航线ATP Advanced aerodynamics

合集下载

关于飞机起飞滑跑距离的外文文献

关于飞机起飞滑跑距离的外文文献

飞机起飞滑跑距离是指飞机从起飞开始到完全离地之间所需的距离。

这个距离受到许多因素的影响,包括飞机的重量、气温、气压、风向和速度等。

飞机起飞的滑跑距离对飞行安全至关重要,因此各国的民航管理机构都对飞机起飞滑跑距离做出了严格的规定和标准。

近年来,关于飞机起飞滑跑距离的研究不断深入,国际上有很多学者和研究机构对此进行了系统的研究。

以下是一些详细的外文文献,它们对飞机起飞滑跑距离的影响因素和计算方法进行了详细的分析和总结。

1. Anderson, John D. "Aircraft performance design." New York: McGraw-Hill (1999).本书对飞机性能和设计进行了全面的介绍,其中包括了飞机起飞滑跑距离的计算方法和影响因素。

该书对飞机的气动性能、发动机性能、重量和平衡等方面进行了深入研究,为飞机起飞滑跑距离的计算提供了重要的理论支持。

2. Roskam, Jan. "Airplane Design: Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics." Lawrence, Kansas: Darcorporation (1990).该书主要介绍了飞机的气动特性、推力和动力特性的初步计算方法。

在此基础上,对飞机起飞滑跑距离的计算进行了详细的讨论,包括了在不同气候条件下的影响因素和修正方法。

3. Clancy, L. J. "Aerodynamics." John Wiley Sons (2005).本书是一本飞机空气动力学的经典教材,对飞机的气动性能进行了系统的介绍。

其中包括了飞机在不同条件下的起飞性能和滑跑距离的计算方法,为飞机设计和运行提供了重要的参考。

4. Torenbeek, Egbert. "Advanced 本人rcraft design: conceptual design, technology and optimization of subsonic civil 本人rplanes." John Wiley Sons (2013).该书介绍了现代飞机的概念设计、技术和优化方法。

ATP机型

ATP机型
了一种改型,编号“喷流”61。截止1992年12月 31日
共获订货59架,已交付51架。设计特点为使飞机
在BAe超748基础上更加现代化,ATP飞机上采用
了许多新技术。在改进结构设计的同时,对飞机
的气动外形也作了改进。机身加长了5.03米;直流 供电系统改为交
流供电系统;采用民用标准总线,使数据传输系
每副螺旋桨都有6片具有先进气动叶型的复合材料
桨叶。桨叶前缘采用电热除冰。两个机翼整体油 箱,总燃油量为
6364升。右机翼外侧下翼面设单点压力加油口。
座舱增压座舱。新设备,可大大降低驾驶员工作负荷。
客舱内标准布局为64座,每排4座,排距79厘米, 中间设过道。通过调整行
面上使用空调提供能源,并为电池充电,还可用 于发动机
起动及其它工作。机载设备数字式电子设备,使
用ARINC429数据传输设备,史密斯公司SDS-201
电子飞行仪表系统。两套甚高频无线电台、两套
甚高频导航设备,扫描测距设备、无线电罗盘、 空中交通管制应答器
、目视飞行规则设备、飞行数据记录器和数字式
认为,今后10年世界对40~70座支线客机的需要 量为1000架左右
。虽有福克50、ATR42及其加长型ATR72,可能还
有DHC-8的加长型与之竞争,但该公司相信ATP在
投入使用后的10年内,可望在欧洲、美洲及远东
地区售出200~280架。该公司共制造3架试飞用原 型
机。第一架原型机1986年8月6日首次飞行,第二
后掠,平尾不后掠。根据JAR25部要求,方向舵脚
蹬的最大载荷为68千克。一侧发动机发生故障时,
方向舵能自动偏向另一方。方向舵有助力操纵装 置,带弹簧调整片
。每侧升降舵都有调整片。平尾和垂尾前缘有气

航线理论考试(ATPL)最后复习笔记

航线理论考试(ATPL)最后复习笔记

航线理论考试(ATPL)最后复习笔记(1) 以下是在航线理论(ATPL)考试前最后复习阶段做的笔记,包括一些相关知识总结、难点、容易考到的原文等等。

由于是最后复习的笔记,所以覆盖面有限,另外多为总结性质的,所以没有按章节分类。

其中直接引用《The Aviation Theory Course for Airline Transport Pilot》(民航飞行学院那本英文的航线教材)中的原文或者从原文截取拼凑而成的句子,都以斜体标记。

