Microemulsion high performance liquid chromatography (MELC) method for the

合集下载

多巴胺与表面活性剂之间的相互作用

多巴胺与表面活性剂之间的相互作用

扬州大学
硕士学位论文
多巴胺与表面活性剂之间的相互作用
姓名:姜世明
申请学位级别:硕士
专业:物理化学
指导教师:郭荣
20050501
扬卅f大学硕士论文
(a)(b)(c)
图1.2微乳液结构示意图
(a)水包油型(O/W);(b)油水双连续型(BI);(C)油包水型(W/O)
以微乳液为基础的工业产品较多,如微乳液型的化妆品不仅外观透明,还便于各个组分发挥作用;利用微乳液的超低界面张力进行三次采油,能增加原油利用率f46j;利用微乳粒子尺寸的限定性可以制备纳米粒子147】;利用其具有均匀、热力学稳定、使用方便等优点制备微乳液型药品等娜啪】。

l。

1.3溶致液晶
液晶(1iquidcrystal)是一种介于固态和液态之间的物质,其特点是在微观上长程有序而短程无序,即其分子排列存在位置上的无序性和取向上的一维或二维长程有序性,并不存在象晶体那样的空间晶格,在宏观上则表现为各向异性。

溶致液晶的形成主要依赖于双亲分子间的相互作用,极性基团间的静电力和疏水基团间的范德华力。

当双亲化合物的固体与水混合时,在水分子的作用下,水浸入固体晶格中,分布在亲水头基的双层之间,形成夹心结构。

溶剂的浸入,破坏了晶体的取向有序性,使其具有液体的流动性随着水的不断加入,可以转变为不同的液晶态。

常见的液晶相有三种:层状相、六方相和立方相,其中立方液晶较少见。

不同类型的液晶是由不同形状的胶束以不同的方式聚集而成的:层状液晶是由层状胶束缔合而成,其结构单元是双分予层;六方液晶是由长棒状胶束平行排列而成,。

不同pH值下椰油酰谷氨酸二钠的发泡及稳泡性能研究

不同pH值下椰油酰谷氨酸二钠的发泡及稳泡性能研究

不同pH值下椰油酰谷氨酸二钠的发泡及稳泡性能研究左殿发【摘要】椰油酰谷氨酸二钠是一种氨基酸表面活性剂,是日常洗护用品的重要组成,研究椰油酰谷氨酸二钠的发泡与稳泡性能对改善其使用性能具有重要意义.采用Warning-Blender方法、倾注法研究不同pH值下,椰油酰谷氨酸二钠的发泡及稳泡性能,通过微观分析法、表面与界面张力测试法研究椰油酰谷氨酸二钠消泡机理,研究结果表明,椰油酰谷氨酸二钠对pH值以及浓度的敏感性较强,pH值为10、浓度为8.5g·L-1可最大程度发挥发泡性能,pH值为10时稳泡性较强;pH值为8与7结果相似,添加0.25%~0.35%的XC稳泡剂、FA367稳泡剂得到的椰油酰谷氨酸二钠的发泡性能与稳泡性能最优;酸性环境,椰油酰谷氨酸二钠泡沫产生油滴使泡沫结构稳破损.【期刊名称】《化学工程师》【年(卷),期】2019(033)008【总页数】4页(P94-97)【关键词】pH值;发泡能力;表面张力;消泡;酸性环境;稳泡性能【作者】左殿发【作者单位】黑龙江省哈尔滨市凯奥科技开发有限公司,黑龙江哈尔滨 150080【正文语种】中文【中图分类】TE254+.3日常洗护用品生产中,广泛采用氨基酸表面活性剂进行发泡,氨基酸表面活性剂是氨基酸的繁衍物具有降解性强、安全、弱刺激的优势[1,2],可与皮肤直接接触,是洗护用品配方的关键组成部分[3]。

椰油酰谷氨酸二钠是氨基酸表面活性剂种类之一,天然脂肪酸、天然L-谷氨酸结合得到椰油酰谷氨酸二钠[4,5],乳化、洗涤、发泡增溶是椰油酰谷氨酸二钠作为表面活性剂的基础功能,优势表现在多方面[6,7]:(1)去污能力强,滋润效果强;(2)生物降解能力强;(3)避免活性剂发泡的变态反映与光毒性;(4)硬水适应能力强。

本文重点研究椰油酰谷氨酸二钠作为表面活性剂,在不同PH值下的发泡与稳泡性能。

设定不同pH值,研究不同椰油酰谷氨酸二钠浓度、不同稳泡剂用量对发泡性能与稳泡性能的影响;设定不同pH值,开展椰油酰谷氨酸二钠泡沫循环实验,研究循环使用下泡沫的发泡能力;最后探究不同酸碱环境下,椰油酰谷氨酸二钠消泡机理,把握不同酸碱环境下椰油酰谷氨酸二钠的稳泡性能。

