multi-viscosity number oil 多粘度牌号润滑油multi-wash test 多次洗涤试验multi-way switch 多路开关multi-well bounded reservoir 多井封闭油藏multi-well histogram 多井直方图multi-well profile planning 丛式井剖面设计multi-well transient test 多井不稳定试井multi-zone relay 分段限时继电器multiaccelerator 多重加速器multiaction problem 多行动方案问题multiaddress 多地址multianalysis 多方面分析multiar 多向振幅比较电路multiaxial 多轴multiband aerial camera 多波段航空摄影机multiband imagery 多波段成象multiband photograph 多波段摄影相片multiband photographic image 多波段摄影图象multiband photography 多波段摄影multiband remote sensing 多波段遥感multiband sensor 多波段传感器multiband spectral analysis 多波段光谱分析multibeacon 多重调制指点标multibeam antenna 多波束天线multibeam oscilloscope 多线示波器multibeam ultrasonic meter 多束超声流量计multibloc model 垒块模型multibolt flange 多螺栓法兰multibranched drilling 多底井钻井multibranched polymer 多支链聚合物multibreak 多重开关;多断点的multibuoy 多点系泊浮筒multiburst signal 多频率正弦波群信号multibus adapter 多总线适配器multibus 多总线multicable 多芯电缆multican 多分管的multicased deep well 多套管深井multicasting 立体声双声道调频广播multicell 多网格的Multicellaesporifes 无孔多孢孢属multicellular animals 多细胞动物multicellular filament 多细胞丝状体multicenter bond 多中心键multichain polymer 多链聚合物multichannel amplifier 多通道放大器multichannel analyzer 多道分析器multichannel coherence 多道相干multichannel coherency filter 多道相干滤波器multichannel deconvolution 多道反褶积multichannel discriminator 多道甄别器multichannel filtering 多道滤波multichannel gamma ray spectrometer 多道伽马射线谱仪multichannel multiplier 多通道乘法器multichannel optimal filter 多道最佳滤波multichannel processing 多道处理multichannel processor 多道信息处理机multichannel record 多道记录multichannel recording oscillograph 多路录波器multichannel seismic exploration 多道地震勘探multichannel seismic instrument 多道地震仪multichannel spectrometer 多道谱仪multichannel technique 多道技术multichannel telemetry seismic system 多道遥测地震系统multichromatic spectrophotometry 多色分光光度计multiclone 多管式旋流除尘器multicoil focused induction tool 多线圈聚焦感应测井仪multicoil induction system 多线圈感应测井装置multicoil 多线圈multicolor hologram 多色全息图multicolor image 多色图象multicolor three dimension image 多色三维图象multicompleted well 多层完成的井multicomponent brine 多组分盐水multicomponent distillation 多组分蒸馏multicomponent fibre 多组分纤维multicomponent film fibre 多组分薄膜纤维multicomponent flash calculation 多组分闪蒸计算multicomponent mixture 多元混合物multicomponent polymer fibre 多组分共聚物纤维multicomponent 多组分的;多元的multicomputing unit 多运算器处理机multiconductor calbe 多芯电缆multicontact miscibility 多次接触混相multicontact miscible 多次接触混相的multicontact switch 多触点开关multicore cable 多芯电缆multicore conductor 多芯电缆multicoupler 多路耦合器multicurve 多曲线multicut 多刀切削multicycle 多周期的multicyclic 多旋回的multicyclone 多管式旋流器multicylinder engine 多缸发动机multicylinder pump 多缸泵multicylinder 多缸的multidate image 多日期摄影图象multidate photograph 多日期摄影相片multidate photography 多日摄影术multideck 多层的multideformed terrain 多次变形区multidemodulation 多解调电路multidetector array 多检波器组合multidetector 多探测器multidigit 多位的multidimensional access 多维存取multidimensional convolution 多维褶积multidimensional flow 多维流动multidimensional Fourier trans form 多维傅里叶变换multidimensional geometry 多维几何形态multidimensional integrals 多维积分multidimensional linearized inversion 多维线性反演multidimensional model 多维模型multidimensional normal distribution 多维正态分布multidimensional objective function 多维目标函数multidimensional optimization problem 多维最优化问题multidimensional scaling 多维标度法multidimensional 多维的multidirectional block faulting 多向块断作用multidirectional drilling 多筒钻井multidirectional firing gun 多方向点火枪multidirectional normal fault 多向正断层multidirectional 多向的multidisciplinary analysis 多学科分析multidisciplinary 多学科的multidivisional problem 多部门问题multidrain well 多眼泄油井multidraw 多点取样multidrop communication network 多站通信网络multidrop line 多分支线multidrop 单线多站通信multiecho 多次回声multielement activation analysis 多元素活化分析multielement array 多元天线阵multielement oscillograph 万用示波器multielement parasitic array 多元无源天线阵multielement 多元素multifaceted 多层面的multifeeler casing caliper 多触点套管井径仪multifilament yarn 复丝multifilament 复丝multifinger contactor 多点接触器multiflow evaluator 多级流量地层测试器multifoam 多元泡沫塑料multifold coverage 多次覆盖multifold line 多次覆盖测线multifold profiling 多次覆盖剖面法multifold 多样的multiform function 多值函数multiform 多形multiformat output 多格式输出multiformed 多次变形的multiformity 多形multifrequency exploration 多频勘探multifrequency transmission 多频发射multifrequency vibration 复频振动multifuel engine 多燃料发动机multifunction 多功能multifunctional concentrate 多功能母料multifunctional molecule 多官能团分子multifunctionality 多功能性multigage 多用量测仪表;多用规;多用检测计multigang switch 多联开关Multigate Decay-Lithology Tool 多门衰减岩性测井仪multigelation 反复冻融作用multigrade lubricating oil 多品位润滑油multigrade oil 多级通用机油multigrade 多级的multigroup approximation 多群近似multigroup theory 多群理论multigun 多枪的multiharmonigraph 多谐记录仪multiheaded oil blob 多头油滴multihole drilling 多井眼钻井multihop 多次反射multihypothesis test 多假设检验multiimage 重复图象multikeyway 多键槽multilateral sand 横向重叠砂体multilateral trade 多边贸易multilateral treaty 多边契约multilateral 多边的multilayer adsorption 