2020-2021上海宝钢新世纪学校九年级数学上期中试卷(带答案)

合集下载

2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每题4分,共40分)1.(4分)下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2B.y=3(x﹣1)2C.y=3(x﹣1)2+2D.y=2x22.(4分)下列四组线段中,不是成比例线段的是()A.a=3 b=6 c=2 d=4B.a=1 b=√2c=√6d=2√3C.a=4 b=6 c=5 d=10D.a=2 b=√5c=√15d=2√33.(4分)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线的开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.当x≥2时,y随x增大而增大4.(4分)如图,反比例函数y=kx的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1B.x≥2C.x<0或0<x≤1D.x<0或x≥2 5.(4分)如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A .①②④B .①③④C .②③④D .①②③ 6.(4分)如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC的面积为( )A .2B .4C .5D .87.(4分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( ) A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 8.(4分)已知抛物线y =12(x ﹣1)2+k 上有三点A (﹣2,y 1),B (﹣1,y 2),C (2,y 3),则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 3>y 1D .y 2>y 1>y 3 9.(4分)a ≠0,函数y =a x 与y =﹣ax 2+a 在同一直角坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图所示,已知点E,F分别是△ABC中AC、AB边的中点,BE,CF相交于点G,S△EFG=1,则四边形BCEF的面积是()A.7B.8C.9D.10二、填空题(每题5分,共20分)11.(5分)反比例函数y=m−1x的图象在第一、三象限,则m的取值范围是.12.(5分)赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=−125x2,当水面离桥拱顶的高度DO是4米时,这时水面宽度AB为米.13.(5分)如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.14.(5分)如图,点A的坐标为(1,1),点C是线段OA上的一个动点(不运动至O,A 两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,若以B,E,F为顶点的三角形与△OFE相似,B 点的坐标是.15.(8分)已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.16.(8分)装卸工人往一辆大型运货车上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图:(1)求y与x之间的函数关系式;(2)货车到达目的地后开始卸货,如果以1.5t/min的速度卸货,需要多长时间才能卸完货物?四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图所示,小明从路灯下向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高是1.6米,那么路灯离地面的高度AB是多少米?18.(8分)如图,已知反比例函数y=6x的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)直接写出不等式6x≥kx+b的解集.19.(10分)如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)图中共有对相似而不全等的三角形;(2)选取其中一对进行证明.20.(10分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)(1)求抛物线的解析式和顶点E坐标;(2)该抛物线有一点D,使得S△DBC=S△EBC,求点D的坐标.六、(本题满分12分)21.(12分)如图是3×5的网格,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点的图形叫做格点图.(1)图1中的格点△ABC与△DEF相似吗?请说明理由;(2)请在图2中选择适当的位似中心作△A1B1C1与△ABC位似,且相似比不为1;(3)请在图3中画一个格点△A2B2C2与△ABC相似(注意:△A2B2C2与△ABC、△DEF、△A1B1C1都不全等).七、(本题满分12分)22.(12分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?八、(本题满分14分)23.(14分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE 于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.。