石油工程专业英语单词

石油工程专业英语单词

石油工程专业英语单词Aabnormal pressure 异常高压absolute open flow potential 绝对敞喷流量absolute permeability 绝对渗透率acetic acids 乙酸acid-fracturing treatment 酸化压裂处理acidize 酸化acidizing 酸化additives 添加剂Alkali/Surfactant/Polymer (ASP) tertiary combination flooding 三元复合驱anhydrite 无水石膏annular space 环形空间appraisal well 估计井,评价井aquifer 含水层areal sweep efficiency 面积波及系数artificial lift methods 人工举升方法Bbeam pumps 游梁式抽油机bitumen 沥青blast joint 耐磨钻头block and tackle 滑轮组blowout preventes 防喷器blowout 井喷bone strength 胶结强度borehole 井筒,井眼bottomhole/wellhead pressure 井底/井口压力bottorm water 底水breakthrough 突破,穿透bubble point 泡点bubble point pressure 泡点压力Ccable tool drilling 顿钻钻井capillary action 毛细管作用carbonate reservoirs 碳酸盐储层casing casing casing casing casing casing casing casinghanger 套管悬挂器head 套管头collapse 套管损坏corrosion 套管腐蚀leak 套管漏失pressure 套管压力string 套管柱套管casing-tubing configuration 套管组合casing—tubing configuration 油套管井身结构caustic flooding 碱水驱油cavings 坍塌cement additive 水泥浆添加剂cement job 固井作业cement plug 水泥塞cement slurry 水泥浆cementation 固井,胶结cementing practices 注水泥施工centralizer 扶正器chemical flooding 化学驱油chock 节流器choke 油嘴,阀门christmas tree 采油树combustion engines 内燃机compatibility compatibility 兼容性兼容性,配伍性completion interval 完井层段compressibility 压缩系数compression coefficient 压缩系数compressive strength 抗压强度cone bit 牙轮钻头connate water 共生水,原生水continuous gas lift 连续气举core sample 岩心样品cost—per—day basis 每天成本基价cost—per—foot basis 每英尺成本基价crank 曲柄crown block 天车crude oil 原油cumulative production 累计产量Ddamage well/zone 污染井/带darcy 达西darcy‘s law 达西定律dead line 死绳dehydration 脱水deposit 沉积,贮存n,矿床,蕴藏量derrick 井架derrick 钻塔,井架development well 开辟井development well 生产井dewpoint 露点diesel fuel 柴油discovery well 资料井displacement displacement displacementefficiency 驱油效率efficiency 驱替效率rate 驱替效率displacing fluid 驱替液displacing medium 驱替介质dissolved—gas drive reservoir 溶解气驱油藏downhole downhole downhole downsroke assembly 井下装置equipment 井下装置井底,井下下行冲程drainage areas/radius 泄油面积/半径drill collar 钻铤drill collars 钻铤drill 钻井driller 司钻,钻工drilling floor 钻台drilling line 大绳drilling slot 井槽drilling contract 钻井合同drilling fluid 钻井液drilling location 井位drilling rate 钻速drillpipe 钻杆drillship 钻井船drillsite 井场drillstring 钻柱dry forward combustion 干式正向燃烧Eeffective displacement 有效驱替effective permeability 有效渗透率effective wellbore vadius 有效井筒半径electric submersible centrifugal pumps 电泵embrittlement 脆裂emulsion 乳化剂encroachment 水侵enhanced oil recover(EOR)提高采收率ethane 乙烷Ffault 断层fishing tool 打捞工具flow efficiency 完善系数flow regime 流动类型/方式flowing tubing pressure 井口流压flowing well 自喷井fluid loss agent 降滤失剂fluid loss control 防液体漏失foam flooding 泡沫驱油、foam—type drilling fluid 泡沫钻井液formation volume factor 地层体积系数formic acids 甲酸fractional flow 分相流动fracture acidizing 酸化压裂fracture fluid 压裂液fracture pressure 破裂压力fracture 裂缝,断裂free gas 游离气Ggas cap 气顶gas condensate reservoir 凝析气藏gas lift 气举gas-lift valve 气举阀gas-liquid ratio 气液比gas-oil ratio 汽油比gasoline 汽油gear reducer 齿轮减速器geothermal gradient 地温梯度gravity drainage 重力泄油gravity segregation 重力分离gum bed 地蜡gusher 自喷井,喷油井Hheavy oil 重油heterogeneous reservoir 非均质储层heterogeneous 非均质的high gravity 高API 度,轻质的hole angle 井斜角horizontal well 水平井hreaded coupling 罗纹接口huff and puff 蒸汽吞吐hydraulic fracture 水力压裂hydrocarbon 碳氢化合物hydrogen sulfide 硫化氢hydrostatic head 静水压头hydrostatic pressure 静液压力Iindividual well 单井inhibitor 抑制剂initial completion 初次完井injection rate 注入速度/量interfacial intermediate intermediate tensioncasingcasing表面张力string 技术套管中间套管intermittent gas lift 间歇气举Jjackknife derrick 折叠式井架jelly 胶状物,凝胶物joints 根数junction box 接线匣Kkelly 方钻杆kerosene 煤油kick 井涌kill corrosion 压力液kill line 压井管线kill the well 关井Llanding nipple 坐放短节leading edge 前缘leakoff rate 漏失速率load-bearing capacity 承重能力logger 测试仪器logging 测井lost circulation 漏失lost circulation additive 堵漏剂lubricant 润滑油Mmaking a trip 起下钻making a connection 接单根massive hydraulic fracturing 大型水力压裂material balance calculations 物质平衡方程matrix acidizing 基质酸化mechanical efficiency 机械效率methane 甲烷microbial enhanced oil recovery 微生物强化采油microemulsion flooding 微乳液驱油mobility rate 流度比mobility 流度,流动性mud pump 泥浆泵mud thinner 降粘剂mud 泥浆mud/section pit 泥浆池multipay reservoir 多油层油田Nnatural fissure 天然裂缝nature gas 天然气net thickness 有效厚度net thickness 有效厚度nogo nipple 无非端短节nozzle 喷油嘴numerical simulation 数值摹拟Ooffset well 补偿井oil formation volume factor 原油地层体积系数 oil saturation 残存油饱和度oil seeps 油苗oil spill 油漏open-hole completion 裸眼完井organic acids 有机酸overburden 地层表土overburden pressure 上覆岩层压力overload protection 过载保护Ppacker 封隔器pad fluid 前置液paraffin 石蜡,链烷烃paraffin base 石蜡基pay zone pay sand peak load penetration penetration percussion perforating performance permeability permeability petroleum 生产层,产油层产油层,生产层最大载荷,峰值负值rate 进尺速度rate 渗入速度,机械钻速 顿钻job 射孔作业velationship 渗透率anisotropy 石油petroleum engineer 石油工程师petroleum industry 石油工业petroleum jelly 石油膏phase diagram 相态图piston stroke 活塞冲程pitman 联杆泵plate tectonics 板块构造理论plunger lift 活塞气举渗透率各向异性 动态关系polished rod 光杆polymer flooding 聚合物驱油pore volume 有限孔隙体积porosity 孔隙度porous medium 多孔介质porous rock 多孔岩石positive—displacement position 容积式驱替活塞power fluid 传动液preflush 前置液preflush fluid 前置液,冲洗液pressure build up test 压力恢复试井pressure differential 压差pressure drawdown 压降,压差pressure gradient 压力梯度primary recovery 一次开采primary cementing 固井,初次注水泥primary porosity 原生孔隙度prime mover 原动机produced fluid 产出液producing rate 开采速度producting production production production production productivity productivityformation 生产层technology 采油技术casing 生产套管platform 采油平台string 生产(油层)套管生产率index 生产指数proposed well 资料井proppant 支撑剂pseudo—steady-state flow 拟稳定流动put back on production 恢复生产Rradial area 径向面积radical flow 径向流recoverable reserve 可采储量recovery rates 回采收率,开采速度relative permeability 相对渗透率remaining oil 剩余油remedial work 修井作业reservoir drive mechanism 油藏驱油机理reservoir heterogeneous 储层非均质性reservoir 储层,储集层,油层residual oil saturation 残存油饱和度resistivity curre 电阻率曲线reverse combustion 反向燃烧rig 钻机riser 隔水管rodless pumping system 无杆泵系统roller bit 牙轮钻头rotary drilling 旋转钻井rotary hose 水龙带rotary system 旋转钻井系统rotary table 转盘rotary table 转盘rotaryS旋转钻井safety valve 安全阀salinity 矿化度salinity 矿化度sand control 含沙量控制sand production 油井出砂sandstore secondary secondary砂岩recovery 二次开采porosity 次生孔隙度seep 漏出,渗出n, (油气)苗seepage n,渗出,流出seismic interpretation 地震解释separator 分离器setting time 凝固时间shale 页岩,泥岩shear rate 剪贴速率shut—in well pressure 关井压力skin effect 表皮效应slotted liner 割裂衬管sloughing 坍塌性的slurry density slurry viscosity sonic bond log 水泥浆密度水泥浆粘度声波测井spontaneous potential (SP)自然电位stabilizer 稳定器standpipe 立管stands 立管static reservoir pressure 油层静压steam flooding 蒸汽驱油stimulation 增产措施stricking problem 卡钻stripper well 低产井stroke length 冲程长度stuffing box submersible substructure subsurfance subsurfance sucker rod填料盒rig 坐底式钻井平台井架底座unit 地下单位pump 井下泵抽油杆sulfide embrittlement 硫化氢脆裂sulfur 硫磺superficial velocity 表观粘度surface casing 表层套管surface flow line 地面流动管线surface tesion 表面张力surface unit 抽油机,地面装置surfactant flooding 表面积活性剂驱油switchboard 配电盒swivel 旋转钻头Ttensile strength 抗拉强度thickening time 稠化时间tool pusher 钻井队长torque rating 扭矩测定transformer 变压器,转换器transient flow 瞬变流动tubing string 油管柱turbulent flow 紊流Uunswept zone 未波及区upstroke 上行冲程Vvalve 阀门, 阀vertical flow 垂直流vertical sweep efficiency 纵向波及系数vertical well 垂直井vibrating screens 振动筛viscosity 粘度void space 孔隙volume factor 体积系数volumetic sweep efficiency 体积波及系数volumetric efficiency 容量效率vug 孔洞,溶洞Wwait on cement (WOC) 侯水泥凝固water flood recovery 注水采油water flooding 水驱water injection 注水量water—oil ratio 油水比water—sensitive 水敏性的wax 石蜡well bore 井眼well completion 完井well deliverability equation 油井产能方程well intake pressure 井口注入压力well—killing fluid 压裂液wet combustion 湿式燃烧wettability 润湿性wildcat well 预探井wildcatter 勘探者withdrawal 产出,采出workover 油井维修汉译英原油crude oil天然气natural gas方钻杆kelly钻杆drillpipe泥浆泵mud pump转盘rotary table封隔器packer旋转钻井rotary drilling固井cementing裸眼完井openhole completion井口well head扶正器centralizer三次采油tertiary recovery射孔perforating油管tubing油井流入动态inflow performance relationship 井底流压bottom hole flowing pressure采油指数productivity index增产增注措施stimulation近井地带near—well bore region含水率water cut最终采收率ultimate recovery剩余油remaining oil提高采收率IOR水驱water flooding原始地质储量OOPI (original oil in place)流度比mobility ratio有效渗透率effective permeability孔隙体积pore volume上冲程upstroke下冲程downstroke润湿性wettability聚合物驱polymer flooding。

囊 泡

囊 泡

囊泡分子有序组合体:如不同形态的胶团、单分子膜、囊泡、微乳、液晶等两亲分子(amphiphile),也叫表面活性剂,其结构上同时具有亲水和疏水基团。

在溶液中两亲分子能够依靠其疏水缔合作用形成多种形式的分子有序组合体:1.胶束micelle(球状spherical,盘状disk-like,棒状rod-like,虫状worm-like)2.单分子膜monomolecular film3.微乳液microemulsion(油包水型 W/O,水包油型 O/W,双连续型 B.C.)4.液晶liquid crystal (层状lamellar,六角状hexagonal, 立方状cubic )5.囊泡vesicle囊泡vesicle 是两亲分子有序组合体的一种形式,它是由密闭双分子层所形成的球形或椭球形单间或多间小室结构。