多层吸附multilayer board 多层板multilayer copolymer 多层共聚物multilayer film 多层薄膜multilayer injector 合注井multilayer performance 多层动态multilayer producer 合采井multilayer reservoir model 多油层油藏模型multilayer type fiber 多层型纤维multilayer welding 多层焊multilayer winding 多层绕组multilayer 多层的multilayered fold 多层褶皱multilayered medium 多层介质multilayered model 多层模型multilayered reservoir 多油层油藏multilength arithmetic 多倍长度运算multilength working 多倍长度工作单元multilens composite photo 多镜头联配相片multilens photography 多镜头摄影术multilevel addressing 多级地址multilevel difference equation 多层差分方程multilevel 多层的multiline shooting 多线激发multilinear failure 多线性破坏multilinear function 多重线性函数multilobate delta 多叶三角洲multiloop feed-back 多路反馈multimetallic catalyst 多金属催化剂multimeter 万用表multimetering 多点测量multimineral model 多矿物模型multimodal probability distribution 多重模态概率分布multimode disturbance 多模干扰multimode Kalman filter 多模卡尔曼滤波器multimode optical fibers 多模光纤multimode wave 多波型波multimode 多方式;多模;多波型multimoding 多型性;多波性multimolecular film 多分子膜multimolecular reaction 多分子反应multinational bank 多国银行multinational company 多国公司multinational corporation 多国公司multinational enterprise 多国性企业multinational firm 多国商号multinationalization 跨国化Multinodisporites 繁瘤孢属multinomial coefficient 多项式系数multinomial expansion 多项式展开multinomial 多项式;多项的multinuclear imaging 多核成象multinuclear 多核的multiobjectives decision 多目标决策multioffice 多局制Multioistodus 多箭牙形石属multioutlet 多引线multipactor 具有二次电子倍增器的析象管;高速微波功率开关multiparallel-layered medium 平行多层介质multiparameter analyzer 多参数分析器multiparameter seismic inversion 多参数地震反演multiparameter 多参数multiparticle spectrometer 多粒子光谱仪multipass airlay dryer 多路气流式烘干机multipass boiler 多回程锅炉multipass decomposition approach 多次分解法multipass exchanger 多程换热器multipass sort 多次扫描分类;多级分选multipass 多路multipath interference 多道干涉multipath propagation 多路径传播multipath ray 多路径射线。
特种功能材料 石墨烯

1.2 Multitude of striking properties of single-and few layer graphene
3. Optimal mechanical properties 石墨是矿物质中最软的,其莫氏硬度只有1-2 级,但被分离成一个碳原子
厚度的石墨烯后,性能则发生突变,其硬度将比莫氏硬度10 级的金刚石还高, 却又拥有很好的韧性,且可以弯曲。
A是表面钻有小孔的晶体薄板, 这些孔的直径为1--1.5um C是对放在晶体板上的石墨烯 进行纳米压痕处理的原理图。
1.3 Preparation of graphene
1.3 Preparation of graphene
Graphene can be
0D: fullerenes (wrapped up) 1D: nanotubes (rolled into) 3D: graphite (stacked into)
据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚 度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂
根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如 超轻防弹衣,超薄超轻型飞机材料等。
1.2 Multitude of striking properties of single-and few layer graphene
远远超过了电子在一般导体中的运动速度(非常高的电子迁移率)。 因此,在微电子领域, 制造超微型晶体管,用来生产未来的超级计算机,
以获得更高的速度,石墨烯有可能会成为硅的替代品。
石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的 情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面 就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这 种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时, 不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温 下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
稠油井工况判断智能预警模型的应用

119近年来,随着新型采油管理区的建设,油气生产信息化手段更加丰富,为稠油油藏的管理提供了强有力的技术支持。
依托四化等信息辅助系统,实时提取功图、地面等多项参数,结合现场管理经验,利用判别分析等统计学方法建立油井正常工况与异常工况预警模型[1]。
目前针对稠油油井,利用多参数统计方法建立工况预警模型的研究相对较少,且研究时将各影响参数孤立。
面对稠油开发易出现出砂、汽窜、油稠、断脱等异常工况问题,如何降低工况异常造成的产量损失,保持油田稳产已成为当前的重要工作,有必要利用信息化手段,对稠油井况预警模型进行深入研究。
1 稠油井况参数统计分析1.1 示功图参数示功图是载荷随位移的变化关系曲线所构成的封闭曲线图,主要包括最小载荷、最大载荷、面积、功图形状等参数,除功图形状之外均可以量化。
A区块最小载荷分布以11~20kN和21~30kN 这两个区间为主,合计占81%。
最大载荷分布以91kN以上这一区间为主,占42%。
71~80kN以及81~90kN这两个区间合计占比50%。
功图面积分布以201~300区间为主,占比达43%;0~100区间分布较小,占比为12%。
1.2 示功图形状将工况异常井的示功图进行分类统计,提取问题井典型示功图,对稠油井常出现的出砂、汽窜、泵漏、断脱、油稠等异常工况进行描述,建立其相应图版。
(1)出砂。
示功图左下为尖镰刀状,表现为泵筒内无液柱,载荷在下死点附近才卸载,液面接近泵深。
如果泵的入口受到阻塞或有流体供应不足,会导致泵筒内无液柱形成,液位接近泵深。
这可能是由于管道堵塞、阀门关闭或进水源出现问题等原因引起的。
如果泵的装置不正确,例如进口管道截面积太小或泵的位置不正确,会导致泵无法充分吸入液体形成液柱,使载荷在下死点附近才卸载。
这可能需要重新检查和调整泵的安装[2]。
(2)泵漏。
泵漏井示功图整体图形与正常时变化不大,最大载荷变小,最小载荷变大,形状稠油井工况判断智能预警模型的应用武杰中国石化胜利油田石油开发中心 山东 东营 257000摘要:对于蒸汽吞吐开发的稠油油藏,易出现出砂、汽窜、套坏等异常工况问题,如何利用油井工况参数建立有效的预警模型,并智能判断处置从而降低异常工况造成的产量损失已成为油田稳产的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :p h y s i c s /0701152v 1 [p h y s i c s .f l u -d y n ] 12 J a n 2007Journal of TurbulenceVol.00,No.00,January 2006,1–19Fully developed turbulent dynamo at low magnetic Prandtlnumbers.Rodion Stepanov †Institute of Continuous Media Mechanics,Korolyov 1,614013Perm,RussiaFranck Plunian ‡Laboratoires des Ecoulements G´e ophysiques et Industriels,B.P.53,38041Grenoble Cedex 9,France(February 2,2008)We investigate the dynamo problem in the limit of small magnetic Prandtl number (Pm)using a shell model of magnetohydrodynamic turbulence.The model is designed to satisfy conservation laws of total energy,cross helicity and magnetic helicity in the limit of inviscid fluid and null magnetic diffusivity.The forcing is chosen to have a constant injection rate of energy and no injection of kinetic helicity nor cross helicity.We find that the value