弹簧扭矩计算
弹簧公差对照表

弹簧公差对照表圆柱螺旋压簧技术标准1.弹簧的结构形式及分类:两端圈并紧并磨平,两端圈并紧不磨,两端圈不并紧。
2.极限偏差等级:弹簧特性与尺寸的极限偏差分为1、2、3三个等级,各项目的等级应根据使用需要分别独立选定。
3.永久变形:将弹簧成品用试验负荷压缩三次后,其永久变形不得大于自由高度的0.3%。
将弹簧成品用试验负荷压缩三次后,测量第二次与第三次压缩后的自由高度变化值。
4.弹簧特性:在指定高度的负荷下,弹簧变形量应在试验负荷下变形量的20-80%之间。
要求1级精度时,弹簧在指定高度负荷下的变形量应在4mm以上。
5.弹簧刚度:在特殊需要时采用,其变形量应在试验负荷下变形量30-70%之间。
6.尺寸及极限偏差:1)弹簧外径或内径1 2 3≥ 4 ~ 8±0.01D,最小±0.15 ±0.015D,最小±0.2 ±0.025D,最小±0.4>9 ~15 ±0.015D,最小±0.2 ±0.02D,最小±0.3 ±0.03D,最小±0.5>15 ~ 22 ±0.02D,最小±0.3 ±0.03D,最小±0.5 ±0.04D,最小±0.7 2)弹簧自由高度1 2 3≥ 4 ~ 8±0.01H0,最小±0.2 ±0.02H0,最小±0.5 ±0.03H0,最小±0.7>9 ~15 ±0.015H0,最小±0.5 ±0.03H0,最小±0.7 ±0.04H0,最小±0.9>15 ~ 22 ±0.02H0,最小±0.6 ±0.04H0,最小±0.8 ±0.06H0,最小±1 3)弹簧总圈数(当弹簧有特性要求时,总圈数作为参考)总圈数极限偏差≤10±0.25>10 ~ 20 ±0.5>20 ~ 50 ±1.04)弹簧垂直度精度等级 1 2 3垂直度0.02H0(1°26′)0.05H0(2°52′)0.08H0(4°34′) 5)指定高度时的负荷P的极限偏差1 2 3≥ 3 ~ 10±0.05P ±0.10P ±0.15P>10 ±0.04P ±0.08P ±0.12P6)弹簧刚度P′的极限偏差1 2 3≥ 3 ~ 10±0.05P′±0.10P′±0.15P′>10 ±0.04P′±0.08P′±0.12P′7)节距:等节距的弹簧在压缩到全变形量的80%时,其正常节距圈不得接触。
弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力

弹簧的强度计算1、弹簧的受力图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩 T= FRcosα ,弯矩 M= FRsinα,切向力F Q = Fcosα和法向力 N F = Fsinα (式中R为弹簧的平均半径)。
由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90 ),所以弯矩M和法向力N 可以忽略不计。
因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。
α的值较小时,cosα≈ 1,可取T = FR 和 Q = F。
这种简化对于计算的准确性影响不大。
当拉伸弹簧受轴向拉力F时,弹簧丝横剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q均为相反的方向。
所以上述两种弹簧的计算方法可以一并讲述。
2、弹簧的强度从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝系数K s可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力式中K为曲度系数。
它考虑了弹簧丝曲率和切向力对扭应力的影响。
一定条件下钢丝直径3、弹簧的刚度圆柱弹簧受载后的轴向变形量式中n为弹簧的有效圈数;G为弹簧的切变模量。
这样弹簧的圈数及刚度分别为对于拉伸弹簧,n>20时,一般圆整为整圈数,n<20时,可圆整为1/2圈;对于压缩弹簧总圈数n的尾数宜取1/4、1/2或整圈数,常用1/2圈。
为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最少为2圈。
C值大小对弹簧刚度影响很大。
若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也就愈硬;反之则愈软。
不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。
此外,k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。
4、稳定性计算压缩弹簧的长度较大时,受载后容易发生图a)所示的失稳现象,所以还应进行稳定性的验算。
为了便于制造和避免失稳现象出现,通常建议弹簧的长径比 b =H0/D2 按下列情况取为:弹簧两端均为回转端时,b≤2.6;弹簧两端均为固定端时,b≤5.3 ;弹簧两端一端固定而另一端回转时,b≤3.7。
圆柱螺旋弹簧一般计算公式

1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量(拉压行程)。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4. 下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程(角度);
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
弹簧设计计算软件