囊泡的大小一般为 30nm--1μm,也有达到 20μm 的巨形囊泡。

50埃左右的壁厚,每个典型的囊泡含有80000到100000个两亲分子。

脂质体liposome 由天然磷脂所形成的囊泡通常也称为脂质体。

由于囊泡与细胞膜的结构非常相似,所以一直作为生物膜模型而得到广泛的研究。

囊泡的形成过程:会伴随着溶液浊度的变化,一般溶液会由澄清变为蓝色浊光,囊泡浓度增大则浊度也会变大,同时溶液中粒子的粒径也会增大。

影响囊泡形成的因素很多,如温度、浓度、电解质、PH值、制备方法等,然而最重要的还是两亲分子结构的影响。

1.双链两亲分子:疏水链的长度对囊泡的形成有明显的影响。

疏水链太长,易形成层状结构,而非囊泡;太短则由于疏水作用太弱而难以形成缔合结构。

另外,两条疏水链的长度相差太大,也不利于囊泡的形成。

(10-18C?)70代中期,对囊泡的研究基本限定于双链两亲分子。

为什么具有双链结构的两亲分子易于形成囊泡?Tanford及Israelachvili等人,基于各种分子有序组合体的几何特征所提出的理论认为,两亲分子形成有序组合体时的聚集方式取决于分子的结构因素,并将其具体化为一个结构因子f,f = v/a0lc。

皂化P_204_微乳液膜萃取分离钒铁的研究

皂化P_204_微乳液膜萃取分离钒铁的研究

收稿日期:2007 12 24作者简介:陈兴龙(1961-),男,湖南长沙人,高级工程师,硕士.第2卷 第2期材 料 研 究 与 应 用V o1 2,N o 22008年6月M A T ERIA L S RESEA RCH A ND AP PL ICAT IONJun 2008文章编号:1673 9981(2008)02 0137 04皂化P 204微乳液膜萃取分离钒铁的研究陈兴龙1,朱火清1,吴海鹰1,李桂英1,吴美斌2,刘天平1(1 广州有色金属研究院,广东广州 510650;2 陕西五州矿业有限公司,陕西柞水 710048)摘 要:简要地介绍了皂化P 204微乳液萃取硫酸介质中钒(IV )的反应机理,研究了萃原液pH 、P 204浓度、萃取时间和相比对钒铁萃取率及其分离系数的影响.实验结果表明,P 204皂化微乳液萃取剂不仅热力学稳定性好,而且对钒铁萃取分离的效果也较好,对钒的单级萃取率达98%以上.关键词:皂化;微乳液;钒铁分离;分离系数中图分类号:TF111 3 文献标识码:A用湿法工艺生产五氧化二钒时,因用硫酸直接浸出,所以铁成为浸出上清液中最主要的杂质元素.传统工艺通常是以10%P 204+5%T BP+85%磺化煤油溶液为萃取剂,经七级逆流萃取达到钒铁分离的目的[1].生产实践证明,该工艺虽有许多优点,但也存在一些问题.如V 2O 5单级萃取率较低,仅50%~65%,需要七级萃取才能达到生产要求,而在七级萃取的过程中有机相与水相因接触时间长,导致有机相损耗过大及较多的铁进入有机相,影响钒铁的分离效果,从而使V 2O 5产品中铁含量偏高(w (Fe)>0 5%),达不到国家标准GB3283 87的要求.以皂化P 204和T BP 的磺化煤油或260号溶剂油微乳液为萃取剂[2],在合适的条件下可以大幅度提高钒的萃取率,而铁的萃取率较低,从而可提高钒铁分离的效果.1实验原理两种金属能否萃取分离取决于它们的分离系数.对于钒和铁来说,只有钒铁分离系数 =D V 2O 5/D Fe 很大或很小时,钒铁才容易分离[3].在某钒矿的硫酸浸出上清液中,钒主要以VO 2+形式存在,铁以Fe 3+和Fe 2+形式共存.由于一般先用铁屑或硫代硫酸钠还原上清液中的高价铁,所以萃原液中大部分铁为Fe 2+,几乎没有Fe 3+.P 204萃取Fe 3+的能力较强,但几乎不萃取Fe 2+,因此总铁的萃取率很低.铁的分配比很小,因此决定钒铁分离系数大小的主要因素是V 2O 5的分配比.未皂化的P 204在非极性溶剂中通常以二聚体H 2A 2形式存在,用P 204萃取钒的机理可表示为:V O 2+(a)+2H 2A 2(o)VO(H A 2)2(o)+2H +(a)(1)该萃取反应只是简单的阳离子交换反应,V O 2+将P 204二聚体中的氢置换出来.随着萃取的进行,整个萃取体系的pH 值不断降低,平衡向不利于萃取反应的方向移动,从而使钒的萃取率逐级降低,最终导致钒铁的分离效果不佳.皂化后的P 204微乳液的萃取称为反胶团溶剂萃取(RMSE)[4],也称为微乳液膜萃取.皂化后,P 204二聚体被打开,如用氢氧化钠皂化,就生成了二异辛基磷酸钠.这是一种典型的阴离子表面活性剂,不需要任何助表面活性剂就可形成热力学稳定的微乳液膜,不会因颗粒聚结而导致相分离.这种类型的微乳液具有极低的界面张力,分散相粒径处于纳米尺寸范围,比表面积大,传质速率快,而且微乳液的形成和破乳都比较容易[5].当用P 204微乳液萃取时,酸性萃原液中的VO 2+就会与微乳液中的Na +A -发生离子交换反应,生成稳定的P 204螯合物(VOA 2),并进入有机相.由于此螯合物不再具有离子缔合的作用和表面活性剂的结构,因此导致微乳液膜破乳.膜相中的微量碱性水进入水相,可中和萃取产生的H +,使整个萃取体系的pH 值变化不大,V 2O 5的单级萃取率最高可达99%以上,保证了P 204对钒的萃取效果.而P 204皂化前后对铁萃取率的影响不大,因此钒铁分离系数大幅度提高.皂化P 204微乳液萃取钒的机理可表示为:反应(2)是萃取的主要反应,没有H +生成.由于皂化率一般控制在80%以下,萃取也会按反应(3)进行,置换出的H +被皂化体系释放出的OH -中和,使萃取体系的pH 保持稳定.2 实验结果与分析2 1 萃原液pH 的影响在钒矿现场取已经还原好的上清液,其电位为-200~-250mV,pH 0 95.在室温,用氢氧化钠溶液(w =20%)调整萃原液的pH ,以皂化微乳液(10%P 204+5%TBP+85%磺化煤油)为萃取剂,相比V (o ) V (a)=1 1 5,单级萃取7min,试验结果如图1所示.图1 萃原液pH 对钒铁萃取率的影响F i g 1 Effect s o f aqueous pH value o n the ex tractio n rateand sepa ratio n co eff icient of vanadium and iro n由图1可知,当萃原液pH <2 0时,随萃原液pH 升高,V 2O 5萃取率大幅度提高,Fe 萃取率缓缓下降;当萃原液pH >2 0时,Fe 萃取率呈上升趋势;当pH = 2.2时,V 2O 5萃取率达97%,钒铁分离系数最高;当pH =2 3时,Fe 萃取率升至26 67%,V 2O 5萃取率为98 56%,二者的差距缩小.因此,萃原液pH 不能过高,合适的pH 为2 1~2 3.2 2 皂化P 204微乳液浓度的影响配制P 204含量不同的260号溶剂油有机相,按V (P 204) V (TBP)=2 1添加TBP,并用氢氧化钠溶液(w =20%)将其皂化至清亮透明.萃原液pH =2 3,V 2O 5和Fe 的含量分别为3 4,2 6g/L.在室温、相比V (o) V (a)=1 1 5及单级萃取7min 的条件下,皂化P 204的体积浓度对钒铁萃取分离的影响如图2所示.由图2可知,当 (P 204)<15%时,随皂化P 204体积浓度升高,V 2O 5萃取率升高,Fe 的萃取率缓慢升高,钒铁分离系数升高;当 (P 204)=15%时,钒铁分离系数达到最大值;当 (P 204)>15%时,随P 204体积浓度升高,V 2O 5萃取率变化不大,而铁的萃取率缓缓升高,钒铁分离系数呈下降趋势.综合考虑各种因素,P 204体积浓度为15%较合适.图2 P 204体积浓度对钒铁萃取率和分离系数的影响Fig 2 Effects of volume concentr ation of P 204on the ex tractionrate and separation coefficient of vanadium and iron2 3 萃取时间的影响萃原液pH =2.29,V 2O 5和Fe 的含量分别为138材 料 研 究 与 应 用2008图3 萃取时间对钒铁萃取率和分离系数的影响F i g 3 Effect s o f ext raction time o n ex tr action rate and separation co efficient of v anadium and ir on3 44g/L和2 25g/L,以10%P204+5%TBP+260号溶剂油的皂化微乳液为萃取剂,在室温和相比V(o) V(a)=1 1的条件下,萃取时间对钒铁萃取分离的影响如图3所示.由图3可知,随萃取时间延长,V2O5萃取率缓慢上升,Fe萃取率上升幅度很小,而钒铁分离系数上升幅度较大.当萃取时间达7min时,V2O5萃取率达98 56%,Fe萃取率达26 67%,如果继续延长萃取时间势必会影响钒铁的分离效果.因此,萃取时间最好不要超过7m in.2 4 相比的影响以30%P204+10%T BP+磺化煤油的皂化微乳液为萃取剂,在室温、萃取时间5min的条件下,相比对V2O5萃取率影响的试验结果,列于表1.由表1可知,随有机相所占比例增加,V2O5萃取率提高.当相比V(o) V(a)=2 1时,V2O5萃取率高达99 88%,但萃余液的pH达4 9,导致第三相物生成,使分相困难.试验中发现,萃余液的pH高时,在油相与水相之间会产生大量的絮状物, 12h后仍不能完全分相.而相比V(o) V(a)控制在1 (1~2)范围时,在1min内就可完全分相,两相清亮透明,没有第三相物出现.综合考虑各因素,相比V(o) V(a)控制在1 (1~1 5)较合适.表1 相比对V2O5萃取率的影响Table1 R elations hip between phase rati o and extracti on rate of V2O5编号萃原液(V2O5)/(g L-1)pH萃余液(V2O5)/(g L-1)pH萃取时间/m in相比V(o) V(a)V2O5萃取率/%15 6812 20 33882 351 294 04 25 6812 20 19162 551 1 596 63 35 6812 20 06842 951 198 80 45 6812 20 01374 151 5 199 76 55 6812 20 00684 952 199 882.5 反萃和沉钒经皂化微乳液萃取的负载有机相,其反萃和沉钒工艺与传统工艺一样.控制反萃流比V(o) V(a)为(15~20) 1,接触相比V(o) V(a)=2 1,反萃温度40 左右,接触时间10min,用1 5mol/ L硫酸进行五级逆流反萃[6],结果表明:反萃率接近100%,反萃水相V2O5含量为70~120g/L,铁含量低于0 15g/L.将反水温度升至60 ,加入适量200g/L氯酸钠溶液,控制氧化还原电位为(-1000 100)mV,保温1h.然后用氨水调节pH为0 6~ 0 8,搅拌半小时,将温度升至95 ,保温沉钒2h,过滤后可得到粗产品红钒.将红钒洗涤后置于氧化气氛中,在500~550 热解脱氨2~4h,可获得橙红色粉状精钒.试验证明,皂化微乳液萃取工艺的反水铁浓度比传统工艺低很多.用该工艺制备的五氧化二钒产品指标(质量分数,%) V2O598 89,Fe 0 12,达到了国家标准GB3283 87的要求.3 结 论利用微乳液膜萃取法的原理,以10%P204和5% TBP磺化煤油(或260号溶剂油)的皂化微乳液为139第2卷 第2期 陈兴龙,等:皂化P204微乳液膜萃取分离钒铁的研究萃取剂,控制萃原液pH为2 1~2 3,在相比V(o) V(a)为1 (1~1 5)时,单级萃取7m in可以得到令人满意的钒铁萃取分离效果.用该工艺生产的五氧化二钒纯度较高,Fe含量0 12%,达到了国家有关质量标准.用微乳液膜萃取分离金属的效率高,选择性强,在金属的萃取分离中有着广阔的应用前景.参考文献:[1]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J].湿法冶金,2002,21(4):175 183.[2]曾平,雷昱,王桂清,等.N H3 H2O皂化P204/煤油体系微乳液(反向胶束)的溶水性能及其对V( )的萃取研究[J].膜科学与技术,1988,18(5):19 23.[3]马荣骏.溶剂萃取在湿法冶金中的应用[M].北京:冶金工业出版社,1979.[4]马荣骏,罗电宏.溶剂萃取的新进展及其在新世纪中的发展方向[J].矿冶工程,2001,21(3):6 11.[5]周富荣,张琦,巴丽平.皂化P204微乳液膜处理含锌废水的研究[J].水处理技术,2007,33(6):63 66.[6]李晓健.酸浸 萃取工艺在石煤提钒工业中的设计与应用[J].湖南有色金属,2000,16(3):21 23.Study on extraction separation of vanadium and iron withP204kerosene microemulsion system saponifiedCH EN G Xing lo ng1,ZH U H uo qing1,WU Hai ying1,L I Gui y ing1,W U M ei bin2,L IU T ian ping1(1 Guangz ho u Resear ch I ns titute o f N on f er r ous Metals,Guangz hou510650,China;2.S hanx i W uz hou M ining Co.L td.,Zhashui710048,China)Abstract:T he mechanism o f ex tracting v anadium in solution o f sulfur ic acid w as simply investigated w ith P204kero sene micr oem ulsion sy stem saponified.T he influences o f aqueous pH value,P204concentratio n, ex traction time and phase ratio w er e studied compared w ith the classical ex traction technolog y of P204for vanadium.T he ex perimental results show ed that microemulsion liquid membrane ex hibited several advan tages including good stability,higher ex traction ratio for vanadium and higher efficiency of separation of vanadium and iron.The percentage ex tr actio n of vanadium reached as high as98%.Key words:saponification;m icroemulsio n;separ ation o f vanadium and iron;separation co efficient140材 料 研 究 与 应 用2008。