of the critical magnetic Reynolds number (Rm)saturates in the limit of small Pm.Above the dynamo threshold we study the saturated regime versus Rm and Pm.In the case of equipartition,we find Kolmogorov spectra for both kinetic and magnetic energy except for wave numbers just below the resistive scale.Finally the ratio of both dissipation scales (viscous to resistive)evolves as Pm −3/4for Pm <1.1IntroductionMost of astrophysical bodies possess or have had in their history their own magnetic fields.In most cases their generation rely on inductive processes produced by the turbulent motion of the electroconducting fluid within the body [1].An important parameter of the problem is the magnetic Prandtl number defined by Pm =ν/ηwhere νis the viscosity and ηthe magnetic diffusivity of the fluid.In the “magnetic”universe Pm varies from values as large as 1014for the interstellar medium [2]to values as small as 10−6for the iron core of planets or stellar plasmas.This large spectrum of possible Pm values implies strong differences between possible generation mechanisms.In some sense Pm is a measure of the kinetic energy spectrum availablefor2Rodion Stepanov and Franck Pluniangenerating magnetic energy.When Pm≥1the resistive scale is smaller thanthe viscous scale implying that all velocity scales are available for generatingsome magneticfield.In the other hand for Pm<1,only the velocity scaleslarger than the resistive scale are available for the magneticfield generation.Inthat case,the velocity scales smaller than the resistive scale are enslaved to thelarger scales and in essence they stay passive in the generation process.Besidesthis is why the large eddy simulation technique may be recommended in thatcase[3].Therefore,atfirst sight one can expect that dynamo action is all the more difficult to obtain since Pm is smaller in reason of a smaller velocityspectrum available for the magnetic generation.This is indeed what comes outfrom recent numerical simulations[4,5,6,7,8,9](see also[10]and referencestherein for an alternative approach).Though,we have evidence of magneticfield in planets and stars,and dynamo action has also been reproduced inexperiments working with liquid sodium for which Pm is small(∼10−6)[11, 12,13,14].These experiments and further devices in preparation[15,16,17]aredesigned in such a way that the dynamo mechanism is produced by the largescale of theflow due to an appropriate large scale forcing.The turbulencenaturally developing at smaller scales may play a role though this is stillunclear[18,19,3,20,21].In these experiments,the choice of the forcing isbased on the hypothesis that it is the stationary part of the large scaleflowwhich should be important for the generation mechanism.A number offlowgeometries studied in the past turned out to be good candidates for such experiments[22,23,24].In the present paper we are interested in the possibility for a Kolmogorovtype turbulentflow to generate dynamo action at low Pm,without need fora large scale motion controlling the generation mechanism.We expect theeddies having the highest shearing rate to be the more active for generating themagneticfield,at least during the kinematic stage of magneticfield growth.Asin Kolmogorov turbulence u l/l≈l−2/3,these eddies correspond to the smallest available scale which is the viscous scale for Pm≥1[25]and the resistive scale for Pm<1[9].Eventually the magneticfield will then spread out to larger scales due to the nonlinear interactions.This problem is hard to solve by direct numerical simulation for it needs high resolution in order to describe magnetic phenomena adequately[26].Some results have been obtained using the EDQNM closure applied to the MHD equations[27]near the critical Rm and for arbitrary low values of Pm.Here we want to investigate arbitrary large values of Rm and small values of Pm.For that we use a shell model of MHD turbulence introduced by Frick and Sokoloff[28].This model is the successor of several other shell models for MHD turbulence[29,30,31,32,33,34,35]but it is the only one to conserve all integrals of motions including magnetic helicity (or kinetic helicity for the non magnetic case).It is based on the so-called GOY hydrodynamic shell model[36,37,38,39].In[28],Frick and SokoloffhaveDynamo action at low Pm3 derived a model which represents either2D or3D MHD turbulence,depending on the choice of two parameters.As in real MHD turbulence the2D model leads to the impossibility of dynamo action[40].This shows that in spite that such a shell model is a drastic simplification of the real MHD turbulence, ignoring for example the geometrical structures of the motion and magnetic field,it contains enough features to make the difference between the2D and3D problems(see also[41]).It also reproduces quite well the structure functions at different orders of real MHD turbulence.Here we consider only the3D model herein after referred to as FS98.This model has also been used by Lozhkin et al.