三角函数的概念及习题

合集下载

三角函数的概念(精练)(解析版)

三角函数的概念(精练)(解析版)

5.2 三角函数的概念【题组一 三角函数的定义】1.(2020·河南高三其他(理))若角α的终边过点8,6cos ()60P m --,且4cos 5α=-则实数m 的值为( )A .12-B .C .12D 【答案】C【解析】6cos603-=-,则点P 的坐标为(8,3)P m --, 因为4cos 5a =-.所以角a 的终边在第二象限或第三象限,故0m >.45=-,即214m =,解得12m =-(舍)或12m =.故选:C . 2.(2020·内蒙古通辽·高一期中(理))点(,)A x y 是300︒角终边上异于原点的一点,则yx值为( ).A B .C .3D .3-【答案】B 【解析】tan 300yx==-3.(2020·浙江丽水·高一期末)已知角α的终边经过点()1,P m ,且sin 10α=-,则cos α=( )A .B .CD .13【答案】C【解析】由三角函数定义得sin 0,310m m α==-<=-由三角函数定义得cos 10α==C4.(2020·全国高一课时练习)已知角α的终边上有一点P ⎝⎭,则sin cos αα+ ________.【答案】5-【解析】因为角α的终边上有一点P ⎝⎭,则221⎛+= ⎝⎭⎝⎭所以sin α=,cos α=所以sin cos αα⎛+=+= ⎝⎭-5.(2020·浙江高一课时练习)已知角α的终边上一点的坐标为33sin ,cos 44ππ⎛⎫ ⎪⎝⎭,则角α的最小正值为________. 【答案】74π【解析】∵角α的终边上一点坐标为33sin ,cos 44M ππ⎛⎫ ⎪⎝⎭,即22M ⎛- ⎝⎭, 故点M在四象限,且tan 12α==-,则角α的最小正值为74π.故答案为:74π6.(2020·全国高一课时练习)已知角α的终边过点P (-3a,4a )(a ≠0)”,求2sin α+cos α. 【答案】1或-1.【解析】因为r5a =. ①若a >0,则r =5a ,角α在第二象限,sin α=y r=4455a a =,cos α=3355x a r a -==-, 所以2sin α+cos α=83155-=,②若a <0,则r =-5a ,角α在第四象限.sin α=4455a a =--,cos α=3355a a -=-, 所以2sin α+cos α=83155-+=-.7.(2020·全国高一课时练习)已知θ终边上一点()(),30P x x ≠,且cos 10x θ=,求sin θ、tan θ. 【答案】当1x =时,sin 10θ=,tan 3θ=;当1x =-时,sin 10θ=,tan 3θ=-.【解析】由题意知r OP ==cos x x r θ===,0x ≠,解得1x =±.当1x =时,点()1,3P,由三角函数的定义可得sin 10θ==,3tan 31θ==;当1x =-时,点()1,3P -,由三角函数的定义可得sin θ==,3tan 31θ==--. 综上所述,当1x =时,sin 10θ=,tan 3θ=;当1x =-时,sin 10θ=,tan 3θ=-. 【题组二 三角函数值正负判断】1.(2019·上海中学高一期中)若cos 0tan 0>,<,αα则α在 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】由于cos 0α>,故角α为第一、第四象限角.由于tan 0α<,故角α为第二、第四象限角.所以角α为第四象限角.故选D.2.(2019·安徽省舒城中学高一月考)若sin 0tan αα>且cos tan 0αα⋅<,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】D【解析】由题,因为sin 0tan αα>,则α的终边落在第一象限或第四象限; 因为cos tan 0αα⋅<,则α的终边落在第三象限或第四象限;综上,α的终边落在第四象限故选D3.(2020·南昌市新建一中高一期末)已知角α满足sin 0α<且cos 0α>,则角α是第( )象限角 A .一 B .二C .三D .四【答案】D【解析】由题意,根据三角函数的定义sin y r α=<0,cos xrα=>0 ∵r >0,∴y <0,x >0.∴α在第四象限,故选:D .4.(2020·上海高一课时练习)已知tanα>0,且sinα+cosα>0,那么角α是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】A【解析】tan 0α>则角为第一或第三象限,而sin cos 0αα+>,故角为第一象限角. 5.(2020·甘肃高一期末)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B【解析】由题意可得00cos tan αα<⎧⎨<⎩,则0sin cos αα>⎧⎨<⎩,所以角α的终边在第二象限,故选B.6.(2019·广东越秀·高一期末)若cos θ0>,sin θ0<,则角θ是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】D【解析】根据三角函数的定义有()sin ,cos 0y xr r rθθ==>,所以0,0x y ><, 所以θ在第四象限,故选D .7.(2020·辽河油田第二高级中学高一期中)如果点(sin ,cos )P θθ位于第三象限,那么角θ所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限+【答案】C【解析】因为点(sin ,cos )P θθ位于第三象限,所以sin 0cos 0θθ<⎧⎨<⎩,因此角θ在第三象限.