皂化P_204_微乳液膜处理含锌废水的研究

皂化P_204_微乳液膜处理含锌废水的研究
第 33 卷 第 6 期 2007 年 6 月
水处理技术 TECHNOLOGY OF WATER TREATMENT
Vol.33 No.6 Jun.,2007
63
皂化 P 204 微乳液膜处理含锌废水的研究
周富荣,张 琦 ,巴丽平
(江汉大学化学与环境工程学院, 湖北 武汉 430056) 摘
2+
要: 研究以皂化 P204 为载体的微乳液膜配方及其 稳 定 性 。 采 用 P204/Span80/ 煤 油 /NaOH 微 乳 体 系 萃 取 废 水 中
乳水比、 外 水 相 pH 值 、 油相重复使用次数等因素对 Zn , 考 察 了 P204 与 煤 油 和 Span80 的 质 量 比 、 NaOH 的 浓 度 、
Zn2+ 萃 取 率 的 影 响 。 结 果 表 明 , 当 P204 与 煤 油 的 质 量 比 为 1:2.5 , P204 与 Span80 的 质 量 比 为 1:1 , NaOH 浓 度 为 1.5 mol/L, 乳 水 比 为 1:4( 体 积 比 ) , 废 水 pH 值 为 5.5 时 , 萃 取 10 min , P204/ 煤 油 /NaOH 微 乳 液 膜 对 Zn2+ 萃 取 率 可 达
周富荣等, 皂化 P204 微乳液膜处理含锌废水的研究
1.8 1.6 100
65
! " # $%&
! " # $%&
1.4 1.2 1.0 0.8 0.6 0.4 10 15
! !"#!"#$%&’
! !"# ! !"! ! !"!#$
99 98 97 96 95
!"# !"!"##$%&’ !"# !"!"##$%&’