2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每小题只有一个正确选项,每小题3分,共18分)1.(3分)如下图所示,下列四组图形中,左边图形与右边图形成中心对称的是()A.B.C.D.2.(3分)如图,A、B、C三点在圆O上,∠B=36°,则∠A O C的度数为()A.36°B.54°C.72°D.90°3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)如图,⊙O的直径为10,弦AB的长为8,点P在AP上运动,则OP的最小值是()A.2B.3C.4D.55.(3分)已知函数y=x2+bx+c的图象与x轴只有一个交点,(x,2017)、(x,2017)是12该函数图象上的两个点,则当x=122时,函数值y=(A.﹣2017B.c C.0)D.c﹣20176.(3分)下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x<x<x<x<x<x<x,根据表中所提供的信息,以下判断正确的是()①a 1234567>0;②9<m<16;③k≤9;④b2≤4a(c﹣k)x… (x1x2)mx3x4kx5x6mx7……y169916 A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题3分,共18分)7.(3分)函数y=√3−中,自变量x的取值范围是.8.(3分)如图,将正三角形绕其对称中心O旋转后,恰好能与原来的正三角形重合,那么旋转的角度至少是度.9.(3分)已知一元二次方程x2﹣4x+2=0的两根分别是x,x,那么(1+x)(1+x)的值1212是.10.(3分)如图,将△AB C绕点A逆时针方向旋转到△A DE的位置,点B落在AC边上的点D处,设旋转角为α(0°<α<90°).若∠B=125°,∠E=30°,则∠α=°.11.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为12.(3分)如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:.①二次三项式ax2++的最大值为4;②4+2+<0;③一元二次方程2++=1的bx c a b c ax bx c 两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、本大题共6小题,每小题6分,共30分)13.x2﹣2x﹣15=0.̂̂14.(6分)如图,在⊙O中,=A40D,∠=°,求∠的度数.15.(6分)如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽1度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池41面积的,求道路的宽.616.(6分)如图,将△ABC绕点A逆时针旋转得到△AB′C′.若点B′落到BC边上,∠B=50°.求∠CB′C′的度数.17.(6分)已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和B(3,﹣9).(1)求该二次函数的解析式;(2)填空:该抛物线的对称轴是;顶点坐标是;当x=时,y随x的增大而减小.18.(6分)如图,△ABC是⊙O的内接三角形,∠BA D是它的个外角,OP⊥B C交⊙O于点P,仅用无刻度的直尺分别按下列要求画图.(1)在图1中,画出△ABC的角平分线AF;(2)在图2中,画出△ABC的外角∠BA D的角平分线A G.四、(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程ax2﹣(a+2)x+2=0.(1)不解方程,判别方程的根的情况;(2)方程有两个不相等的正整数根时,求整数a的值.20.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且O D∥B C,O D与AC 交于点E.(1)若∠B=70°,求∠CA D的度数;(2)若AB=4,A C=3,求DE的长.21.(8分)如图,△OB D中,O D=B D,△OB D绕点O逆时针旋转一定角度后得到△OA C,此时B,D,C三点正好在一条直线上,且点D是B C的中点.(1)求∠C O D度数;(2)求证:四边形O D A C是菱形.五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).。