故选:C.8.(2020·全国高一课时练习)“点(tan ,cos )P αα在第三象限”是“角α为第二象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】∵(tan ,cos )P αα为第三象限,∴tan 0α<,cos 0α<,∴α为第二象限角,反之也成立. 故选:C.9.(2020·山西平城·大同一中高一月考)已知第二象限角α的终边上一点()sin ,tan P ββ,则角β的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】因为点()sin ,tan P ββ在第二象限,所以有sin 0,tan 0,ββ<⎧⎨>⎩所以β是第三象限角.故选:C 【题组三 三角函数线】1.(2020·灵丘县豪洋中学高一期中)设5sin 12a π=,5cos 12b π=,5tan 12c π=,则( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<【答案】D 【解析】设512π的终边与单位圆相交于点P ,根据三角函数线的定义可知5sin 12a MP π==,5cos 12b OM π==,5tan 12c AT π==,显然AT MP OM >>所以b a c <<故选:D2.(2020·全国高一课时练习)若02θπ≤<,且不等式cos sin θθ<和tan sin θθ<成立,则角θ的取值范围是( )A .3,44ππ⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .35,44ππ⎛⎫ ⎪⎝⎭【答案】B【解析】由三角函数线知,在[)0,2π内使cos sin θθ<的角5,44πθπ⎛⎫∈⎪⎝⎭,使tan sin θθ<的角3,,222πθπππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,故θ的取值范围是,2ππ⎛⎫⎪⎝⎭.故选:B.3.(2020·全国高一课时练习)如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<【答案】C【解析】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.4.(2020·全国高一课时练习)在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1)sin α≥2(2)cos α≤-12. 【答案】(1)作图见解析;22k 2k ,k Z 33ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣;(2)作图见解析;2422,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣.【解析】(1)作直线y A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(如图所示的阴影部分,包括边界),即为角α的终边的范围.故满足要求的角α的集合为22k 2k ,k Z 33ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣. (2)作直线x =-12交单位圆于C ,D 两点,连接OC 与OD ,则OC 与OD 围成的区域(如图所示的阴影部分,包括边界),即为角α的终边的范围.故满足条件的角α的集合为2422,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣. 【题组四 同角三角函数】1.已知sin θ=a−11+a ,cos θ=−a1+a ,若θ是第二象限角,则tan θ的值为 A .−12 B .−2C .−34D .−43【答案】C【解析】由sin 2θ+cos 2θ=1,得:(a−11+a )2+(a1+a )2=1,化简,得: a 2−4a =0,因为θ是第二象限角,所以,a =4, tan θ=sin θcos θ=a−11+a ×(−1+a a)=1−a a=1a −1=−34,故选C.2.(2020·甘肃省岷县第一中学高二月考)若角α的终边落在直线0x y +=上,cos α+的值等于( )A .0B .2-C .2D .2-或2【答案】A【解析】由题意,若角α的终边落在直线0x y +=上,则角α的终边落在第二象限或第四象限,当角α的终边在第二象限时,根据三角函数的定义,可得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,0cos α+=;当角α的终边在第四象限时,根据三角函数的定义,可得sin 2cos 2αα⎧=-⎪⎪⎨⎪=⎪⎩,0cos α+=,故选A.3.(2019·江西高三月考(文))已知tan 2α,其中α为三角形内角,则cos α=()A.D. 【答案】A【解析】因为tan 2α,所以sin 2cos αα=-,又因为22sin cos 1αα+=,所以解得:sin 5cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,因为α为三角形内角,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩.故答案为:A.【题组五 弦的齐次】1.(2020·山西平城·大同一中高一月考)已知tan 3α=,则3sin cos 5cos sin αααα-=-( )A .2B .4C .6D .8【答案】B 【解析】由已知3sin cos 3tan 133145cos sin 5tan 53αααααα--⨯-===---.故选:B .2.