利多卡因纳米乳制备及体外经皮吸收的实验研究

利多卡因纳米乳制备及体外经皮吸收的实验研究

· 452 ·%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%南方医科大学学报(J%South%Med%Univ)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%第 30 卷
雄性 Wistar 大鼠 (200~250%g)(南方医科大学实 验动物中心提供)。
2%%方法与结果 2.1%%利多卡因纳米乳的制备及性质考察
2.1.1%%伪三元相图法制备 5%利多卡因纳米乳 利多 卡因溶于 IPM 为油相,Labrasol 为表面活性剂,Plurol% Oleique 为助表面活性剂,蒸馏水为水相 ,室 温 25%℃ 下将油相和水相分别以 9.8:0.2、9:1、8:2、7:3…..2:8、1: 9、0.2:9.8 的比例混合成二元液,设定表面活性剂与助 表面活性剂的质量比(S/C)即 Km 值分别为 2、3、4 并 配制 S/C 滴定液,用 S/C 滴定液滴定二元液,当二元 液变澄清时,通过肉眼观察有无乳光产生并结合 Zeta 粒径测定判断是否形成纳米乳, 记录形成纳米乳时 S/C 滴定液的消耗量并计算出油相,水相,表面活 性 剂和助表面活性剂各成份在纳米乳体系中的百分比, 通过 origin7.0 软件绘制伪三元相图。 相图中 I 表示纳 米乳区,II 表示凝胶及(或)液晶区,III 表示混浊的乳 液区, 并通过 origin7.0 软件计算纳米乳区域面积相 对数值大小,结果见图 1,其中当 Km=3 时纳米乳区 面积值软件显示为 493, 纳米乳的区域面积也最大, 因此,将最佳 Km 值确定为 3。
Abstract: Objective To%prepare%lidocaine%nanoemulsion%and%investigate%its%transdermal%delivery%ability%in vitro.%Methods The% optimal%Km%(surfactant/cosurfactant)%value%and%the%component%proportion%were%determined%by%pseudoternary%phase%diagrams% combined% with% Origin% software% analysis. % The% diameter% and% distribution% range% were% detected% by% Zeta% particle% size% analysis% instrument,%and%the%morphology%of%the%nanoemulsion%was%observed%by%electron%microscope.%The%permeation%flux%of%lidocaine% was% determined% in% vitro% using% the% modified% Franz% diffusion% cell% combined% with% HPLC, % and% the% cumulative% transdermal% absorption% amount% and% the% apparent% skin% transdermal% velocity% were% compared% among% nanoemulsion, % gel% and% tincture% containing%5%%lidocaine. %The%permeation%mode%of%lidocaine%nanoemulsion%was%analyzed. %Results The%average%drop%size%of% lidocaine%nanoemulsion%was%29.8±14.4%nm,%and%98%%of%the%drop%sizes%ranged%from%15.1%to%45.5%nm%and%2%%from%77.9%to%261.3% nm. %The%nanoemulsion%drop%showed%a%spherical%morphology%in%a%polydisperse%system. %The%Kp%value%of%the%nanoemulsion% (3.07±0.74%cm/h)%was%significantly%higher%than%that%of%gel%(1.27±0.35%cm/h)%and%tincture%(0.97±0.18%cm/h),%and%the%permeation% rate%of%the%nanoemulsion%was%69.82±7.48%μg·cm-·2 h-1, %which%fitted%the%the%Zero-order%release%dynamic%procedure. %Conclusions The% component% proportion% of% lidocaine% nanoemulsion% can% be% conveniently% obtained% through% pseudoternary% phase% diagrams% and%Origin%software%analysis, %and%the%drop%size, %distribution, %morphology%and%system%type%can%be%determined%by%Malvern% Zetasizer%combined%with%electron%microscopy. %The%results%also%indicate%that%the%nanoemulsion%system%with%high%permeation% rate%may%provide%a%new%promising%means%for%local%anesthesia. Key words: lidocaine;%nanoemulsion;%transdermal%absorption