一些重要名称以加粗标记,容易混淆和忽略信息用下划线标记。

该笔记主要面向航线考试,但与私商仪也有很多重合,可以参考复习。

FAA题的内容没有涉及。

1. RAIM: Receiver Autonomous Integrity Monitoring Without RAIM capability, the pilot has no assurance of accuracy of the GPS.也就是说,RAIM既影响位置信息,也影响高度信息。

2. If RAIM is not available:a) Another type of navigation and approaching system must be used;b) Another destination selected;c) Or, the trip delayed until RAIM is predicated to be available on arrival.3. VASI的种类和特点:VASI种类 Three-bar VASI Upwind for high cockpitTri-color VASI Red, green, whitePulsating VASI Below Pulsating redAbove Pulsating whiteon Standing white or alternatingred and white4. 指点标的一些属性:Marker Color Sound Rate Identified with theOM Blue Continuous dashes 2/s First 2 letters of the LLZIM White Continuous dashes 2/sMM amber Alternate dashes and dots6/s Last 2 letters of the LLZ 5. 油量要求:国内航线航程油量 国际航线航程油量备降油量(最远备降场) 备降油量等待油量(45分钟) 等待油量(1500ft等待30分钟)应急油量(航线飞行时间10%的油量)6. 着陆机场无边灯或机长无夜航最低天气标准,着陆时限为:平原:日落前10分钟;丘陵山区:日落前20分钟。

FundamentalsofAerodynamics第六版课程设计 (2)

FundamentalsofAerodynamics第六版课程设计 (2)

Fundamentals of Aerodynamics第六版课程设计介绍本文是基于Anderson的《Fundamentals of Aerodynamics第六版》所设计的课程,旨在提供一个深入学习流体力学和空气动力学的机会,同时帮助学生掌握相关领域的基本知识和技能。

课程大纲第一章:流体力学基础本章介绍流体力学的基本知识,包括流体力学的定义、基本假设、运动学和动力学公式以及基本方程。

本章还将讨论质量、动量、能量守恒定律以及连续性方程等基本概念和原理。

第二章:建立流场方程本章将介绍针对不同情况的流场方程的建立,包括欧拉方程、NSE(Navier-Stokes Equation)等。

第三章:飞行力学基础本章将介绍飞行力学的基本知识,包括飞行器的运动学和动力学方程、空气动力学基本原理以及气动力和控制力等。

第四章:气动力学基础本章将讨论气动力学的基本理论和原理,包括气动力学的定义、不同形状的流体对气动力的影响以及绕流等。

第五章:气动力学数值计算方法本章将介绍用于计算气动力学的数值方法,包括CFD(Computational Fluid Dynamics)等。

第六章:气动力学的应用本章将介绍气动力学的具体应用,包括飞行器设计、气动优化和空气动力学性能评估等。

课程目标课程的主要目标是:•帮助学生掌握流体力学和空气动力学的基本知识和技能;•培养学生的气动力学分析和设计能力;•提供学生探索流体力学和空气动力学不同应用领域的机会;•帮助学生了解气动力学在工程领域的现状和未来发展趋势。