(2020·辽宁高一期末)若3sin 5cos 1sin 2cos 5αααα+=--,则tan α的值为( )A .32B .﹣32C .2316D .﹣2316【答案】D 【解析】因为3sin 5cos 3tan 51sin 2cos tan 25αααααα++==---,解得23tan 16α=-.故选:D3.(2019·黄梅国际育才高级中学高一月考)已知θ是第二象限角,(),2P x 为其终边上一点且cos θ5x =,则2sin cos sin cos θθθθ-+的值A .5B .52C .32D .34【答案】A【解析】由题意得cos 5θ==1x =±.又θ是第二象限角,∴1x =-.∴tan 2θ=-.∴2sin cos 2tan 1415sin cos tan 121θθθθθθ----===++-+.选A .4.(2020·内蒙古集宁一中高一期末(理))已知sin αα=,则2sin sin cos 1ααα++=( )A B C .1 D .3【答案】B【解析】由sin αα=可得tan α=22222222sin sin cos cos 2tan tan 1sin sin cos 1sin cos tan 1αααααααααααα++++++====++. 故选:B .5.(2020·科尔沁左翼后旗甘旗卡第二高级中学高一期末)已知4tan 3α=,求下列各式的值. ①222sin 2sin cos 2cos sin ααααα+⋅-; ②sin cos αα. 【答案】①20;②1225. 【解析】①原式2222442tan 2tan 33202tan 423ααα⎛⎫+⨯ ⎪+⎝⎭===-⎛⎫- ⎪⎝⎭. ②原式22224sin cos tan 123sin cos tan 125413αααααα====++⎛⎫+ ⎪⎝⎭. 6.(2020·内蒙古通辽·高一期中(理))(1)已知tan 3α=,计算4sin 2cos 5cos 3sin αααα-+ 的值 .(2)已知3tan 4θ=-,求22sin cos cos θθθ+-的值. 【答案】(1)57;(2)2225. 【解析】(1)∵tan 3α= ∴cos 0α≠∴原式=1(4sin 2cos )4tan 24325cos =153tan 5337(5cos 3sin )cos αααααααα-⨯-⨯-==++⨯+⨯.(2)()2222222sin cos sin cos cos 2sin cos cos sin cos θθθθθθθθθθ++-+-=+=2222222sin sin cos cos 2tan tan 1sin cos 1tan θθθθθθθθθ++++=++ =223393211224484925311164⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪⎝⎭⎝⎭==⎛⎫++- ⎪⎝⎭. 7.(2020·山东潍坊·高一期末)已知角α的顶点与坐标原点O 重合,始边落在x 轴的正半轴上,终边经过点()04,A y ,其中00y ≠.(1)若cos 5α=,求0y 的值; (2)若04y =-,求2sin 3cos cos 4sin αααα+-的值. 【答案】(1)2±;(2)15. 【解析】(1)由题意知,OA =cos α==. 解得02y =±,所以02y =±.(2)当04y =-时,0tan 14y α==-,所以2sin 3cos 2tan 31cos 4sin 14tan 5αααααα++==--. 8.(2020·四川凉山·高一期末)已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,且32ππα<<,求cos sin αα+的值【答案】【解析】由题意,tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, 可得21tan 31tan k αα⋅=-=,解得2k =±, 又由32ππα<<,则1tan 2tan k αα+==,解得tan 1α=,则sin cos 2αα==-,所以cos sin αα+= 【题组六 sinacosa 与sina±cosa 】1.(2020·浙江高三专题练习)已知sin θ+cos θ=43,θ∈(0,)4π,则sin θ-cos θ的值为( ) AB .13 CD .-13【答案】A【解析】∵sinθ+cosθ=43,∴(sinθ+cosθ)2=sin 2θ+cos 2θ+2sinθcosθ=1+2sinθcosθ=169 ,所以2sinθcosθ=79 又因为0<θ<4π,所以0<sinθ<cosθ∴sinθ﹣cosθ<0,∴(sinθ﹣cosθ)2=sin 2θ+cos 2θ﹣2sinθcosθ=1﹣2sinθcosθ=29 ,则sinθ﹣cosθ=﹣3 .故选A .2.(2020·山西应县一中高三开学考试(文))若cosα+2sinα,则tanα=________.【答案】2【解析】由2221cos sin sin cos αααα⎧⎪⎨+=⎪⎩+sin α,cos α=,∴tanα=sin αcos α=2, 故答案为2.3.(2019·石嘴山市第三中学高一期中)已知sinθ−cosθ=15(1)求sinθcosθ的值;(2)当0<θ<π时,求tanθ的值.【答案】(1) sinαcosα=1225 (2) tanθ=43【解析】(1)(sin θ−cos θ)2=1−2sin θcos θ =(15)2=125⇒sin αcos α=1225.(2)∵0<θ<π且sin αcos α>0,∴0<θ<π2.由{sinθ−cosθ=15sinθcosθ=1225 ⇒{sinθ=45cosθ=35 得tanθ=sin θcos θ=43.。