单分散二氧化硅微球的制备与表征_李滋

单分散二氧化硅微球的制备与表征_李滋
从图中可以看出,随着体系中 KCl 浓度的增加,微 球的粒径呈递增的趋势。但是当体系中 KCl 的浓度大于 5×10-3mol/L 时,微球的单分散性开始变差且有形成二 聚体的趋势。这可能是由于离子浓度过高导致粒子在成 核阶段发生团聚所引起的,所以所添加电解质的浓度应 严格控制在一定范围内来抑制二聚体的形成以及由此引 起的成球不均的现象。
较小。氨水浓度的提高促进了 TEOS 的水解和聚合反应, 从而产生更多的微核并促进发生缩聚反应,使生成的二 氧化硅微球粒径增大 [9]。而氨水浓度太小则会使得 TEOS 的水解速度缓慢,从而使得到的微球球形不规整,单分 散性较差。 2.2.2 TEOS 浓度的影响
保 持 其 他 条 件 不 变(NH3·H2O=1mol/L, T=30℃),TEOS 浓度的提高会促使形成粒径更大的二氧 化硅微球。这是因为,TEOS 浓度的提高一方面会加快水
2012 年 第 6 期
中国陶瓷
图 1 在不同氨水浓度下得到的 SiO2 微球的 TEM 图像 (a) 0.6 mol/L (b) 1.0 mol/L (c) 4.0 mol/L Fig.1 TEOS images of silica nanoparticles with different NH3·H2O concentration of (a) 0.6 mol/L (b) 1.0 mol/L (c) 4.0 mol/L
首先以 Stober 法为基础,考察了在氨水的催化下, 不同反应条件对二氧化硅微球粒径和单分散性的影响, 并探讨了相关的反应机理。然后在此条件下,向反应体 系中加入了氯化钾等电解质,制备出了单分散性较好的 大粒径(1 ~ 2μm)的二氧化硅微球并研究了相关反应 机理。
1 实验部分
收稿日期 :2012-3-12 作者简介 :李滋(1987-),女,硕士研究生,主要从事 荧光纳米二氧化硅材料的制备研究。 E-ma致 的 情 况 下(TEOS=0.2mol/L, NH3·H2O=1mol/L), 随 着 温 度 的 升 高, 二 氧 化 硅 微 球 的粒径降低,但是微球也呈现一定的团聚趋势。分析原 因一方面可能是由于温度的升高促进了氨水的挥发从而
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 397–402Contents lists available at ScienceDirectJournal of Pharmaceutical and BiomedicalAnalysisj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j p baMicroemulsion high performance liquid chromatography (MELC)method for the determination of terbutaline in pharmaceutical preparationM.S.Althanyan a ,K.H.Assi a ,∗,B.J.Clark a ,J.Hanaee ba Bradford School of Pharmacy,School of Life Sciences,Bradford BD71DP,UK bSchool of Pharmacy,Tabriz University of Medical Sciences,Tabriz,Irana r t i c l e i n f o Article history:Received 14June 2010Received in revised form 19January 2011Accepted 22January 2011Available online 28 January 2011Keywords:Microemulsion HPLC MELCDetermination Validation Terbutalinea b s t r a c tA robust and sensitive microemulsion HPLC (MELC)method using oil-in-water microemulsion mobile phase was developed and used for the determination of terbutaline in Bricanyl ®Turbuhaler.The appli-cability of microemulsion as an eluent for reversed phase HPLC was examined.In addition,the effect of operating parameters on the separation behaviour was studied.The samples were injected into C18Spherisorb (250mm ×4.6mm ×5␮m)columns at 25◦C using a flow rate of 1ml/min.The mobile phase was 95.5%aqueous orthophosphate buffer (adjusted to pH 3with orthophosphoric acid),0.5%ethyl acetate,1.5%Brij35,and 2.5%1-butanol,all w/w.The terbutaline peak was detected by fluorescence,using excitation and emission wavelengths of 267and 313nm,respectively.The accuracy of method was >99%and the calibration curve was linear (r 2=0.99).The limit of detection (LOD)and limit of quantitation (LOQ)were 8␮g/L and 26␮g/L,respectively.The intra-day and inter-day precisions (in term of %coefficient of variation)were <1.46%and <0.97%,respectively.The influence of the composition of the microemulsion system was also studied and the method was found to be robust with respect to some changes of the microemulsion components.The microemulsion HPLC method has been applied to determine the content of the emitted dose and the fine particle dose of terbutaline in a Bricanyl ®Turbuhaler.© 2011 Elsevier B.V. All rights reserved.1.IntroductionMicroemulsion is a transparent and thermodynamically sta-ble system.It contains submicron droplets that are dispersed in an immiscible liquid.Oil-in-water microemulsions are composed of submicrometer oil droplets that are dispersed throughout an aqueous continuous phase.The droplets are covered by a shell con-sisting of a suitable surfactant and a co-surfactant.The surfactant molecules form interface film that separates the oil phase from the aqueous continues phase.This film has a low surface tension in the oil–water mixture.The addition of co-surfactant reduces the inter-facial tension further as it locates itself at the oil-water interface and therefore lowers the interfacial free energy which favours the formation of stable microemulsion [1].In reversed phase HPLC,the stationary phase is non-polar,while the mobile phase is relatively polar.Hence the high aqueous content in O/W microemulsion has made this mobile phase very compatible with the reversed phase HPLC [2].Microemulsions have received much interest in differ-ent fields of science.Microemulsions have been used for many applications:in drug delivery and to enhance drug solubilisation∗Corresponding author.E-mail address:khaassi@ (K.H.Assi).[3],in cosmetics as personal care formulations,and for a number of other applications [4–6].In recent years,microemulsion liquid chromatography (MELC)has been increasingly used in pharma-ceutical analysis.O/W microemulsion was used as a mobile phase for the separation of mixtures of test solutes or pharmaceutical compounds by isocratic HPLC system [7–10],and for the deter-mination of drugs in their pharmaceutical preparations [11–13].Several other studies have used gradient MELC for the separation of different ranges of pharmaceutical compounds [14,15]and for quantification of drugs in their pharmaceutical preparations [2].Although gradient MELC has been reported to have superb power to separate analytes with different polarity,McEvoy et al.[16]have found that the peak retention times and resolution were irrepro-ducible.The authors attributed this to the nature of the absorbed layer on the column packing and to the possibility that gradient elution can cause a breakdown of microemulsion system.They also stated that reproducibility can be achieved by allowing the column to equilibrate with the microemulsion mobile phase and a constant adsorbed layer on the packing.Previous studies using microemul-sions as the mobile phase for HPLC have used SDS as a surfactant but we found (unpublished data)that this mobile phase was not able to separate a highly hydrophilic compounds that have very similar chemical properties.Marsh et al.[15]reported a similar observation.Terbutaline sulphate is a selective ␤2-adrenoceptor0731-7085/$–see front matter © 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.jpba.2011.01.027398M.S.Althanyan et al./Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 397–402agonist that is used as a bronchodilator.Terbutaline is available as the Bricanyl ®Turbuhaler ®,a multi-dose reservoir inhaler device releasing 500␮g of micronised terbutaline sulphate per inhalation.In this work,non-ionic surfactant was used in the formation of microemulsion and the potential of using microemulsion as an eluent for HPLC for the determination of terbutaline in the Bricanyl ®Turbuhaler was examined.Moreover,the effect of oper-ating parameters on the separation performance was studied.2.Experimental2.1.Materials and chemicalsTerbutaline hemisulphate salt and bamethane sulphate were purchased from Sigma–Aldrich (Louis,USA).Ethyl acetate (Fisher Chemical),Brij35,and 1-butanol (HPLC grade)were supplied by Sigma–Aldrich (Louis,USA).All solutions were prepared with ultra-pure Milli-Q water obtained from a Milli-Q Water Millipore Purification System (USA).2.2.Chromatographic conditionsThe HPLC system consisted of a Hewlett–Packard (HP)1050pump and autosampler connected to an on-line membrane degasser (Thermo Separation Products,CA,USA).The Shimadzu fluorescence detector model RF-551(Tokyo,Japan)set at an excita-tion wavelength of 267nm and an emission wavelength of 313nm,and the detector was linked to Prime Multi-channel Data Station Software Version 4.2.0.(HPLC Technology Ltd.,Herts,UK).Chromatographic separation was performed using a 250mm ×4.6mm i.d.(5␮m particle size)Spherisorb C18col-umn (Waters,UK).The mobile phase was prepared by weighting 1.5%w/w of Brij35,2.5%w/w of 1-butanol,0.5%w/w of ethyl acetate,which then dissolved in 95.5%w/w of 20mM orthophosphate buffer (adjusted to pH 3with orthophosphoric acid).The solution was then sonicated for 15min.The mobile phase was filtered under vacuum through a 0.45␮m filter (Gelman Science,Germany)and degassed in an ultrasonic bath under vacuum for 10min.Terbutaline samples and bamethane (as an internal standard)were injected into the system and separated at 25◦C.The mobile phase was delivered at a flow rate of 1.0mL/min and the injection volume was 20␮L.2.3.Particle size measurement of the mobile phaseThe mobile phase (see Section 2.2)was filtered through 0.2␮m filters.The reported size was the Z-average size (cumulants mean)of five replicates determined at 25◦C based on PCS using a Zetasizer Nano ZS ®(Malvern,UK).2.4.Preparation of standard terbutaline sulphate in mobile phase A stock solution containing 100␮g/mL of terbutaline was pre-pared using the internal standard solution.The internal standard solution was prepared beforehand at concentration of 400␮g/L in the mobile phase.Ten millilitres of stock solution were pipet-ted into a 100mL volumetric flask and made up to volume using the internal standard solution to produce a terbutaline sulphate of 10␮g/mL (sub-stock).Calibration standards in the concentration range of 25,50,100,200,300,400and 500ng/mL were prepared in the appropriate volumetric flasks using internal standard solution.All standards/samples were filtered through a 0.45␮m filter priorinjection.Fig.1.Size distribution (by intensity)of nanoemulsion mobile phase.The mobile phase consists of 1.5:0.5:2.5:95.5Brij35:ethyl acetate:1-butanol:water with (TFA to adjust pH)(%w/w)measured by Malvern Zetasizer Nano analysis.3.Result and discussion3.1.Particle size of the mobile phaseThe preparation of the mobile phase was repeated on five differ-ent occasions,and five replicate measurements were performed for each mobile phase.The particle size obtained for all mobile phases was always less than 10nm.Fig.1shows a representative measure-ment of particle size of the mobile phase.On the other hand,the mobile phase was stable throughout the study period.3.2.Optimisation of mobile phase3.2.1.Concentration of surfactantThe presence of surfactant in the mobile phase can affect the separation selectivity.The surfactant molecules have a tendency to adsorb on the surface of the porous stationary phase and modify their surfaces [7].The adsorbed surfactant molecules fill up part of the silica pore volume;hence they reduce stationary phase sur-face area and increase the thickness of the stationary organic layer,and therefore change the efficiency of the ODS column [7,17].The adsorbed