课程要求课程要求学生:•熟练掌握本课程的基础知识和技能;•参加课程中的讨论和实践活动;•独立完成相关课程作业和项目;•提高自己独立思考和解决问题的能力。

课程评估该课程的评估方式包括以下因素:•期末考试占成绩的40%;•课程项目占成绩的30%;•课堂参与占成绩的20%;•平时作业占成绩的10%。

结论本课程旨在提供一个深入学习流体力学和空气动力学的机会,帮助学生掌握相关领域的基本知识和技能,并探索气动力学在工程领域的具体应用。

航线ATP General Aircraft Avionics

航线ATP General Aircraft Avionics

Global Positioning System (GPS) con’t

The GPS receiver needs at least four satellites to yield a three-dimensional position (latitude, longitude and altitude) and time solution. The GPS receiver computes navigational values such as distance and bearing to a waypoint, ground speed, etc., by using the aircraft’s known latitude/ longitude and referencing these to a database built into the receiver. GPS provides two levels of service: Standard Positioning Service (SPS) and Precise Positioning Service (PPS). SPS, otherwise known as selective availability (SA), provides horizontal positioning accuracy of 100 meters, or less, with a probability of 95 percent and 300 meters with a probability of 99.99 percent. PPS is more accurate than SPS, and removes the "intentional error" introduced by selective availability. Since SA was turned off in May of 2000, SPS errors have ranged in the area of around 5 to 10 meters, 95 percent of the time. GPS is a U.S. satellite-based radio navigational, positioning, and time transfer system operated by the Department of Defence (DoD). The system provides highly accurate position and velocity information, along with precise time on a continuous global basis to an unlimited number of GPS users. The advantages of GPS over other navigation systems such as LORAN, or LOng RAnge Navigation, is that GPS is unaffected by weather, and more importantly, provides a worldwide reference system. The GPS constellation is comprised of 24 satellites, and is designed so that a minimum of five are always observable by a user anywhere on earth. The way GPS works is that it ranges and triangulates on the satellites in space, which act as precise reference points.

航线ATP General Aerodynamics

航线ATP General Aerodynamics
4
What is aeronautics? Aeronautics is typically defined as the art or science of flight, or the science of operating aircraft. This includes a branch of aeronautics called aerodynamics. Aerodynamics deals with the motion of air and the way it interacts with objects in motion, such as an aircraft. Both of these branches are a part of the tree of physical science. Aviation, however, refers to the operation of heavier-than-air craft.
19
The Earth's gravitational pull weakens as objects move farther away from it. Thus we say that objects that are far from the Earth "weigh less" than when they are on the Earth. For objects "on" and "close" to the Earth (we will assume that airplanes fly at altitudes "close" to the Earth) the weight of an object can be considered constant. Weight is the force that measures the effects of gravity.