[42]to show that small scale dynamo is possible at low Pm,contrary to the hypothesis put forward by Batchelor[43].Giulani and Carbone[41]have shown that long runs with the FS98model lead inevitably towards a“dynamical alignement”stopping the nonlinear transfer towards the smaller scales.Giulani and Carbone[41]suggested that this problem might be overcome with an other choice of the external driving force.This is what we have done here,adopting a forcing in such a way that it acts on several scales and depends on time with a random phase at each forc-ing scale(see section2.2).Finally,we took care to have long runs well beyond any transient state,in order to have good statistics and reliable results.2Shell model for MHD turbulence2.1Model equationsThe shell model is built up by truncation of the Navier-Stokes and induction equations.We define logarithmic shells,each shell being characterized by one real wave number k n=k0λn and dynamical complex quantities U n and B n representative of the velocity and magneticfluctuations for wave vectors of norm ranging between k n and k n+1.The parameterλis taken equal to the √gold number(1+4Rodion Stepanov and Franck Plunian+c3X∗n−2Y∗n−1.(3) represents the nonlinear transfer rates with the four neighbouring shells n−2, n−1,n+1and n+2.In addition we have to take U−2=U−1=U N+1= U N+2=0and B−2=B−1=B N+1=B N+2=0.The parameter F n is the forcing at shell n.The time unit is defined by the turnover time of the largest scaleτ=(|U0|k0)−1.To determine the complex coefficients a j and b j, j=1,2,3we apply the property that the total energy E tot,cross-helicity H C and magnetic helicity H B must be conserved in the limit of non-viscous and non-resistive limitν=η=0.In our shell model,these quadratic quantities write in the following formE tot=12Nn=0(U n B∗n+B n U∗n),(5)H B=12Nn=0(−1)n|U n|2k n.(7)2.2Forcing and initial conditionsThe forcing is chosen in order to control the injection rate of kinetic energy, cross and kinetic helicities.For that we spread the forcing on three neighbour-ing shells n f,n f+1and n f+2with F nf+j =f j e iφj,j=0,1,2where the f jare positive real quantities and where theφj∈[0,2π]are random phases.In that case the forcing isδ-correlated.Alternatively we also used a forcing for which the phasesφj are constant during a certain timeτc,which can be inter-preted as afinite correlation time.In fact this does not make much difference either on the autocorrelation functions of U n nor on the subsequent results. Therefore it is sufficient to use random phases.As we are interested to injectDynamo action at low Pm5 neither kinetic helicity nor cross-helicity,the forcing functions must satisfy112|U n|2and E B(n)=6Rodion Stepanov and Franck PlunianFollowing[46]we define the spectral energyfluxes from the inside of the U(or B)-sphere(shells with k<k n)to the outside of the U(or B)-sphere(shellswith k≥k n).We note for exampleΠB<U>(n)the energyflux from the inside ofthe B-sphere to the outside of the U-sphere.Then we haveΠU< U>(n)=n−1j=0ℑ{k j U∗j Q j(U,U,a)}(14)ΠB< U>(n)=n−1j=0ℑ{−k j U∗j Q j(B,B,a)}(15)ΠU< B>(n)=n−1j=0ℑ{−k j B∗j Q j(B,U,b)}(16)ΠB< B>(n)=n−1j=0ℑ{k j B∗j Q j(U,B,b)}.(17)In FS98the time average ofΠU<U>(n)is denotedΠn.We also define the energyfluxes from the inside of the U-and-B-spheres to the outside of the U-sphere or B-sphere byΠU(n)=ΠU<U>(n)+ΠB<U>(n)(18)ΠB(n)=ΠU<B>(n)+ΠB<B>(n)(19)and the total energyflux byΠtot(n)=ΠU(n)+ΠB(n).(20) We define the viscous and resistive dissipation rates D U(n)and D B(n)in shell n,byD U(n)=νk2n|U n|2(21)D B(n)=ηk2n|B n|2(22) and the total dissipation rate byD tot=Nn=0(D U(n)+D B(n)).(23)Dynamo action at low Pm7 With these definitions we obtain the following shell-by-shell energy budget equations:d tnj=0E U(j)+ΠU(n)=−nj=0D U(j)+ǫ(24)d tnj=0E B(j)+ΠB(n)=−nj=0D B(j).(25)For a statistical stationary solution(d t E U(j) =d t E B(j) =0)we have thenΠtot(n) =−nj=0D U(j) −nj=0D B(j) +ǫ.(26)where here and after denotes time averaged quantities.We define the kinetic and magnetic Reynolds numbers asRe= E tot 2/(ν D tot )(27)Rm= E tot 2/(η D tot ).(28)Finally,following[47],we define the viscous(resp.resistive)scale k−1ν(resp. k−1η)as the one at which the viscous(resp.Ohmic)decay timeτν=(νk2n)−1 (resp.