三角函数的概念(原卷版)

三角函数的概念(原卷版)

5.2.1 三角函数的概念【知识点梳理】 知识点一:三角函数定义设α是一个任意角,它的终边与半径是r 的圆交于点(,)P x y ,则22r x y +,那么: (1)y r 做α的正弦,记做sin α,即sin y r α=; (2) x r 叫做α的余弦,记做cos α,即cos x rα=; (3)y x叫做α的正切,记做tan α,即tan (0)yx x α=≠.知识点诠释:(1)三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离22r x y +,那么22sin x y α=+22cos x y α=+,tan yxα=. (2)三角函数符号是一个整体,离开α的sin 、cos 、tan 等是没有意义的,它们表示的是一个比值,而不是sin 、cos 、tan 与α的积.知识点二:三角函数在各象限的符号 三角函数在各象限的符号:在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦. 知识点诠释:口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正.知识点三:诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一: sin(2)sin k απα+= cos(2)cos k απα+=tan(2)tan k απα+=,其中k Z ∈注意:利用诱导公式一,可以把求任意角的三角函数值,转化为求02π~(或0360︒︒~)范围内角的三角函数值.知识点四、特殊角的三角函数值 0° 30°45°60°90°120°135°150°180°270°6π 4π 3π 2π 23π 34π 56π π32π sin α 0 12 22 3213222 12 0 1-cos α132 2212 012- 22- 32- 1- 0tan α0 331 33-1- 33- 0【题型归纳目录】 题型一:三角函数的定义 题型二:判断三角函数值的符号 题型三:确定角所在象限 题型四:诱导公式(一)的应用 题型五:圆上的动点与旋转点 【典型例题】题型一:三角函数的定义例1.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))设α是第二象限角,(),8P x 为其终边上的一点,且4sin 5α,则x =( ) A .3- B .4-C .6-D .10-例2.(2022·北京市西城外国语学校高三阶段练习)角α的终边上有一点(2,2)P -,则sin α=( ) A .22B .22-C .2D .1例3.(2022·河南·高三阶段练习(文))已知角α的终边经过点()()4,30P m m m -≠,则2sin cos αα+的值为( ) A .35 B .25C .1或25-D .25或25-变式1.(2022·山西大附中高三阶段练习(文))已知角x 的终边上一点的坐标为55sin ,cos 66ππ⎛⎫⎪⎝⎭,则角x 的最小正值为( ) A .56πB .53π C .6π D .3π变式2.(2022·江西·崇仁县第二中学高三阶段练习(文))已知点2π(cos ,1)3P 是角α终边上一点,则cos α=( )A 5B .5C 25D .3变式3.(2022·全国·高三专题练习)已知角α的终边经过点()3,4P -,则sin cos 11tan ααα--+的值为( )A .65-B .1C .2D .3变式4.(2022·全国·高三专题练习)已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12B .1C .2D .52变式5.(2022·全国·高一课时练习)已知顶点在原点,始边与x 轴非负半轴重合的角α的终边上有一点()3,P m ,且()2sin 0m α=≠,求m 的值,并求cos α与tan α的值.变式6.(2022·全国·高一课时练习)已知角α的终边在函数()102y x x =->的图像上,求sin α,cos α的值.【方法技巧与总结】利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:方法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.方法二:在α的终边上任选一点(,)P x y ,P 到原点的距离为r (0r >).则sin y rα=,cos xr α=.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. (3)若终边在直线上时,因为角的终边是射线,应分两种情况处理. 题型二:判断三角函数值的符号例4.(2022·全国·高一课时练习)已知α为第二象限角,则( ) A .sin 0α< B .tan 0α> C .cos 0α< D .sin cos 0αα>例5.(2022·湖北·高一阶段练习)下列各式的符号为正的是( ) A .cos3 B .5ππsin cos 36⎛⎫- ⎪⎝⎭C .sin2cos2-D .7πtan8例6.(2022·甘肃·静宁县第一中学高一阶段练习(文))sin 4tan7⋅的值( ) A .大于0 B .小于0 C .等于0 D .不大于0变式7.(2022·江西省万载中学高一期中)设02πα≤<,如果sin 0α<且cos20α<,则α的取值范围是( ) A .π<α<3π2B .3π2<α<2π C .π4<α<34π D .5π4<α<7π4【方法技巧与总结】三角函数值在各象限内的符号也可以用下面的口诀记忆:“一全正二正弦,三正切四余弦”,意为:第一象限各个三角函数均为正;第二象限只有正弦为正,其余两个为负;第三象限正切为正,其余两个为负;第四象限余弦为正,其余两个为负.题型三:确定角所在象限例7.(2022·全国·高一课时练习)点()cos2018,sin 2018P ︒︒所在的象限是( ) A .一B .二C .三D .四例8.(2022·福建·莆田二中高三阶段练习)设α角属于第二象限,且cos cos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例9.(2022·陕西汉中·高一期中)若cos tan 0αα<,且sin cos 0αα<,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角变式8.(2022·全国·高三专题练习)若sin 0θ<且tan 0θ<,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式9.(2022·江苏·无锡市教育科学研究院高一期末)已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式10.(2022·辽宁·高一期末)坐标平面内点P 的坐标为()sin5,cos5,则点P 位于第( )象限. A .一 B .二 C .三 D .四【方法技巧与总结】 确定角所在象限的步骤(1)判断该角的某些三角函数值的符号;(2)根据角的 三角函数值的符号,确定角所在象限. 题型四:诱导公式(一)的应用例10.(2022·天津市红桥区教师发展中心高一期末)17sin 4π=____________.例11.(2022·广西·桂林十八中高一开学考试)13sin 3π=_________.例12.(2022·湖南·高一课时练习) 17tan()3π-=______.变式11.(2022·云南民族大学附属中学模拟预测(理))()cos 300-︒=______.