ATPL航线英语考试新题

ATPL航线英语考试新题

1 What is the maximum indicated airspeed a reciprocating-engine-powered airplane may be operated within Class B airspace?往复式发动机飞机在B空域飞行的最大指示空速(基本表速)是多少?A: 180 knots. B: 230 knots. C: 250 knots.2 At what maximum indicated airspeed can a B-727 operate within Class B airspace without special ATC authorization? 在B空域中B-727没有ATC授权是的最高指示空速(基本航速)是多少?A: 230 knots. B: 250 knots. C: 275 knots.3 At what maximum indicated airspeed may a reciprocating-engine-powered airplane be operated within Class D airspace?往复式发动机飞机在D空域飞行的最大指示空速(基本表速)是多少?A: 156 knots. B: 180 knots. C: 200 knots.4 What is the maximum indicated airspeed a turbine-powered aircraft may be operated below 10,000 feet MSL?涡轮式飞机在平均海拔低于10000尺的空中飞行的最大指示空速(基本表速)是多少?A: 288 knots. B: 250 knots. C: 230 knots.5 At what maximum indicated airspeed can a reciprocating-engine airplane operate in the airspace underlying Class B airspace?往复式发动机飞机在B空域底层飞行是的最大指示空速(基本表速)是多少?A: 180 knots. B: 200 knots. C: 230 knots.6 Maximum holding speed for a propeller-driven airplane may hold at is:最大的螺旋桨驱动的飞机的保压速度是:A: 265 knots B: 230 knots. C: 156 knots.7 Maximum holding speed for a turbojet airplane above 14,000 feet is涡轮喷气式飞机在高于14000尺的空中的最大保压速度是:A: 210 knots. B: 230 knots. C: 265 knots.8 Maximum holding speed for a civil turbojet aircraft at a joint use airport civil/navy between 7,000 and 14,000 feet is在民用/海军联合机场7000—14000尺空中民用涡轮喷气式飞机的最大保压速度是多少?A: 265 knots. B: 230 knots. C: 200 knots.9 When takeoff minimums are not prescribed for a civil airport, what are the takeoff minimums under IFR for a three-engine airplane?民用机场没有规定最低起飞速度时,IFR规定三发飞机的最低起飞速度是:A: 1 SM. B: 1/2 SM. C: 300 feet and 1/2 SM.10 What minimum ground visibility may be used instead of a prescribed visibility criteria of RVR 16 when that RVR value is not reported?当RVR值没有报出时,规定RVR16可视标准可以由以下哪个最小地面可见度值代替?A: 1/4 SM. B: 3/4 SM C: 3/8 SM.11 The prescribed visibility criteria of RVR 32 for the runway of intended operation is not reported. What minimum ground visibility may be used instead of the RVR value?A: 3/8 SM. B: 5/8 SM. C: 3/4 SM.12 The visibility criteria for a particular instrument approach procedure is RVR 40. What minimum ground visibility may be substituted for the RVR value?一个特殊仪器规定的能见度为RVR40,那么可以用以下哪个最小地面能见度替代RVR值?A: 5/8 SM. B: 3/4 SM. C: 7/8 SM.13 Freezing rain encountered during climb is normally evidence that攀升过程中遇到冻雨通常可以证明:A: a climb can be made to a higher altitude without encountering more than light icing.B: a layer of warmer air exists above.C: ice pellets at higher altitudes have changed to rain in the warmer air below14 What condition is indicated when ice pellets are encountered during flight?飞行过程中遇到冰粒的条件是:A: Thunderstorms at higher levels.B: Freezing rain at higher levels.C: Snow at higher levels.15 What is the result when water vapor changes to the liquid state while being lifted in a thunderstorm?水蒸气转换成液态进入到雷暴中的结果是什么?A: Latent heat is released to the atmosphere.B: Latent heat is transformed into pure energy.C: Latent heat is absorbed from the surrounding air by the water droplet.16 What minimum thickness of cloud layer is indicated if precipitation is reported as light or greater intensity?当报道到有小到中强度冰雹时可以推测云层的最薄厚度为多少?A: 4,000 feet thick.B: 2,000 feet thick.C: A thickness which allows the cloud tops to be higher than the freezing level.17 What is a difference between an air mass thunderstorm and a steady-state thunderstorm?气团雷雨和稳态雷雨之间的区别是什么?A: Air mass thunderstorms produce precipitation which falls outside of the updraft.B: Air mass thunderstorm downdrafts and precipitation retard and reverse the updrafts.C: Steady-state thunderstorms are associated with local surface heating.18 Which type cloud is associated with violent turbulence and a tendency toward the production of funnel clouds?