τη=(ηk2n)−1)becomes comparable to the typical turn-over timeτU= (k n |U n|2 1/2)−1.3HydrodynamicsChoosing the appropriate forcing corresponding to B n=0we present in Fig.1 some results concerning the pure hydrodynamic case forν=10−8and n f=8. In this case the forcing isδ-correlated.Though the autocorrelation function, defined bycor(n,τ)= U∗n(t)U n(t+τ)+U n(t)U∗n(t+τ)dtU∗n(t)U n(t)dt U n(t+τ)U∗n(t+τ)dt(29)and plotted in Fig.1a,is far from being the one of aδ-correlated velocity contrary to the Kasantzev model[9].We also made comparisons with afinite8Rodion Stepanov and Franck PlunianΤc o r n ,Τlog 10k2468log 10k54 3 2 101 21234567log 10k00.20.40.60.8l o g 10 U U ,l o g 10 D u(c)(d)Figure 1.Hydrodynamic case for ν=10−8and a forcing scale (arrow)corresponding to n f =8.The output Reynolds number is Re =8107.In (a),the autocorrelation function cor (n,τ)for a δ-correlated forcing is plotted versus τand for several shells n .In (c),the turn-over (black dots)and dissipation (straight line)characteristic times are plotted versus log 10k .In (b),the energyspectrum is plotted versus log 10k and the k −2/3slope (full line)is plotted for comparison.In (d),the energy flux (black dots)and the dissipation Pn j =0D U (j )(gray dots)are plotted versus log 10k .correlation time forcing without finding any significant differences.Thereforethe δ-correlated forcing does not seem to be an issue in our problem.The kinetic energy spectrum (Fig.1b,black dots)of the stationary statistical state is found to be in k −2/3(which corresponds to a Fourier energy spectrum of k −5/3as expected in Kolmogorov turbulence).In Fig.1c,the spectral flux ΠU (n )(black dots)and the dissipation nj =0D U (j )(gray dots)are found tosatisfy the kinetic energy budget (24)with ǫ=1.In addition,in the inertial range we find that ΠU (n )∼ǫand nj =0D U (j )∼0as predicted by a Kol-mogorov turbulence.After the viscous scale,ΠU (n )∼0and n j =0D U (j )∼ǫ.As previously defined,the viscous scale is the one at which the viscousdecay time τν=(νk 2n)−1(full curve of Fig.1c)becomes comparable to the typical turn-over time τU =(k n U n )−1(black dots of Fig.1c).This leads to k ν∼106and compares indeed very well with the Kolmogorov dissipationscale k −1ν∼(ν3/ǫ)1/4.Finally the little bump of ΠU(n )(black dots Fig.1d)just before the viscous scale looks like a bottle-neck effect [48].Dynamo action at low Pm9100200300400500600t1234E 0100200300400500600t0.511.52E U100200300400500600t0.511.522.533.5E B(a)(b)(c)100200300400500600t2002040H U100200300400500600t0.00080.0006 0.0004 0.000200.0002H B100200300400500600t0.40.200.20.40.6H C(d)(e)(f)Figure2.Quadratic quantities (a)E tot ,(b)E U ,(c)E B ,(d)H U ,(e)H B and (f)H C /√E U E B oscillates around zero.The fact that this latter quantity doesnot reach an asymptotic limit of ±1shows that there is no “dynamical aligne-ment”.Therefore we are confident that our choice of forcing overcomes the problem raised by Giulani and Carbone [41].4.2Spectrum analysisIn Fig.3we show the kinetic and magnetic spectrum at four successive times for again ν=10−9and η=10−6(Pm =10−3).Each snapshot corresponds to an average over a not so large amount of time which explains why at early time the kinetic spectrum is not very smooth at large scales.In the early time,when the magnetic field is still not significant,the kinetic energy spectrum has10Rodion Stepanov and Franck Plunianlog 10kE uE u10 E ulog 10kEFigure 3.Kinetic (black dots)and magnetic (gray dots)spectra at four successive times (from (a)to (d))for n f =4,ν=10−9and η=10−6.See also the movie energy1.mpg in which log 10E U (n )and log 10E B (n )are plotted versus log 10k with respectively red and blue dots.a slope in k −2/3(corresponding to a Fourier spectrum in k −5/3).Then,as Rm is much larger than the critical value of the dynamo instability,the magnetic energy starts to grow (Fig.3a).We expect magnetic energy to be initially amplified by the eddies having the highest sharing rate,i.e.the smallest scale eddies.As Pm <1,the smallest eddies available for dynamo action correspond to eddies at resistive scale.This is indeed what we find,as here,the resistive scale (defined as in section 2.3)corresponds to log 10k η∼4.1.We note that the Kolmogorov resistive scale given by k η∼(ǫ/η3)1/4(see section 4.3)with η=10−6,leads to a slightly higher value log 10k η∼4.5.As Rm is sufficiently large,at subsequent times the magnetic energy reaches the level of kinetic energy (Fig.3c).At that time the kinetic spectrum is not influenced yet by the nonlinear feedback of the magnetic field and is still in k −2/3.Then the dynamical equilibrium between the magnetic and velocity fields settles down (Fig.3d).A striking feature of this equilibrium is the change of slope (from -2/3to ∼-1)of the kinetic energy spectrum for k ≤k ηwhile the magnetic spectrum is slightly above the kinetic spectrum.We also note that the viscous dissipation scale has increased (the right part of the kinetic spectrum drifting to the left).This probably comes from the fact that