2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.(3分)⊙O的半径为4,圆心O到直线L的距离为3,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定3.(3分)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°4.(3分)下列图形中,旋转60°后可以和原图形重合的是()A.正六边形B.正方形C.正五边形D.正三角形5.(3分)如图,△ABC内接于⊙O,若∠ACB=50°,则∠AOB的度数是()A.100°B.90°C.80°D.130°6.(3分)下列关于抛物线y=﹣4x2﹣2x+1的描述不正确的是()A.开口向下B.当x≤−14时,y随x的增大而增大C.与y轴交点是(0,1)D.当x=﹣1时,y=07.(3分)设x1,x2是方程2x2﹣3x+1=0的两根,则x1+x2=()A.﹣3B.1C.−32D.328.(3分)若函数y=x2﹣4x+c的最小值是4,则c=()A.4B.8C.2D.﹣49.(3分)下列命题是正确的有()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.三角形的内心到三角形各顶点的距离都相等C.过同一平面内的任意三点有且仅有一个圆D.半径相等的两个半圆是等弧10.(3分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)要用半径为1的圆形铁片截出一个最大的正方形,这个正方形的边长为.12.(3分)点A(a,5)与点B(8,b)关于原点对称,则a=.13.(3分)抛物线y=2x2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为.14.(3分)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD =58°,则∠BCD的度数是.15.(3分)如图,抛物线y=﹣x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2﹣2时,y0(填“>”“=”或“<”号).16.(3分)已知⊙O的半径为1cm,弦AB=√3cm,AC=√2cm,则∠BAC=.三、解答题(共9小题,满分102分)17.(8分)在10×10正方形网格中,每个小正方形的边长均为1个单位.(1)把△ABC,绕着点C逆时针旋转90°,得到△A1B1C,请画出△A1B1C;(2)选择点C为对称中心,请画出与△ABC关于点C对称的△A2B2C.(不要求写出作法)18.(10分)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)若x+m<x2+bx+c.直接写出x的取值范围.19.(10分)已知二次函数y=x2﹣mx+m﹣2:(1)求证:不论m为任何实数,此二次函数的图象与x轴都有两个交点;(2)当二次函数的图象经过点(3,6)时,确定m的值,并写出此二次函数与坐标轴的交点坐标..20.(12分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=30°,求∠D的度数.21.(10分)如图,△ABC中,∠C=90°,⊙O分别切AB、BC、AC于D、E、F.(1)请在图中画出⊙O(尺规作图,并且保留作图痕迹);(2)若AD=5cm,BD=3cm,求出⊙O的半径.22.(12分)某商品的进价为每件40元,售价为每件50元,每个月可卖出200件.如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于进价的140%).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价m定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价m定为多少元时,每个月的利润恰为2160元?根据以上结论,请你直接写出售价m在什么范围时,每个月的利润不低于2160元?23.(12分)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长.24.(14分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A (1,0),B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式;(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB =90°?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(14分)已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PB、P A、PC.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ ,求证:点P 、C 、Q 三点在同一直线上;(2)如图②,若∠BAC =60°,求PB+PC PA 的值;(3)若∠BAC =120°时,(2)中的结论是否成立?若是,请证明.若不是,请探究它们又有何数量关系.。