那种类型的云伴有剧烈震荡和产生漏斗云的倾向?A: Cumulonimbus mamma. B: Standing lenticular. C: Stratocumulus.19 What condition is necessary for the formation of structural icing in flight?在飞行中形成结构性结冰的必要条件是什么?A: Supercooled water drops. B: Water vapor. C: Visible water.20 SPECI KGLS 131802Z 10012G21KT 060V1402SM+SHRA SCT005BKN035 OVC050CB24/23 A2980This SPECI report at Galveston (KGLS) indicates which condition?在这个加尔维斯顿的SPECI报告(KGLS)表明出何种情况?A: Wind steady at 100° magnetic at 12 knots, gusts to 21.B: Precipitation started at 57 after the hour.C: 5,000 feet overcast with towering cumulus.21 METAR KMAF 131756Z 02020KT 12SM BKN025 OVC250 27/18 A3009 RMK RAE44.Which weather condition is indicated by this METAR report at Midland (KMAF)?这个份英格兰中部的METAR报告说明了什么样的天气状况?A: Rain of unknown intensity ended 16 minutes before the hour.B: The ceiling was at 25,000 feet MSL.C: Wind was 020° magnetic at 20 knots.22 METAR KSPS 131757Z 09014KT 6SM -RA SCT025 OVC090 24/22 A3005.SPECI KSPS 131820Z 01025KT 3SM +RA FC OVC015 22/21 A3000.Which change took place at Wichita Falls (KSPS) between 1757 and 1820 UTC?在1757年至1820年,威奇塔瀑布市发生了什么变换?A: The rain became lighter.B: Atmospheric pressure increased.C: A funnel cloud was observed.23 METAR KHRO 131753Z 09007KT 7SM FEW020 BKN040 30/27 A3001.SPECI KHRO 131815Z 13017G26KT 3SM +TSRA SCT020 BKN045TCU 29/24 A2983 RMKRAB12 WS TKO LDG RW14R FRQ LTGICCG VC.What change has taken place between 1753 and 1815 UTC at Harrison (KHRO)?1753年至1815年,Harrison发生了什么变化?A: The ceiling lowered and cumulonimbus clouds developed.B: Thundershowers began at 12 minutes past the hour.C: Visibility reduced to IFR conditions.24 A PROB40 (PROBability) HHhh group in an International Terminal Aerodrome Forecast (TAF) indicates the probability of国际机场航站楼预测的一个PROB40HHhh组表示的是A: thunderstorms or other precipitation.B: precipitation or low visibility.C: thunderstorms or high wind.25 A severe thunderstorm is one in which the surface wind is在剧烈雷雨中地面风速为A: 50 knots greater and/or surface hail is 3/4 inch or more in diameter.B: 55 knots or greater and/or surface hail is 1/2 inch or more in diameter.C: 45 knots or greater and/or surface hail is 1 inch or more in diameter.26 A squall line is a sudden increase of at least 15 knots in average wind speed to a sustained speed of阵风线(飓线)是指在突然增加的至少15节平均风速持续的速度为A: 24 knots or more for at least 1 minute.B: 22 knots or more for at least 2 minutes.27 A calm wind that is forecast, in the International Terminal Aerodrome Forecast (TAF), is encoded as在国际机场航站楼预测的静风被编码为A: VRB00KT. B: 00000KT. C: 00003KT.28 How may a pilot determine if a LORAN-C receiver is authorized for IFR operations?如何确定一个飞行员LORAN-C接收器授权IFR操作A: Consult the Airplane Flight Manual Supplement.B: A placard stating, "LORAN-C APPROVED FOR IFR EN ROUTE, TERMINAL AND APPROACH SEGMENTS." C: An airframe logbook entry that the LORAN-C receiver has been checked within the previous 30-calendar days.29 Which entry shall be recorded by the person performing a VOR operational check?下列哪一应由人执行VOR操作检查后记录?A: Frequency, radial and facility used, and bearing error.B: Flight hours and number of days since last check, and bearing error.C: Date, place, bearing error, and signature.30 What record shall be made by the pilot performing a VOR operational check?哪项应当由飞行员执行VOR操作检查后记录?A: The date, frequency of VOR or VOT, number of hours flown since last check, and signature in the aircraft log.B: The date, place, bearing error, and signature in the aircraft log or other record.C: The date, approval or disapproval, tach reading, and signature in the aircraft log or other permanent record.31 During a VOT check of the VOR equipment, the course deviation indicator centers on 356°with the TO/FROM reading FROM. This VOR equipment may在用VOR设备进行VOT检查的过程中,…….进程偏差显示器在365°。