therelog10kFigure4.Kinetic(black dots)and magnetic(gray dots)spectra forν=10−9and for Pm=(a)10−2,(b)10−1,(c)100and Re=(a)6.5109,(b)4.4109,(c)4.4109.The forcing scalecorresponds to n f=4.10kforν=10−9and Pm=10−3.is less energy to dissipate by viscosity than at earlier time because of the additional Joule dissipation.When changing the value of Pm while keeping the same value ofνand cal-culating again thefinal statistically stationary state,we observe again(Fig.4) a deviation of the kinetic energy slope from-2/3to∼-1whatever the value of Pm.To understand better these spectra,we plotted severalfluxes in Fig.5, forν=10−9and Pm=10−3.Looking at curve(a)which represents the totalfluxΠtot(n)versus log10k, one can distinguish three plateaus:thefirst one corresponds to scales larger than the resistive scale(1≤log10k≤3),the second one for scales smaller than the resistive scale but larger than the viscous scale(log10k∼5),and the third one for scales smaller than the viscous scale(log10k≥7).The drop from thefirst to the second plateau corresponds to the ohmic dissipation rateǫη= N j=0D B(j).The drop from the second to the third plateau corresponds to the viscous dissipation rateǫν= N j=0D U(j).We clearly haveǫ=ǫν+ǫηas expected from(26)for n=N.The curve(b)corresponds toΠU(n)versus log10k with two plateaus,de-pending if the scale is larger or smaller than the viscous scale.Thefirst plateau(k≤6)corresponds toΠU(n)∼ǫand the second one(k≥7)to ΠU(n)∼ǫ−ǫν=ǫη.In particular,there is no clear change ofΠU(n)just before the resistive scale that could explain the change of slope of the kinetic energy spectrum as previously pointed out.Now let us have a look at curve(c).The transfer rateΠU<U>(n)is responsiblefor the direct cascade of kinetic energy and would be constant leading to a Kolmogorov spectrum if the magneticfield was null(see Fig.1).This would remain true for a non zero magneticfield only if the curve(c)was stayingflatwithΠU<U>(n)=ǫνfor2<log10k<5.5.In that case the curve(d)would beflat as well withΠB<U>(n)=ǫηfor k>2.Instead,there is a drop ofΠU<U>(n)compensated by a symmetric bump ofΠB<U>(n)for2<log10k<4.5.This dropofΠU<U>(n)is consistent with a spectrum steeper than k−2/3.Indeed,the bumpofΠB<U>(n)corresponds to some extra energy taken fromǫand dissipated byJoule effect.Then there is less energy to be transferred through the kineticenergy cascade.The physical reason why this scenario happens for scales justlarger than the resistive scale,however is still unclear.For the parameters of Fig.5the Kolmogorov dissipation scales are given bykη=(ǫ/η3)1/4=104.5and kη=(ǫ/ν3)1/4=106.75which correspond quan-titatively well with the beginning of the second and third plateau ofΠtot(n).This shows that the arguments leading to the Kolmogorov dissipation scales (see next section)are not affected by the change of spectra slopes observed inFig.4.Finally for completeness,we produced three movies showing the time evo-lution of the spectra of the other quadratic quantities.In u-helicity.mpg,b-helicity.mpg and cross-helicity.mpg,log10H U(n),log10H B(n)and log10H C(n) are plotted versus log10k where the blue and red dots denote positive and neg-ative signs.4.3Dissipation scales ratioAt the end of section2.3we have already explained how we identify the viscousand resistive scales kνand kη,by comparing the turn over time to the respec-tive dissipative times.In Fig.6we plot the ratio kν/kηversus Pm≤1for different values of Re.Wefind that kν/kη∼Pm−3/4.To understand why,it is sufficient to say that between kηand kνthe kinetic energy obeys a Kolmogorov-6-5-4-3-2-1log 10Pm1234l o g 10k Ν k Η1091081071061051041033 4Figure 6.Ratio k ν/k ηversus Pm for different values of ν−1indicated in the legend.The straightline k −3/4is plotted (dashed line)for comparison.spectrum U (k )=ǫ1/3k −1/3(see Fig.4),leading to τ−1U=kU (k )=ǫ1/3k 2/paring τ−1U with respectively τ−1ν=νk 2and τ−1η=ηk 2leads [47]to the dissipation scales k ν∼(ν3/ǫ)−1/4and k η∼(η3/ǫ)−1/4.This in turn leads toa dissipation scales ratio in Pm −3/4.4.4Route to saturationIn this section we study the influence of Pm on the way the dynamo saturates.For that we calculate the ratio of magnetic to kinetic energy E B /E U ,E B and E U being defined as in (12).In Fig.7,E B /E U is plotted versus Rm for three values of Pm.We note that for Rm much larger than the critical value,the level of saturation E B /E U may go beyond 1for Rm ∼105.Such a super saturation state could be expected from the spectra of Fig.4.At the threshold,the slope of E B /E U versus Rm follows a turbulent scaling of the form E B /E U ∼(Rm −Rm c )/Rm 2c as expected by P´e tr´e lis and Fauve [49].Indeed as in this case the threshold Rm c does not vary very much with Pm,the slopes at Rm =Rm c are similar.This is to