变式12.(2022·湖南·()3tan330sin 60︒+︒+-︒.【方法技巧与总结】利用诱导公式一化简或求值的步骤(1)将已知角化为·360k α︒+(k 为整数,0360α︒≤<︒)或2k πβ+(k 为整数,02βπ≤<)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角的三角函数的定义达到化简求值的目的. 题型五:圆上的动点与旋转点例13.(2022·湖南益阳·高一期末)在直角坐标系xOy 中,一个质点在半径为2的圆O 上,以圆O 与x 正半轴的交点0P 为起点,沿逆时针方向匀速运动到P 点,每5s 转一圈,则2s 后0P P 的长为( ) A .42sin 5πB .42cos 5πC .24sin 5π D .24cos5π例14.(2022·全国·高一专题练习)点P 从()1,0出发,沿单位圆按逆时针方向运动263π弧长到达Q 点,则Q 的坐标为( ) A .13,22B .312⎛⎫- ⎪ ⎪⎝⎭C .13,2⎛- ⎝⎭D .321⎛⎫ ⎪ ⎪⎝⎭例15.(2022·江西师大附中高一期末)在平面直角坐标系xOy 中,若点P 从()2,0出发,沿圆心在原点,半径为2的圆按逆时针方向运动43π弧长到达点Q ,则点Q 的坐标是( ) A .(3- B .(1,3--C .(3D .(1,3-变式13.(2022·江西·模拟预测(文))已知单位圆上第一象限一点P 沿圆周逆时针旋转3π到点Q ,若点Q 的横坐标为12-,则点P 的横坐标为( )A.13B.12C2D3变式14.(2022·全国·高三专题练习)如图所示,滚珠P,Q同时从点(2,0)A出发沿圆形轨道匀速运动,滚珠P按逆时针方向每秒钟转π3弧度,滚珠Q按顺时针方向每秒钟转6π弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.(1)求滚珠P,Q第一次相遇时所用的时间及相遇点的坐标;(2)求从出发到第二次相遇滚珠P,Q各自滚动的路程.【方法技巧与总结】利用三角函数的定义求解【同步练习】一、单选题1.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点132P⎛-⎝⎭,则sinα的值为()A.3B.12-C3D.122.(2022·江西赣州·高一期末)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n边形等分成n个等腰三角形(如图所示),当n越大,等腰三角形的面积之和越近似等于圆的面积.运用割圆术的思想,可得到sin9︒的近似值为(π取近似值3.14)()A .0.039B .0.157C .0.314D .0.0793.(2022·四川省平昌中学高一阶段练习)如图,角α的终边与单位圆O 的交点34(,)55A -,则4cos 2sin 5cos 3sin αααα-=+( )A .203B .23C .45D .203-4.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点1,3P m ⎛⎫- ⎪⎝⎭,则sin α=( )A .223B .13C .22D .13±5.(2022·江西上饶·高一阶段练习)赵爽是我国古代数学家、天文学家,约公元222年,赵爽在注解《周髀算经》一书时介绍了“勾股圆方图”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形.如图所示的是一张弦图,已知大正方形的面积为100,小正方形的面积为20,若直角三角形较小的锐角为α,则sin αcos α的值为( )A .15B .25C 5D 256.(2022·北京市第五中学高一期末)在直角坐标系xOy 中,已知43sin ,cos 55αα=-=,那么角α的终边与单位圆O 坐标为( ) A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭7.(2022·江西·景德镇一中高一期中)已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角8.(2022·四川省内江市第六中学高一阶段练习(理))在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P 与原点O 之间距离为r ,比值rx叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值xy叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=-;乙:5csc 3β=;丙:3tan 4β=-;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁二、多选题9.(2022·江苏·南京市第一中学高一阶段练习)已知α是第一象限角,则下列结论中正确的是( ) A .sin20α>B .cos20α>C .cos02α> D .tan02α>10.(2022·全国·高一单元测试)下列结论正确的是( ) A .76π-是第三象限角 B .若圆心角为3π的扇形的弧长为π,则该扇形的面积为32πC .若角α的终边上有一点()3,4P -,则3cos 5α=-D .若角α为锐角,则角2α为钝角11.(2022·辽宁朝阳·高一阶段练习)已知角θ的终边经过点(2,3)--,且θ与α的终边关于x 轴对称,则( ) A .21sin 7θ=-B .α为钝角C .27cos α= D .点(tan θ,tan α)在第四象限12.(2022·全国·高一)以原点为圆心的单位圆上一点P 从()1,0出发,沿逆时针方向运动133π弧长到达点Q ,则点Q 的坐标不可能的是( )A .312⎛⎫- ⎪ ⎪⎝⎭B .312⎫⎪⎪⎝⎭C .132⎛ ⎝⎭D .13,2⎛ ⎝⎭三、填空题13.(2022·上海理工大学附属中学高一期中)角α的终边上有一点()()3,40P a a a ->,则sin α的值为______;14.(2022·全国·高一课时练习)已知角α的终边在射线3(0)y x x =≥上,则角α的正弦值为______,余弦值为______.15.(2022·全国·高一课时练习)已知角α的终边上有一点()3,P m -,且2sin 4α=,则m 的值为______.16.(2022·全国·高一课时练习)若角θ是第四象限角,则sin cos tan sin cos tan y θθθθθθ=++=______. 17.(2022·江苏盐城·高一期末)已知角α为第一象限角,其终边上一点(),P x y 满足()()222ln 2ln x y x y -=+,则2cos α-sin α=________.四、解答题18.(2022·江苏·高一专题练习)已知角α的终边经过点()()4,30P a a a -≠,求2sin cos αα+的值.19.(2022·江苏·高一专题练习)已知α角的终边经过点()3,P m ,且满足2sin 4m α=. (1)若α为第二象限角,求sin α值; (2)求cos tan αα+的值.20.(2022·全国·高一课时练习)已知11sin sin αα=-,且lg cos α有意义. (1)试判断角α是第几象限角;(2)若角α的终边上有一点3,5M m⎛⎫⎪⎝⎭,且1OM=(O为坐标原点),求实数m的值及sinα的值.21.(2022·全国·高一课前预习)计算下列各式的值:(1)tan405sin450cos750︒-︒+︒;(2)t 15s25ann3i4ππ⎛⎫-⎝+⎪⎭.。