L=n*l+钩 mm 316.44 环展开尺
寸
计算
公式
661.5 N/mm2
78500 N/mm2 203000 N/mm2
备注
2.16 mm
Mn'>Mn
合理
8
n)/(3667* Mn*D)= φn/Ψn=
23 工作极限扭矩 Mj
N.mm
787.5
Mj=(d^3* [σ BP])/(10* K)
24 最小工作扭矩 M1 25 工作极限扭矩下扭转角 φj
N.mm (°)
295
M1=φ 1/(Ψ'*n)
88 φj=Ψ '*n*Mj
步骤 原始条件
选材
系数选取
序号 1 2 3 4 5 6 7 8
9 10 11 12 13
14
15 16
17
18
19
项目 最大工作扭矩 Mn 最大扭转角φn 工作扭转角φ 旋向 负荷种类 制造精度
弹簧材料
弹簧许用切应力 [τp] 弯曲应力 σb
许用弯曲应力 [σBP]
剪切弹性模量 G 弹性模量 E
圆柱螺旋扭转弹簧计算
(°) (°)
8.372 11.025
Ψn=Ψ '*Mn
Ψj=Ψ '*Mj
公式
Ψ
'=(3667*
20 在1N.mm扭矩作用下单圈扭转角Ψ' (°) 0.014 D)/(E*d^ 4)=Ψ
n/Mn l=((π
21 弹簧单圈展开长度 l
mm
37.68
*D)^2*t^ 2)^(1/2)
≈π*D
参数计算 22 有效圈数 n
26 最小工作扭矩下扭转角 φ1
弹簧的计算公式

線徑d(mm)中徑D(mm)有效圈數n 材质G/(Kg/mm )许用剪切应力[τ](Mpa)最大许用压力Ps(Kg.f)20110560Si2Mn 80007402154.368弹簧丝直径d (mm )0.2~0.40.5~1 1.1~2.2 2.5~67~1618~40C 7~145~125~104~104~84~6,通常α取5~90 。
弹簧丝材料的长度: δ=t-d ;弹簧的自由长度: H=n·δ+(n0-0.5)d (两端并紧磨平); H=n·δ+(n0+1)d (两端并紧,但不磨平)。
弹簧螺旋升角:t=d (对拉伸弹簧);式中:λmax --- 弹簧的最大变形量;Δ --- 最大变形时相邻两弹簧丝间的最小距离,一般不小于0.1d 。
弹簧钢丝间距:弹簧节距t 一般按下式取:(对压缩弹簧);弹簧设计中,旋绕比(或称弹簧指数)C 是最重要的参数之一。
C=D2/d ,弹簧指数愈小,其刚度愈大,弹簧愈硬,弹簧内外侧的应力相差愈大,材料利用率低;反之弹簧愈软。
常用弹簧指数的选取参见表。
弹簧总圈数与其工作圈数间的关系为:如图所示,圆柱弹簧的主要尺寸有:弹簧丝直径d 、弹簧圈外径D 、弹簧圈内径D1,弹簧圈中径D2,节距t 、螺旋升角a 、自由长度H0等。
2、弹簧参数的计算压缩弹簧参数计算圆柱螺旋压缩与拉伸弹簧的设计1 圆柱弹簧的参数及几何尺寸1、弹簧的主要尺寸(见右图)式中n 为弹簧的有效圈数;G 为弹簧的切变模量。
这样弹簧的圈数及刚度分别为3、弹簧的刚度圆柱弹簧受载后的轴向变形量式中K 为曲度系数。
它考虑了弹簧丝曲率和切向力对扭应力的影响。
一定条件下钢丝直径系数Ks 可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝当拉伸弹簧受轴向拉力F 时,弹簧丝槽剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q 均为相反的方向。
弹簧选材及计算公式

弹簧的材料、选材与制造newmaker1 弹簧材料为了保障弹簧能够可靠地工作,其材料除应满足具有较高的强度极限和屈服极限外,还必须具有较高的弹性极限、疲劳极限、冲击韧性、塑性和良好的热处理工艺性等。
表20-2列出了几种主要弹簧材料及其使用性能。
实践中应用最广泛的就是弹簧钢,其品种又有碳素弹簧钢、低锰弹簧钢、硅锰弹簧钢和铬钒钢等。
图20-2给出了碳素弹簧钢丝的抗拉强度极限。
图20-2 碳素钢丝直径与强度的关系表20-2 主要弹簧材料及其许用应力类别代号许用扭应力[t T]许用弯曲应力[σb]/MPa 切变模量G/GPa弹性模量E/GPa推荐硬度范围HRC推荐使用温度°C特性及用途Ⅰ类弹簧Ⅱ类弹簧Ⅲ类弹簧Ⅰ类弹簧Ⅱ类弹簧钢丝碳素弹簧钢丝Ⅰ,Ⅱ,Ⅱa,Ⅲ0.3σb0.4σb0.5σb0.5σb0.625σb81.5~78.5204~202--40~120强度高,性能好,适于做小弹簧60Si2Mn60Si2MnA471 627 785 785 98178.5 19745~50-40~200弹性好,回火稳定,易脱碳,适于做受大载荷的弹簧65Si2MnWA60Si2CrVA560 745 931 931 1167 47~52-40~250强度好,耐高温,弹性好注:1.按受力循环次数N不同,弹簧分为三类:Ⅰ类N>106;Ⅱ类N=103~105以及受冲击载荷的场合;Ⅲ类N<103。
2.碳素弹簧钢丝按机械性能不同分为Ⅰ、Ⅱ、Ⅱa、Ⅲ四组,Ⅰ组强度最高,依次为Ⅱ、Ⅱa、Ⅲ组。
3.弹簧的工作极限应力tlim:Ⅰ类£1.67[t];Ⅱ类£1.25[t];Ⅲ类£1.12[t]。
4.轧制钢材的机械性能与钢丝相同。
5.碳素钢丝的切变模量和弹性模量对0.5~4mm直径有效,>4mm取下限。
2 材料选择弹簧材料选择必须充分考虑到弹簧的用途、重要程度与所受的载荷性质、大小、循环特性、工作温度、周围介质等使用条件,以及加工、热处理和经济性等因素,以便使选择结果与实际要求相吻合。
弹簧校核计算 计算表