contrast with the laminar scaling E B /E U ∼Pm(Rm −Rm c )/Rm 2c [49]which would lead to a quasi-horizontalslope for Pm =10−4.1234567log 10Rm0.250.50.7511.251.5E B E UPm 1 Pm 10 2 Pm 10 4Figure 7.The energy ratio E B /E U versus Rm for n f =4and three values of Pm.4.5Dynamo thresholdIn Fig.8the dynamo threshold Rm c is plotted versus Pm −1for n f =4.For increasing values of Pm −1up to 103the threshold first increases in accordance with previous direct numerical simulations [4,5,6,7,8,9].However,for values of Pm −1larger than 103the threshold Rm c is found to reach a plateau.For each value of Pm,the vertical bar around Rm c corresponds to values of Rm for which the magnetic solution is erratic.In other words,below the bars there is no dynamo action and above the bars there is a well define statistically stationary magnetic solution.In between though we do not observe intermittency as in [50,51],the dynamo is irregular,the mean magnetic energy increasing and decreasing versus time.4.6Influence of a forcing scale smaller than the resistive dissipation scaleIn Fig.9,the kinetic and magnetic spectra are plotted for a forcing scale smaller than the resistive scale k η.In that case the inertial range does not play a role in the magnetic generation and a kinetic spectra in k −2/3is recovered.5DiscussionIn this paper we investigated the fully developed MHD turbulence at magnetic Prandtl number lower than unity,using a shell model of MHD turbulence with an appropriate forcing.The main results are:log 10Pm 1R mFigure 8.Dynamo threshold Rm c versus Pm −1for n f =4.10l o g EFigure 9.Kinetic (black dots)and magnetic (gray dots)stationary spectra for ν=10−9,Pm =10−7and a forcing scale corresponding to n f =12.See also the movie energy2.mpg in whichlog 10E U (n )and log 10E B (n )are plotted versus log 10k with respectively red and blue dots.1.For strong MHD turbulent dynamo states (large Rm)we find kinetic and magnetic energy spectra close to the Kolmogorov spectrum k −2/3except at scales just larger than the resistive dissipation scale for which there is a weaker (stronger)slope of the kinetic (magnetic)spectrum.This corresponds to the work of the Lorentz forces which increases with k up to k =k η.2.The evaluation of the viscous and resistive dissipation scales are consistent with Kolmogorov estimates leading to k ν/k η∼Pm −3/4.3.At the dynamo threshold Rm c ,the ratio of magnetic to kinetic energy scaleslike E B/E U∼(Rm−Rm c)/Rm2c,as predicted by a turbulent scaling[49].4.At very low values of Pm,the dynamo threshold Rm c reaches a plateau. Of course all these results rely on the assumption that the interactions between the different scales of motion and magneticfield are local interactions, each shell interacting with a few shells above and below.We believe that this should not make much difference as long as Pm is small,the Kolmogorov turbulence being governed by local interaction.In the other hand our results can not being tested against the Iroshnikov-Kraichnan k−3/2Fourier spectrum prediction[52]resulting from non local interactions between theflow and some large scale magneticfield which could result for example from dynamo action.By the way we believe that the k−3/2slope in FS98is due to a lack of statistics as can be seen from the energyfluxes which are notflat and from the corresponding small range of scales.Adding some non local interaction with a large scale magneticfield in a local shell model,Biskamp[34]found a k−3/2slope,though taking only one such a non local interaction is somewhat artificial.Recently Verma[53]revisited the Iroshnikov-Kraichnan theory in which he shows that the large scale magneticfield becomes renormalized due to the nonlinear term,leading back to the Kolmogorov spectrum.This emphasizes the need for a complete nonlocal shell model in which any shell could interact with the others.This could be a good test against one theory or the other.Such a model would be also welcome for simulations at large Pm.Indeed at large Pm we expect the more energetic scales of theflow, corresponding to scales close to the viscous scales,to interact directly with the smaller scales of the magneticfield.Our local shell model can not catch such features and this is why we did not show results at large Pm for they surely lack physical ground.A further issue that could be addressed by a nonlocal shell model could be to distinguish between a large scalefield generated by a small scale velocityfield resulting from non local interactions(developed in the meanfield formalism)and a large scalefield generated by an”inverse cascade”as for example in Fig.3or in[54],resulting from local interactions. Concerning our local model,we believe that the results presented in Fig.8 showing that the dynamo threshold does not depend on Pm at low values of Pm would stay qualitatively the same if additional nonlocal interactions were included in the model.Indeed the dynamo threshold corresponds to the growth start of the magneticfield which is then still not significant.Therefore any non local interactions(e.g.Alfven sweeping effect)might not change the threshold.6AcknowledgmentsMost of this work was done during a stay of R.S.at the LEGI,with a grant from the Universit´e Joseph Fourier,Grenoble,France and completed during the visit of F.P.at the ICMM,Perm,Russia,supported by the ECO-NET program10257QL.R.S.is also thankful for support from the BRHE program. 