三角函数知识点及典型例题

三角函数知识点及典型例题

三角函数知识点及典型例题三角函数知识点及典型例题§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角α终边相同的角的集合:{}|360,S k k Z ββα==+?∈.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α.3、弧长公式: R4、扇形面积公式: S=21 lr=21αr 2.§1.2.1、任意角的三角函数1、设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin . 2、设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)_______sin r y =α,________cos rx=α,_____tan x y =α.3、αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余和三角函数线的画法. 4、诱导公式一:()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+kk k (Z k ∈)5、特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式1、平方关系:22sin cos 1αα+=.2、商数关系:sin tan cos ααα=. §1.3、三角函数的诱导公式1、诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=-3、诱导公式四:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=-4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=??-=-5、诱导公式六:._sin _2cos _,cos _2sin ααπααπ-=??+=+ §1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()?ω+=x A y sin 的图象1、能够讲出函数x y sin =的图象和函数()b x A y ++=?ωsin 的图象之间的平移伸缩变换关系.2、对于函数:()()0,0sin >>++=ω?ωA b x A y 有:振幅A ,周期ωπ2=T ,初相?,相位?ω+x ,频率πω21==f .第三章、三角恒等变换两角和与差的正弦、余弦、正切公式cos()cos cos sin sin αβαβαβ-=+cos()cos cos sin sin αβαβαβ+=-sin()αβ+=sin cos cos sin αβαβ+sin()sin cos cos sin αβαβαβ-=-tan()αβ-tan tan 1tan tan αβαβ-=+ . tan()αβ+tan tan 1tan tan αβαβ+=-二倍角的正弦、余弦、正切公式1、_cos sin 2_2sin ααα=,变形:cos α=ααsin 22sin .2、22cos2cossin ααα=-22cos 1α=-212sin α=-变形1:21cos 2cos 2αα+=,变形2:21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=- 1、注意正切化弦、平方降次. 解三角形 1、正弦定理R CcB b A a 2sin sin sin === 2、余弦定理a A bc c b cos 222-+=变形 cosA=bca cb 2222-+b B ac c a cos 2222-+=变形 cosB=acb c a 2222-+c C ab b a cos 2222-+=变形cosC=abc b a 2222-+3、三角形面积公式: S =21absinC=21bcsinA=21acsinB 课本题(必修4)1.(P 11 习题13)若扇形的周长为定值l ,则该扇形的圆心角为多大时,扇形的面积最大?22.(P 23 练习4)已知sin (4π-x )=-51,且0<x<="">623.( P 24 习题9(2))设tan α=-21,计算αααα22cos 2cos sin sin 1--。

三角函数基础练习题

三角函数基础练习题

三角函数基础练习题三角函数的概念三角函数是数学中的一种函数,用来描述三角形中各边和角之间的关系。

在三角函数中,最基本的三个函数是正弦函数、余弦函数和正切函数。

设角α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y),P与原点的距离为r=√(x^2+y^2)>0,则sinα=y/r,cosα=x/r,tanα=y/x。