surfactant on the stationary phase could have a direct impact on the retention of solutes and their partition with the sta-tionary phase.Different concentrations of Brij35were investigated (see Fig.2).It was found that the retention of bamethane decreased with increasing the concentration of Brij35from 0.5%to 1%.This shows that Brij35may have modified the stationary surface and therefore reduced the retention time of bamethane.However,fur-ther increase of Brij35concentration has a very small effect on the retention time of both bamethane andterbutaline.Fig.2.Effect of Brij concentration;Ter:terbutaline,Bam:bamethane.M.S.Althanyan et al./Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 397–402399Fig.3.Effect of cosurfactant concentration Ter:terbutaline,Bam:bamethane.3.2.2.Concentration of the co-surfactantA co-surfactant such as alcohol is used to enhance and stabilise the microemulsion system.The nature of the co-surfactant affects the phase behaviour in the microemulsion system [18].Fig.3shows the effect of changing the concentration of co-surfactant butanol in the range of 0.5–3.5%w/w.It was found that retention time of both terbutaline and bamethane decreases with increasing the concen-tration of butanol between 0.5and 2.5%w/w.Nevertheless,a further increase of butanol concentration has shown no marked effect on the retention time (Fig.3).The decreases in retention time with increasing the concentration of co-surfactant could be attributed to the increase of solubilisation capacity of the microemulsion with the use of butanol.3.2.3.Oil concentrationThe oil is dispersed into nano-droplets in the continuous water phase to form a nanoemulsion through the assistance of the surfactant/co-surfactant which resides on the oil–water interface [19].In microemulsion HPLC,the type and concentration of oil have a marked effect on the retention time of analytes.This effect depends on the nature of these analytes.Different concentrations of oil were studied in the range of 0–1%w/w (Fig.4).When the con-centration of oil is zero,the mobile phase will contain micelles.The micellar mobile phase gave longer retention times (5.2and 7.3min for both terbutaline and bamethane,respectively)compared to microemulsion mobile phase.The addition of oil decreases the retention of both analytes.This is due to the fact that microemulsion has a stronger elution capacity than that of the micellarsolutionFig.4.Effect of oil concentration;Ter:terbutaline,Bam:bamethane.Fig.5.Effect of buffer concentration;Ter:terbutaline,Bam:bamethane.[20].A slight decrease in retention of analytes was observed with increasing the oil content above 0.5%.Unlike lipophilic compounds,hydrophilic compounds such as terbutaline and bamethane have a high affinity for the continuous phase of the microemulsion and therefore they are not partitioned as fully in the oil droplet [21].Other types of oil such as octane,heptanes and hexane were assessed but none of these oils was able to form microemulsion in the presence of Brij35.3.2.4.Mobile phase pHThe effect of the pH of the mobile on the retention time of both terbutaline and bamethane was assessed at low pH (pH 3)and high pH (pH 6).It was found that there is no marked effect on the retention of terbutaline and bamethane with changing the pH.Both terbutaline and bamethane are weak basic drugs and they are fully protonated in the examined pH range.Hence,they will have less interaction with the ODS stationary phase and they have less affin-ity to the oil droplet.Therefore,changing the pH has a minimum effect on their retention.On the other hand,it was noticed that peak efficiency of terbutaline was improved at pH3.Lowering the pH of the mobile phase reduces the adsorption of the basic drugs to the silanol group of the stationary phase.Assi et al.[22]have used a low pH mobile phase for the determination of formoterol and budesonide in the Symbicort Turbuhaler to avoid the adsorp-tion problem.The author indicated that the very low pH mobile phase eliminates the interaction between the ionised silanol group and the NH2groups of the solutes.3.2.5.Buffer concentrationThe effect of phosphate buffer concentration on the retention behaviour of both terbutaline and bamethane was studied at dif-ferent concentrations levels.Four mobile phases were prepared with different concentrations of phosphate buffer:5,10,20and 25mM.The optimum buffer concentration was 20mM.Fig.5shows that retention time of both terbutaline and the internal standard decreased as the buffer concentration increased.These results cor-roborate with the finding reported by Mao et al.[23].However,Mao et al.have studied the effect of buffer concentration using conven-tional mobile phase.The consistency in both studies proves that,in reverse phase chromatography,the retention time of positively charged analytes decreases with increasing buffer concentrations whether the mobile phase contains microemulsions or not.This shows that there is an electrostatic interaction between protonated analytes (terbutaline and bamethane)and the silanol group even with the low pH mobile phase.The logarithm of the retention factor of a cationic analyte has a negative relationship with the logarithm buffer concentration in the cationic exchange column [23].Mao et al.also reported that even with double end capping ODS there is still a considerable cation exchange between the positively charged400M.S.Althanyan et al./Journal of Pharmaceutical and Biomedical Analysis55 (2011) 397–402Fig.6.Effect of temperature;Ter:terbutaline,Bam:bamethane. analytes and the stationary phase,which the authors referred to as electrostatic interactions between the charged analytes and resid-ual silanol groups.3.2.6.Column temperatureThe column temperature affects the elution of basic drugs in reverse phase chromatography.Changing the temperature of the column alters the dissociation constant of the basic analytes.The aqueous p K a of basic analytes decreases significantly with an increase in temperature,thus as temperature increases more of the neutral form and less of the protonated form will be present[24]. In the reversed phase,the main factor that controls the retention of analytes is their interaction with the stationary phase,and the neutral form interacts with the ODS phase much more strongly than does the charged form.Hence retention should increase upon increasing the temperature on the ODS column[23].How-ever,the effect of temperature on retention of basic drugs in an HPLC microemulsion system can be more complicated than that described above.In reversed phase microemulsion there are two contradictory mechanisms.On one hand,as the basic drugs become more neutral,they retain longer in the stationary phase.On the other hand,their partition with the oil droplet will increase and therefore their retention should decrease.The effect of temperature was examined at four different tem-peratures:20◦C,30◦C,40◦C and50◦C(Fig.6).It was found that increasing the temperature has no marked effect on the retention of either terbutaline or the internal standard.Peak efficiency and resolution were improved with increasing temperature.This result is consistent withfindings reported by Marsh et al.[10]3.3.Assay validationThe developed method was validated to determine the terbu-taline in Bricanyl®Turbuhaler,and the validation procedure was based on ICH(1996)guidelines[25].3.3.1.SelectivityThe method was shown to be selective for terbutaline.Fig.7 shows a typical separation of terbutaline(200␮g/L)and the inter-nal standard bamethane(400␮g/L),all dissolved in the mobile phase.Thefigure shows that terbutaline was eluted at4.3min.The analysis of mobile phase and blanks confirmed that there were no interfering peaks due to the blank.3.3.2.LinearitySix different concentrations were prepared to range from25 to500␮g/L including the limit of quantitation(LOQ)and cover-ing the expected range.The linearity of the calibrationstandards Fig.7.Chromatogram of terbutaline(200␮g/L),and the internal standard, bamethane(400␮g/L).Peak identities:terbutaline4.3min,and bamethane5.1min.was evaluated over this range.The calibration samples were injected in duplicates and also blank samples were analysed along with the calibration standards.The detector response was shown to be linear over the covered range and gave a regres-sion coefficient(r2)of0.998.The standard deviations for the slope and intercepts were0.00013and0.00814,respectively [Y=0.0032(±0.00013)X−0.002(±0.00814)].y=0.0032x−0.002. 3.3.3.SensitivityThe sensitivity was expressed as LOQ and limit of detection (LOD).LOQ is the injected amount that results in a peak with a height at least10times as high as the baseline noise level,and the LOD as peak height to base line ratio of3:1[25].Another approach to calculate LOQ and LOD is based on the standard deviation(SD) of y-intercept from the regression of the calibration curve[26].In this approach the LOQ=10s/m and LOD=3.3s/m where,s is the standard deviation of y-intercept and m is the slope of the cali-bration.The limit of detection(DL=3.3s/m)was8␮g/L and the limit of quantitation(QL=10s/m)was25␮g/L.Three samples of both terbutaline and bamethane were prepared at the quantitation limits and were analysed(n=10),the relative standard deviation (R.S.D.)was0.92%.It was possible to use only one dose from Bricanyl®Turbuhaler in the measurement of the particle size distribution(see Section 4)due to the excellent sensitivity of the assay method.Otherwise more doses would have been required to be discharged into Ander-sen Cascade Impactor(ACI)which could overload the ACI stages and hence cause the particles to bounce off and re-entrain into the air stream.As a result,the particles will be carried to down-stream stages which will introduce error in the size distribution measurement[27].3.3.4.PrecisionPrecision was assessed byfive determinations at known concen-trations corresponding to low(25␮g/L),medium(200␮g/L)and high(500␮g/L)levels in the calibration range.The same study was repeated for5days to determine the inter-day variation.The intra-and inter-day variations were determined by calculating the rel-ative standard deviation.The intra-day variations(RSD%)ranged from0.76to1.46%and inter-day RSD%ranged from0.35to0.97% (Table1).Table1Intra-and