校核合格
比(弹簧指
2,刚度计算
弹簧总圈数 弹簧有效圈数N 弹簧刚度K(N/磨平死圈
63.2
K Gd 4
100
8D3 N
弹簧丝直径d(mm) C
表3 碳素 弹簧钢与
长细比b 弹簧安装方式
5.00 两端固定
材料
参数
判断是否失稳
稳定,无需计算稳定性
载荷性质
不稳定系数Cu
295.68
载荷性质: I=无限疲劳寿命,交变载荷次数 >106,如内燃机气门弹簧、电磁 制动器弹簧;
附表 弹簧 钢抗拉强
II=有限疲劳寿命,交变载荷次数 103~105,如一般车辆弹簧
III=静载荷,交变载荷次数 <103,如安全阀弹簧
材料
I类弹簧 II类弹簧 III类弹簧 I类弹簧 II类弹簧 III类弹簧 I类弹簧 II类弹簧 III类弹簧
0.25
图1
弹簧线径d(mm)
3,压缩弹簧稳定 稳定临界载荷Fc(N) 性(拉伸弹簧不做) 实际负载压F(N)
1580.00 2000
抗拉强度σb(MPa)(右表) 扭转弹簧许用弯应[σp](MPa
判断稳定性
稳定,无需计算稳定性
说明:
如果F>Fc,应重新选择有关参数,改变b值,提高Fc的大小,使其大于
65Mn
340 455 570 285 325 380 455 570 710
硅锰,铬钒
55Si2Mn(B 铬锰钢
60Si2Mn( 55CrMnA
A
60CrMnA
50CrVA
445
430
590
570
740
710
370
360
弹簧的计算公式

線徑d(mm)中徑D(mm)有效圈數n 材质G/(Kg/mm )许用剪切应力[τ](Mpa)最大许用压力Ps(Kg.f)20110560Si2Mn 80007402154.368弹簧丝直径d (mm )0.2~0.40.5~1 1.1~2.2 2.5~67~1618~40C 7~145~125~104~104~84~6,通常α取5~90 。
弹簧丝材料的长度:(对压缩弹簧); δ=t-d ;弹簧的自由长度: H=n·δ+(n0-0.5)d (两端并紧磨平); H=n·δ+(n0+1)d (两端并紧,但不磨平)。
弹簧螺旋升角:t=d (对拉伸弹簧);式中:λmax --- 弹簧的最大变形量;Δ --- 最大变形时相邻两弹簧丝间的最小距离,一般不小于0.1d 。
弹簧钢丝间距:弹簧节距t 一般按下式取:(对压缩弹簧);弹簧设计中,旋绕比(或称弹簧指数)C 是最重要的参数之一。
C=D2/d ,弹簧指数愈小,其刚度愈大,弹簧愈硬,弹簧内外侧的应力相差愈大,材料利用率低;反之弹簧愈软。
常用弹簧指数的选取参见表。
弹簧总圈数与其工作圈数间的关系为:如图所示,圆柱弹簧的主要尺寸有:弹簧丝直径d 、弹簧圈外径D 、弹簧圈内径D1,弹簧圈中径D2,节距t 、螺旋升角a 、自由长度H0等。
2、弹簧参数的计算压缩弹簧参数计算圆柱螺旋压缩与拉伸弹簧的设计1 圆柱弹簧的参数及几何尺寸1、弹簧的主要尺寸(见右图)式中n 为弹簧的有效圈数;G 为弹簧的切变模量。
这样弹簧的圈数及刚度分别为3、弹簧的刚度圆柱弹簧受载后的轴向变形量式中K 为曲度系数。
它考虑了弹簧丝曲率和切向力对扭应力的影响。
一定条件下钢丝直径系数Ks 可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝当拉伸弹簧受轴向拉力F 时,弹簧丝槽剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q 均为相反的方向。