在各象限中,三角函数的符号不同。

在第一象限中,正弦和余割是正的,余弦和正割是正的,正切和余切是正的。

在第二象限中,正弦和余割是正的,余弦和正割是负的,正切和余切是负的。

在第三象限中,正弦和余割是负的,余弦和正割是负的,正切和余切是正的。

在第四象限中,正弦和余割是负的,余弦和正割是正的,正切和余切是负的。

重要结论:1.当0<x<π/2时,XXX<x<tanx。

2.若ocosx,若π/2<x<π,则sinx<cosx。

3.同角三角函数的基本关系式:sin^2α+cos^2α=1,sinα/cosα=tanα,tanα/cotα=1.4.诱导公式:把±α的三角函数化为α的三角函数,概括为“奇变偶不变,符号看象限”。

课前预:1.将18°、-120°、735°、22°30'、57°18'、-1200°24'转换为弧度制。

2.将7π/5、5π/2、3π/10、5、1.4转换为度数制。

3.特殊角的度数与弧度数对应表。

终边落在坐标轴上的角的集合是{2kπ|k∈Z}。

已知半径为1的扇形面积为kπ,则扇形的中心角为2k。

弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长为4.弓形的弦长为2cm,则弓形的面积为2sin(1/3)cm^2.8、在半径为2的圆中,60度的圆周角所对的弧长是多少?11、弧度制下,度的弧度数为多少?14、下列各角中,终边在第四象限的是哪一个?17、若sinθ=−1/2,tanθ>0,则cosθ等于多少?22、已知扇形的周长为10cm,圆心角为3rad,则该扇形的面积为多少?23、如果α与120°角终边相同,α是第几象限角?24、已知α的终边经过点(3a−9,a+2),且sinα>0,cosα≤0,则a的取值范围是什么?25、sin(−π/6)的值等于多少?26、下列角中终边与330°相同的角是哪一个?函数y=|sinx|+|cosx|+|tanx|的值域是什么?1.删除第一段,因为没有明确的内容和题目。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。

下面我们来详细归纳一下三角函数的知识点和常见题型。

一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。

按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。

2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

用弧度作为单位来度量角的制度叫做弧度制。

弧度与角度的换算公式为:180°=π 弧度。

3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。

4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。

二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。

例如:sin(π +α) =sinα,cos(π α) =cosα 等。

四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。

性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。

2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。

性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。

专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳一、三角函数的基本概念三角函数是数学中重要的函数类型,它们在几何、物理等领域有着广泛的应用。

首先,角的概念是基础。

我们把平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形叫做角。

角可以用弧度制或角度制来度量。

弧度制是用弧长与半径之比来度量角的大小,公式为:弧长\(l =r\theta\),其中\(r\)为半径,\(\theta\)为圆心角的弧度数。

接下来是三角函数的定义。

在平面直角坐标系中,设点\(P(x,y)\)是角\(\alpha\)终边上非原点的任意一点,\(r =\sqrt{x^2 +y^2}\),则有正弦函数\(\sin\alpha =\frac{y}{r}\),余弦函数\(\cos\alpha =\frac{x}{r}\),正切函数\(\tan\alpha =\frac{y}{x}(x \neq 0)\)。

二、三角函数的基本性质1、周期性正弦函数和余弦函数的周期都是\(2\pi\),正切函数的周期是\(\pi\)。

2、奇偶性正弦函数是奇函数,即\(\sin(\alpha) =\sin\alpha\);余弦函数是偶函数,即\(\cos(\alpha) =\cos\alpha\)。

3、单调性正弦函数在\(\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi(k \in Z)\)上单调递增,在\(\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi(k \in Z)\)上单调递减;余弦函数在\(2k\pi, \pi +2k\pi(k \in Z)\)上单调递减,在\(\pi + 2k\pi, 2\pi + 2k\pi(k \in Z)\)上单调递增;正切函数在\((\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)(k \in Z)\)上单调递增。

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数的定义专题关键词: 三角函数的定义 终边 弧长公式 扇形面积 同角的基本关系 学习目标: 理解角的概念,掌握同角三角函数基本关系☆ 对角的概念的理解:(1)无界性 R ∈α 或 ),(+∞-∞ (2)周期性(3)终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Zπαπ=+∈;α终边在坐标轴上的角可表示为:,2k k Zπα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。

(答:Zk k ∈+,32ππ)☆ 角与角的位置关系的判断 (1) 终边相同的角 (2) 对称关系的角(3) 满足一些常见关系式的两角例如:若α是第二象限角,则2α是第_____象限角 :一、三)☆ 弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例如:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