2020-2021学年九年级数学上学期期中考试含答案

2020-2021学年九年级数学上学期期中考试含答案

一、选择题(每小题3分,共21分) 每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得4分,答错、不答或答案超过一个的一律得0分. 1.9的平方根是( ) A.3± B. 3 C. ±3 D. 32. 下列计算正确的是( )A .234265+= B .3412= C .2733÷=D .24±=3.下列方程是一元二次方程的是( ) A .322=-+y x x B .31232=-x x C .03)13(22=--x D .x x 382=- 4.下列三角形一定相似的是( )A .两个等边三角形B .两个直角三角形C .有一个角为30°的两个等腰三角形D .两个等腰三角形 5.在梯形ABCD 中,AD ∥BC.AC,BD 相交于O ,如果AD :BC=1:3,那么下列结论正确的是( )A .S △COD =9S △AODB .S △ABC =9S △ACD C .S △BOC =9S △AOD D .S △DBC =9S △AOD6.如果关于x 的一元二次方程01)12(22=++-x k x k 有两个不相等的实数根,那么k 的取值范围是( ) A .41->k B .041≠->k k 且 C .41-<kD .041≠-≥k k 且 7.实数a 、b 在数轴上的位置如图所示.化简222()a b a b -+-的结果是( )A BCD OA. a 2-B. b 2-C. b a 22--D. b a 22-+二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答8.一元二次方程05322=--x x 的二次项是 ,一次项系数是 . 9.若最简二次根式2+a 与5是同类二次根式,则a = .10.若0234x y z ==≠,则23x y z+= . 11.两个相似三角形对应高之比为1:2,那么它们对应中线之比为 .12.一元二次方程062=-+kx x 的一个根是2,则另一个根是_ ,k= .13. 如果1x =-1、2x =3是一元二次方程的两个根,那么这个一元二次方程可以是 .14.某经济开发区今年一月份工业产值达50亿元,第一季度总产值达175亿元,问二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程为 . 15.如图,点C 、D 在线段AB 上,△PCD 是等边三角形.当△ACP ∽△PDB 时,∠APB= °. 16.若411+-+-=x x y ,则=+y x .17. 在△ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线,简记为P(x l ),(x 为自然数).第15题(1).如图①,∠A=90°,∠B=∠C ,当BP=2PA 时,P (1l )、P (2l )都是过点P 的△ABC 的相似线(其中1l ⊥BC ,2l ∥AC ),此外还有 条. (2).如图②,∠C=90°,∠B=30°,当=BABP时,P(x l )截得的三角形面积为△ABC 面积的41.三、解答题(共89分)在答题卡上相应题目的答题区域内作答 18.(9分)计算:19.(9分)计算:10537148⨯-÷+20.(9分)解方程: 2630x x -+=21.(9分)如图,在△ABC 中,DE ∥BC ,分别交BA 、CA 的延长线于点D 、E.求证:△ABC ∽△ADE.EDCBA()1242832-⨯+÷--+-π22. (9分)将进货价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个. 若设这种商品每个涨价x元,(1)用含x的代数式表示:①每个商品的实际利润是元,②实际的销售量是个;(2)为了获得8000元的利润,售价应定为多少?23.(9分)如图13,四边形ABCD、CDEF、EFGH都是边长为2的正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.24.(9分)已知关于x的方程22-++++=.x k x k k(23)320(1)判断方程的实数根的情况;(2)当Rt△ABC的斜边长5 a,且两条直角边b和c恰好是这个方程的两个根时,求:k的值及△ABC的周长.25.(12分)如图,在△ABC中,∠C=900,BC = 7cm,AC = 24cm,P 点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,设经过了x秒,请解答下面的问题,并写出探索的主要过程:(1)PC= cm,QC= cm(用含x的代数式表示);(2)经过多少时间,△PCQ的面积为15cm2(3)经过多少时间,△PCQ的面积最大,最大面积是多少?26.(14分)如图,平面直角坐标系中, 直线AB 解析式为:y=33-x+3.直线与x 轴,y 轴分别交 于A 、B 两点.(1)写出线段OA 、OB 的长度,OA= ,OB= . (2)若点C 是AB 的中点,过点C 作CD ⊥x 轴于点D ,E,F 分别为BC ,OD 的中点,求点E 的坐标;(3)在第一象限内是否存在点P ,使得以P ,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.填空:1.(5分)计算:=-3233.2.(5分)如图,在△ABC中,BC=2,则中位线DE= .以下作为草稿纸三、解答题(共89分)18.(本小题9分)解:原式=2+1-2+2 ……………………………………………(8分)=3 ………………………………………………………………(9分)19.(本小题9分)解:原式=22-+……………………………………………(7分)2152=212- ………………………………………………………(9分)20.(本小题9分)解:6962=+-x x6)3(2=-x ………………………………………………… (3分)63±=-x ………………………………………………(6分)631+=x ,632-=x ………………………………(9分)21.(本小题9分) (1)证明:∵DE ∥BC∴B D ∠=∠,A E ∠=∠…………(6分) ∴ADE ∆∽ABC ∆…………………………(9分)22.(本小题9分)解:(1)①每个商品的实际利润是 (10+x )元,②实际的销售量是 (500-10x) 个;…(2分)(2)依题意得:8000)10500)(10(=-+x x ………………………(4分)0300402=+-x x ………………………(5分)解得:101=x ,302=x ………………………(7分)经检验,:101=x 、302=x 都符合题意∴601050=+元或803050=+元………………………(8分)答:为了获得8000元的利润,售价应定为60元或80元. ……………………(9分)EDCBA8124912422---++=k k k k1=∴0>∆∴方程的有两个不相等的实数根. ………………………………(3分)(2)依题意得⎩⎨⎧++=+=+23322k k bc k c b ……………………………(4分)∵在ABC Rt ∆中 222a c b =+∴()2522=-+bc c b ……………………………(5分) ∴()()252323222=++-+k k k ∴01032=-+k k解得:5-=k 或2=k …………………………………………(7分) 经检验,5-=k 时,7-=+c b 不合题意,舍去;2=k ,7=+c b ,符合题意E F∴ABC Rt ∆的周长为12=++c b a …………………………(9分)25.(本小题12分)解:(1)(1)PC=)(x 2-7cm ,QC=x 5cm …………(2分) (2)依题意得:1552-721=•x x )(…………(3分)整理得:06722=+-x x解得:231=x ,22=x …………(5分)经检验,231=x ,22=x 符合题意答:经过23秒或2秒,△PCQ 的面积为15cm2 …………(7分) (3)设△PCQ 的面积为S则x x S 52-721•=)( 16245475-2+-=)(x ……………………………………(10分) ∵270<≤x ……………………………………(11分)∴当47=x 时,△PCQ 的面积最大,最大面积是16245………………(12分)26.(本小题14分)解:(1)OA= 3 , OB=3 …………(2分)(2)证得:△ACD ∽△ABO …………(4分)CD=21BO=321,AD=OD=21AO=23…………(6分)∵E,F 分别为BC ,OD 的中点,CD//BO∴EF=21(BO+CO )=21(3+321)=43…(7分)OF=21OD=43 ∴E(43,43) …………(8分)(3)当∠OBP =90°时,如图①若△BOP ∽△OBA ,则OB BO OA BP =, ∵OB=3,OA=3 ∴BP=3∴1P (3,3). …………………(10分) ②若△BPO ∽△OBA ,则OA BOOB BP =,∵OB=3,OA=3 ∴BP=1∴2P (1,3). …………………(12分) 当∠OPB =90°时, 如图当∠OPB =90°时,点P 在x 轴上,不符合题意.综上所述,符合条件的点有四个,分别是: 1P (3,3),2P (1,3),3P (43,433),4P (43,43).四、附加题(共10分,每小题5分)1. 3;2. 1.。