inter-assay precision data for the NELC method.Nominal concentration(ng/ml)Intra-daycoefficient ofvariation(%)Inter-daycoefficient ofvariation(%)Low=25 1.460.97Medium=200 1.220.80High=5000.760.35M.S.Althanyan et al./Journal of Pharmaceutical and Biomedical Analysis55 (2011) 397–402401Table2Accuracy data for terbutaline.Actual concentration(␮g/L)Observed concentration(␮g/L)%Accuracy2524.965100.44200203.204101.60500499.34499.823.3.5.AccuracyThe accuracy of the method was performed by adding the ana-lyte into blank matrices at different concentrations then it wasassessed by comparing the calculated spike concentration with thetrue concentration of terbutaline.Three different concentrationslevels corresponding to low(25␮g/L),medium(200␮g/L)and high(500␮g/L)were used(n=5for each level).The accuracy of themethod ranged from99.82to101.60%(Table2).3.3.6.RecoveryThe recovery was assessed by extracting known amounts ofterbutaline from membranefilters.The mean recoveries of terbu-taline from thefilters were>98.04%.The details of recovery studyfor terbutaline fromfilters are shown in Table3.3.3.7.StabilityReference solutions were stored in the refrigerator at+4◦C for6weeks and re-analysed in an injection sequence employing freshlyprepared standard solutions.The concentration after such storageconditions and on comparison with freshly prepared standard was99%.Longer storage periods may be possible but were not assessedin this study.3.3.8.RobustnessThe robustness of an analytical method is a measure of its capac-ity to resist changes due to small variations in method conditions.The method robustness was assessed as a function of changing thepH,Brij35,1-butanol and buffer concentration,the changes wereover a range of±5%of the target(experimental condition).Themethod system suitability criteria of a resolution greater than2.0between the peaks were maintained.4.Application of the methodThe pharmaceutical performance of inhaled products can becharacterised by the total emitted dose and the aerodynamic par-ticle size distribution including thefine particle dose.This MELCmethod was used to assay the content uniformity of the emitteddose and thefine particle dose of terbutaline in Bricanyl®Tur-buhaler.4.1.Dose content uniformityThe method was useful to measure the emitted dose of terbu-taline in Bricanyl®Turbuhaler.The emitted dose uniformity wasmeasured using a dose sampling apparatus described in pharma-copoeial methods(EP2008,USP2005)[28,29].Ten individual doses(dose number2,3,4,49,50,51,52,98,99and100)of the entire doseavailable(100doses)were collected from the Bricanyl at a pressureTable3Recovery of terbutaline from membranefilters(n=5).Nominal concentration (␮g/L)Mean calculatedconcentration(␮g/L)%Recovery100101.53101.53 200196.1598.08 500490.1998.04Table4Percentage of the nominal dose of terbutaline emitted from Bricanyl Turbohaler at a pressure drop of4kPa across the inhaler.Dose no.%Nominal dose265.2347.3463.64992.25076.75164.75267.09873.59984.510082.1Mean71.7SD12.8RSD17.8Fig.8.Represents the cumulative drug distribution.drop of4kPa across the inhaler.Theflow duration was4.5s;this was to allow a volume of4L to be drawn through the inhaler.Each dose was collected and then was transferred to a25ml volumetricflask.It was diluted up to volume with internal standard solution(400␮g/L,bamethane),to give concentration of500␮g/L.The HPLC data was then compared with the label claim dose of Bricanyl inhaler(Table4).The R.S.D.value is high because of the high inter-dose emission variability from a Turbuhaler inhaler [22,30].4.2.Particle size distributionThe particle size distribution and thefine particle mass from the Bricanyl®Turbuhaler were measured using the Andersen MKII Cascade Impactor.The Anderson cascade impactor was set up as described in the pharmacopoeia methods(EP2008,USP2005) [28,29].Theflow rate through the mouthpiece was set at a pres-sure drop of4kPa across the inhaler.Five separate determinations were made and for each determination one dose was discharged into the Andersen MKII Cascade Impactor.For each dose the pump was switched on for4.5s(equivalent to an inhaled volume of4L drawn through the inhaler)with the inhaler in situ ready to deliver each dose.Thefine particle dose for terbutaline was170.26␮g.The probability of the cumulative percentage of mass less than a stated particle size was plotted against the log of aerodynamic diameter (␮m)as shown in Fig.8.The mass median aerodynamic diameter (MMAD)was2.76and the geometric standard deviation(G.S.D.) was1.79.5.ConclusionsThis study has shown that microemulsion can be used as a mobile phase for the analysis of drugs in their pharmaceutical preparation.Oil-in-water microemulsion was applied as a mobile phase and the method was successfully developed and validated.402M.S.Althanyan et al./Journal of Pharmaceutical and Biomedical Analysis55 (2011) 397–402The separation was highly robust to wide range of changes in tem-perature.MELC offered a fast analysis time for the determination of terbutaline in the aerosol formulation.Moreover,the method is reliable,precise,and accurate.References[1]L.Prince,Microemulsion Theory and Practices,Academic Press INC,New York,1977,ISBN0-12-565750-1.[2]E.McEvoy,S.Donegan,J.Power,K.Altria,Optimisation and validation of arapid and efficient microemulsion liquid chromatographic(MELC)method for the determination of paracetamol(acetaminophen)content in a suppository formulation,J.Pharm.Biomed.Anal.44(2007)137–143.[3]M.R.Gasco,Microemulsions in the Pharmaceutical Field:Perspectives andApplications,in:Industrial Applications of Microemulsions,Marcel Dekker Inc., New York,1997,pp.97–122.[4]O.Sonneville-Aubrun,J.-T.Simonnet,F.L’Alloret,Nanoemulsions:a new vehi-cle for skincare products,Adv.Colloid Interface Sci.108–109(2004)145–149.[5]G.Lee,T.Tadros,Formation and stability of emulsions produced by dilutionof emulsifiable concentrates.Part I.An investigation of the dispersion on dilu-tion of emulsifiable concentrates containing cationic and non-ionic surfactants, Colloids Surf.5(1982)105–115.[6]X.Liu,Y.Guan,Z.Ma,H.Liu,Surface modification and characterization ofmagnetic polymer nanospheres prepared by miniemulsion polymerization, Langmuir20(2004)10278–10282.[7]A.Berthod,M.De Carvalho,Oil in water microemulsions as mobile phases inliquid chromatography,Anal.Chem.64(1992)2267–2272.[8]A.Berthod,serna,I.Carretero,Oil-in-water microemulsions as mobilephases for rapid screening of illegal drugs in sports,J.Liq.Chromatogr.17(1992) 3115–3127.[9]K.D.Altria,A.Marsh,B.J.Clark,High performance liquid chromatographicanalysis of pharmaceuticals using oil-in-water microemulsion eluent and monolithic column,Chromatographia63(2006)309–314.[10]A.Marsh,K.D.Altria, B.J.Clark,Oil-in-water microemulsion high perfor-mance liquid chromatographic analysis of pharmaceuticals,Chromatographia 59(2004)531–542.[11]A.Malenovic,D.Ivanovic,M.Medenica,B.Jancic,S.Markovic,Retention mod-elling in liquid chromatographic separation of simvastatin and six impurities using a microemulsion as eluent,J.Sep.Sci.27(2004)1087–1092.[12]D.T.El-Sherbiny,M.I.Eid,D.R.El-Wasseef,R.M.M.Al-Ashan,F.Belal,Analysis offlunarizine in the presence of some of its degradation products using micel-lar liquid chromatography(MLC)or microemulsion liquid chromatography (MELC)—application to dosage forms,J.Sep.Sci.28(2005)197–202.[13]M.I.Walash,F.Belal,N.El-Enany,A.Abdelal,Microemulsion liquid chro-matographic determination of nicardipine hydrochloride in pharmaceuticalpreparations and biologicalfluids.application to stability studies,J.Liq.Chro-matogr.Rel.Technol.30(2007)1015–1034.[14]S.M.Bryant,K.D.Altria,An initial assessment of the use of gradient elutionin microemulsion and micellar liquid chromatography,J.Sep.Sci.27(2004) 1498–1502.[15]A.Marsh,B.J.Clark,K.D.Altria,Oil-in-water microemulsion LC determina-tion of pharmaceuticals using gradient elution,Chromatographia61(2005) 539–547.[16]E.McEvoy,S.Donegan,J.Power,K.Altria,Application of MELC and MEEKCfor the analysis of paracetamol and related impurities in suppositories,Chro-matographia68(2008)49–56.[17]A.Berthod,Causes and remediation of reduced efficiency in micellar liquidchromatography,J.Chromatogr.A780(1997)191–206.[18]N.Garti,A.Yaghmur,M.E.Leser,V.Clement,H.J.Watzke,Improved oil solubi-lization in oil/water food grade microemulsions in the presence of polyols and ethanol,J.Agric.Food Chem.49(2001)2552–2562.[19]T.G.Mason,J.N.Wilking,K.Meleson,C.B.Chang,S.M.Graves,Nanoemulsions:formation,structure,and physical properties,J.Phys.:Condens.Matter18 (2006)R635–R666.[20]J.Liu,J.Sun,Y.Wang,X.Liu,Y.Sun,H.Xu,Z.He,Characterization ofmicroemulsion liquid chromatography systems by solvation parameter model and comparison with other physicochemical and biological processes,J.Chro-matogr.A1164(2007)129–138.[21]R.Ryan,S.Donegan,J.Power, E.McEvoy,K.Altria,An Introduction toMicroemulsion HPLC(MELC),LC-GC Europe,October2008,pp.502–513. [22]K.H.Assi,W.Tarsin,H.Chrystyn,High performance liquid chromatographyassay method for simultaneous quantitation of formoterol and budesonide in Symbicort turbuhaler,J.Pharm.Biomed.Anal.41(2006)325–328.[23]Y.Mao,P.W.Carr,Separation of selected basic pharmaceuticals by reversed-phase and ion-exchange chromatography using thermally tuned tandem columns,Anal.Chem.73(2001)4478–4485.[24]D.V.McCalley,Effect of temperature andflow-rate on analysis of basic com-pounds in high-performance liquid chromatography using a reversed-phase column,J.Chromatogr.A902(2000)311–321.[25]Validation of Analytical Procedures:Methodology Q2B,ICH Steering Commit-tee,6November1996,website /.[26]I.Apostol,ler,J.Ratto,D.N.Kelner,Comparison of different approachesfor evaluation of the detection and quantitation limits of a purity method:a case study using a capillary isoelectrofocusing method for a monoclonal antibody, Anal.Biochem.385(2009)101–106.[27]C.Dunbar,A.Kataya,T.Tiangbe,Reducing bounce effects in the Andersen cas-cade impactor,Int.J.Pharm.301(2005)25–32.[28]European Pharmacopoeia,Ph.Eur.(2008)Section2.9.18.[29]United States Pharmacopeia,USP28(2005)2359–2377.[30]W.Tarsin,K.H.Assi,H.Chrystyn,In-vitro intra-and inter-inhalerflow rate-dependent dosage emission from a combination of budesonide and eformoterol in a dry powder inhaler,J.Aerosol.Med.17(2004)25–32.。

相关文档
最新文档