(答:22cm )☆ 三角函数的定义:高中阶段对三角函数的定义与初中的定义从本质上讲不同。

但既有联系,又有区别。

定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的概念及习题
角的概念的推广(基础班)
知识点:1 正角:按逆时针方向旋转形成的角叫做正角,
负角:按顺时针方向旋转的角叫负角
象限角:第一象限{a|k·360o<a<a<="" 第二象限{a|+k·360o="">
第三象限{a|180o +k·360o <a<="">
+k·2π<a<="" p="">
例1、下列角中终边与330°相同的角是()
A.30° B.-30° C.630° D.-630°
例2、-1120°角所在象限是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
例3、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是()
A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-
5×360°
例4、终边在第二象限的角的集合可以表示为:()
A.{α∣90°<α<180°}
B.{α∣90°+k·180°<α<180°+k·180°,k∈Z}
C.{α∣-270°+k·180°<α<-180°+k·180°,k∈Z}
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
例5、已知角是第二象限角,求:(1)角是第几象限的角;(2)角终边的位置。

例6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()
A.B=A∩C B.B∪C=C C.AC D.A=B=C
例7设集合, ,求,.
例8、已知角2α的终边在x轴的上方,那么α是()
A.第一象限角 B.第一、二象限角 C.第一、三象限角 D.第一、
四象限角
例9、若是第四象限的角,则是.
A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角
练习题
1、写出-720°到720°之间与-1068°终边相同的角的集合
___________________.
2、与1991°终边相同的最小正角是_________,绝对值最小的角是
_______________.
3、若角α的终边为第二象限的角平分线,则α的集合为
______________________.
4、在0°到360°范围内,与角-60°的终边在同一条直线上的角为.
5、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:
(1);(2).
6、求,使与角的终边相同,且.
弧度制
角度与弧度之间的转化
3600=2πrad;1800=πrad;
知识点3 弧长公式及扇形面积公式
弧长公式:L= (r是扇形的半径,n是圆心角的度数,L是弧长)L=|a|r(r是扇形的半径,a为弧度数,L是弧长)
扇形面积:S= S=Lr
例1、下列各角中与240°角终边相同的角为()
A. B.- C.- D.
例2、若角α终边在第二象限,则π-α所在的象限是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
例3、把-1125°化成α+2kπ(0≤α<2π,k∈Z)的形式是()
A.--6πB.-6πC.--8πD.-8π
例4、已知集合M ={x∣x = ,∈Z},N ={x∣x = ,k∈Z},则
()A.集合M是集合N的真子集 B.集合N是集合M的真子集C.M = N D.集合M与集合N之间没有包含关系
例5、半径为cm,中心角为120o的弧长
为()
A. B. C. D.
例6、已知一个扇形的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积.
例7 、△AB C三个顶点将其外接圆分成三段弧弧长之比为1∶2∶3,求△ABC的外接圆半径与内切圆半径之比.
(直角三角形内切圆半径的处理方法:用面积相等的方法处理)
变式训练1、角α的终边落在区间(-3π,-π)内,则角α所在象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限变式训练2、若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是()
A.4 cm2B.2cm2 C.4πcm2 D.2πcm2
变式训练3、集合{α∣α= -,k∈Z}∩{α∣-π<α<π}为()
A.{-,}B.{-,}C.{-, ,-,}D.{,}
变式训练4 将下列弧度转化为角度:
(1)=°;(2)-=°′;(3)=°;
变式训练5 将下列角度转化为弧度:
(1)36°=(rad);(2)-105°=(rad);(3)37°30′=(rad);
变式训练6、将分针拨快10分钟,则分针转过的弧度数是.
变式训练7、已知是第二象限角,且则的集合是.
练习题
1、将下列各角从弧度化成角度(1)(2)2.1
2、已知=1690o,(1)把表示成的形式,其中k∈Z,∈.(2)求,使与的终边相同,且.
三角函数定义
知识点1:y=sina取正负值时的角度范围,弄清该函数的定义
y=cosa取正负值时的角度范围,弄清该函数的定义
y=tana取正负值时的角度范围,弄清该函数的定义
例1 已知角a的顶点为坐标原点,始边为x轴的正半轴,若P(4,y)是角a终边上一点,且sina=-,则y的值为多少?
例2 知角α的终边过点P(-1,2),cosα的值为()
A.- B.- C. D.
例3 是第四象限角,则下列数值中一定是正值的是()
A.sinαB.cosαC.tanαD.cotα
例4已知角α的终边过点P(4a,-3a)(a<0),则2sinα+cos α的值是() A. B.- C.0 D.与a的取值有关
例5α是第二象限角,P(x,)为其终边上一点,且cosα=x,则sinα的值为()
A. B. C. D.-
例6 数的定义域是()
A., B.,
C., D.[2kπ,(2k+1)π],
例7若θ是第三象限角,且,则
是()
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
例8已知sinα=,且α是第二象限角,那么tanα的值
为()
A. B. C. D.
例9 知点P()在第三象限,则角
在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
练习题
1、已知sinαtanα≥0,则α的取值集合为.
3、已知角θ的终边在直线y = x上,则sinθ=;=.
4、设θ∈(0,2π),点P(sinθ,cos2θ)在第三象限,则角θ的范围是.
5、求角的正弦、余弦和正切值.</a
</a
</a。

相关文档
最新文档