7AppendixFor the pure hydrodynamic case(B n=0),only the twofirst conditions(8) and(9)are necessary to derive the forcing equations.In that case the forcing set writesλεf0=(λ+1)u1cos(φ1−ω1)(31)f2=0,(32)while for the full MHD case the forcing set is derived from the three conditions (8),(9)and(10)A(1+λ)f1=b2u0cos(θ2−φ2)cos(φ0−ω0)ε−λ2b0u2cos(θ0−φ0)cos(φ2−ω2)(34) Aand where u j andωj(resp.b j andθj)are the complex modulus and argumentof U nf+j (resp.B nf+j).References[1]G.R¨u diger and R.Hollerbach,2004,The magnetic Universe,Wiley-VCH.[2]A.A.Schekochihin,S.C.Cowley and S.F.Taylor2004,Simulations of the small-scale turbulentdynamo,ApJ612276.[3]Y.Ponty,P.D.Mininni,A.Pouquet,H.Politano,D.C.Montgomery and J.-F.Pinton,2005,Numerical study of dynamo action at low magnetic Prandtl numbers,Phys.Rev.Lett.94164502.[4]A.Nordlund,A.Brandenburg,R.L.Jennings,M.Rieutord,J.Ruokolainen,R.Stein and I.Tuominen,1992,Dynamo action in stratified convection with overshoot,Astrophys.J.,392647.[5]A.Brandenburg,R.L.Jennings,A.Nordlund,M.Rieutord,R.Stein and I.Tuominen,Magneticstructures in a dynamo simulation,1996,J.Fluid Mech.,306325.[6]C.Nore,M.E.Brachet,H.Politano and A.Pouquet,1997,Dynamo action in the Taylor–Greenvortex near threshold,Phys.Plasmas,41.[7]U.Christensen,P.Olson and G.A.Glatzmaier,1999,Numerical modeling of the geodynamo:asystematic parameter study,Geophys.J.Int.,138393.[8]T.A.Yousef,A.Brandenburg and G.R¨u diger,2003,Turbulent magnetic Prandtl number andmagnetic diffusivity quenching from simulations,Astron.Astrophys.,411321.[9]A.A.Schekochihin,S.C.Cowley,J.L.Maron and J.C.McWilliams,2004,Critical magneticPrandtl number for small-scale dynamo Phys.Rev.Lett.,9254502.[10]I.Rogachevskii and N.Kleeorin,2004,Nonlinear theory of a“shear-current”effect and mean-field magnetic dynamos Phys.Rev.E,70046310.[11]A.Gailitis,O.Lielausis,S.Dementiev,E.Platacis,A.Cifersons,G.Gerbeth,Th.Gundrum,F.Stefani,M.Christen,H.H¨a nel and G.Will,2000,Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility,Phys.Rev.Lett.,844365.[12]A.Gailitis,O.Lielausis,E.Platacis,S.Dementiev,A.Cifersons,G.Gerbeth,Th.Gundrum,F.Stefani,M.Christen and G.Will,2001,Magnetic Field Saturation in the Riga Dynamo Experi-ment,Phys.Rev.Lett.,863024.[13]R.Stieglitz and U.M¨u ller,2001,Experimental demonstration of a homogeneous two-scale dy-namo,Phys.Fluids,13561.[14]U.M¨u ller,R.Stieglitz and S.Horanyi,2004,A two-scale hydromagnetic dynamo experiment,J.Fluid Mech.,49831-71.[15]M.Bourgoin,L.Mari´e,F.P´e tr´e lis,C.Gasquet,A.Guigon,J.-B.Luciani,M.Moulin,r,J.Burgete,A.Chiffaudel,F.Daviaud,S.Fauve,P.Odier and J.-F.Pinton,2002,Magnetohydro-dynamics measurements in the von Karman sodium experiment,Phys.Fluids,143046-3058. [16]F.Ravelet,A.Chiffaudel,F.Daviaud and J.L´e orat,2005,Towards an experimental von Karmandynamo:numerical studies for an optimized design,Phys.Fluids,submitted.[17]P.Frick,V.Noskov,S.Denisov,S.Khripchenko,D.Sokoloff,R.Stepanov,A.Sukhanovsky,2002,Non-stationary screwflow in a toroidal channel:way to a laboratory dynamo experiment, Magnetohydrodynamics,38,143-162[18]C.Normand,2003,Ponomarenko dynamo with time-periodicflow,Phys.Fluids,151606-1611.[19]N.Leprovost,2004,Influence des petites chelles sur la dynamique grande chelle en turbulencehydro et magntohydrodynamique,PhD thesis,Paris6.[20]R.Stepanov and K.-H.R¨a dler,2004,The dynamo in a turbulent screwflow,Advances in Tur-bulence X(Proceedings of the Tenth European Turbulence Conference,789-792[21]val,P.Blaineau N.Leprovost,B.Dubrulle and F.Daviaud2006,Influence of turbulenceon the dynamo threshold,submitted.[22]G.O.Roberts,1972,Spatially periodic dynamos,Phil.Trans.R.Soc.Lond.A,271411.[23]Y.B.Ponomarenko,1973,Theory of the hydromagnetic generator,J.Appl.Mech.Tech.Phys.,14775-778.[24]M.L.Dudley and R.W.James,1989,Time-dependent kinematic dynamos with stationaryflows,Proc.R.Soc.Lond.A,425407-429.[25]R.M.Kulsrud and S.W.Anderson,1992,Time-dependent kinematic dynamos with stationaryflows,Astrophys.J.,396606.[26]S.Boldyrev and F.Cattaneo,2004,Magnetic-field generation in Kolmogorov turbulence,Phys.Rev.Lett.,92144501.。