航线ATPFlightManagementSystem(FMS)

航线ATPFlightManagementSystem(FMS)
Flying direct to a waypoint
Deleting waypoints Intercepting radials
– Pilot defined waypoints (i.e. OMN090/50 – OMN01)
Vertical navigation (i.e. 250/1000)
Any Questions?
GPS
– Most accurate – RAIM for monitoring
DME/DME
– Needs at least 2 DME stations – Very accurate
VOR/DME
– 1 VOR radial and the associated DME
Dead Reckoning
VOR/DME
VOR/DME 1
VOR/DME 2
Navigating
Will maintain an active course to the active waypoint
– AUTO sequences to the next waypoint as the active waypoint is passed
– Occurs when no sensor data is available
Basic FMS
Fixing Position VOR/DME
Fixing Position DME/DME
Current Location
LOC/DME 3
Confirmed Possible Location Locations
Will command wings level if the last active waypoint is passed and a discontinuity exists (AUTO to INHIBIT)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cl No flap Drag bucket cm,a.c.
cM,c/4
6
Angle of attack
Angle of attack
7
Increase in Maximum Lift Coefficient – Double Slotted Flap
Cl,max
3.2
Cl,max=1.6[1 + (df /45)]
NACA 641-212 airfoil, t/c =12% .02 Cd .01 2
Slotted supercritical airfoil, t/c 13.5%
Integral supercritical airfoil, t/c =11% 0 .72 M .84
14
0
Normal Force Coefficient of Supercritical Airfoil Compared to NACA Airfoil 1.4 Supercritical Airfoil, t/c=11%
11
Supercritical Airfoils
12
Flow over conventional and supercritical airfoils
Pressure distributions Strong shock wave
13
Supercritical Airfoil Drag Compared to NACA Airfoil Drag
f 0
CL ,max d
f
leading edge slats
CL ,max
c f / c bslat 2 1.28 cos Lc / 4 0.18 be
2
(Note that leading edge flaps are rarely used. See p.251-258 in Torenbeek regarding high lift devices)
23
Summary of Design Lift Characteristics of the Wing
Airfoil Choice
:
Aspect Ratio : Taper Ratio : Flap Type (cf /c) : Spanwise Extent (hi and ho) Rated Area (SWf /S) Configura Flap -tion deflection in degrees
1 M
tan L LE
2
=ct / cr
4n 1 tan L nc A 1
Airfoil lift curve slope:
= cl,a / 2
20
DATCOM Method For Untwisted, Constant-Section Wings from Fig. 4.1.3.4-21a wing maximum lift airfoil maximum lift
27
wing a for maximum lift
Wing lift curve slope
Mach number correction from Fig. 4.1.3.4-21b
21
CL,max in Landing and Take-off Configurations
Condition Take off Landing
NACA 64,-212 (ROOT) NACA 64,-209 (TIP) A = 6.25 l = .333 Fowler, (23%) : 16.4% and 76.0% : 0.53
Slat CL,max CL,max deploymen Low speed cruise t M=0.2 M=0.8
22
CL,max for the Wing with Trailing Edge Flaps trailing edge flaps
CL,max c,max
CL ,max CL ,maxd y b/2
SWf S
KL
K L 1 0.08cos 2 L c / 4 cos3/ 4 L c / 4
1.0
Cn
.4 NACA 641-212
Airfoil, t/c=12%
0 .64 .72 M .84
15
Lift on a Finite Wing
2-D Lift Distribution
b
c 3-D Lift Distribution
16
V
Wing Trailing Vortex System and Associated Downwash Field
Upper surface, cl=0.22
(v/V)2
Lower surface, cl=0.22
x/c
5
Typical NACA Airfoil Data (NACA TR 824)
3 million<Re<9 million; std.roughness at Re=6 million
Split flap dF=60o
Lifting characteristics of the 3-D wing Lift curve slope of the wing
CLa A

2 A tan L c / 2 2 2 1 4 2
2 2 2 1/ 2
Prandtl-Meyer function Sweepback angles: Taper ratio:
CL max
aC
L max
CL max c max CL max c max CL max a 0 a CL max CLa
Mach number correction from Fig. 4.1.3.4-22
(extrapolation to M=0.8 required)
2.8
2.4
2.0
1.6 0 20 40 60 df (degrees)
8
Airfoil with Slat
9
Effect of Slat on Lift
10
High Lift Devices for Maximum Lift Coefficient
Cl,max
Flaps
Slat
Plain airfoil
Cruise
Take-off Landing
0
25 40
no
yes yes
1.23
1.64 1.92
0.99
24
Horizontal Tail Sizing lh
0.05MAC
Vh=Shlh/S(MAC) Volume coefficient of the horizontal tail Sh, horizontal tail planform area
leading-edge slats
Lle root chord, cr
outboard aileron
tip chord, ct
trailing edge flaps
mean aerodynamic chord, MAC
19
half-span, b/2
A=b2/S is selected, thereby determining b
3
Airfoil Configuration Characteristics
Mean camber line Upper surface
Trailing edge Chord line Leading edge Lower surface
4
Velocity ratio over upper and lower surfaces
Bound Vortex
Trailing Wingtip Vortex
Downwash
Trailing Wingtip Vortex
17
Boeing 727 Trailing Vortex Flight Test
18
Wing configuration with high-lift devices Wing area S is found in the engine selection process inboard aileron centerline
Typical Flap Deflection (in degrees) 15<dTE<25; dLE<20 40<dTE<50 or 60; dLE<20
airfoil with trailing edge flaps
c max k1k2k3 c max base
(clmax)base is the section maximum lift increment for 25 percentchord flaps at the reference flap-deflection angle from Fig. 6.1.3.7a, k1 is a factor accounting for flap-chord-to-airfoil-chord ratios other than 0.25 from Fig. 6.1.3.7b, k2 is a factor accounting for flap deflections other than the reference values from Fig. 6.1.3.8a, and k3 is a factor accounting for flap motion as a function of flap deflection from Fig. 6.1.3.8b.
相关文档
最新文档