2020-2021学年九年级上学期期中考试数学试题附答案

2020-2021学年九年级上学期期中考试数学试题附答案

友情提示:抛物线)0(2≠++=a c bx ax y 的对称轴是直线abx2-=,顶点坐标是)44,2(2ab ac a b -- 一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确的选项,请在答题卷的相应位置填写) 1.下列标志既是轴对称图形又是中心对称图形的是( )2.一元二次方程022=--x x 的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )无实数根(D )不能确定3.把抛物线y=-x2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( ) (A )2(1)3y x =--- (B )2(1)3y x =-+- (C )2(1)3y x =--+(D )2(1)3y x =-++4.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( ) (A) AD=AB (B) ∠BOC=2∠D (C)∠D +∠BOC=90° (D)ODC BA第4题图(A)(B) (C) (D)∠D=∠B5.某公司2007年缴税60万元,2009年缴税80万元,设该公司这两年缴税的年平均增长率为x,则得到方程()(A) 60+2x=80 (B) 60(x+1)=80 (C) 60x2=80 (D) 60(x+1)2=806.用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于()(A)9cm (B)6cm (C)4cm (D)3cm 7.若022=4+xx的值是()-42-2+xx,则3(A)4 (B)5 (C)6 (D)88.如图,把△ABC绕点C顺时针旋转某个角度θ后得到△C B A'',若︒A,=∠30∠701,则旋转角θ等于()=︒(A)30°(B)50°(C)40°(D)100°9.二次函数c+=2()0≠a的图象如图所示,下列结论正确的是axbxy+()第8题图第10题图(A)a<0 (B)042<b(C)当-1<x<3时,y>0 (D)-ac-12=ab10.如图,在Rt △ABC 中,∠ABC=90°,AB=8cm ,BC=6cm ,分别以AC 21的长为半径作圆,将Rt △ABC 截去两个扇形,则余下阴影部分的面积为( )cm2 (A)π425 (B )π4524- (C )π62524- (D)π42524-二、填空题(本大题共8小题,每小题3分,共计24分,请将答案填入大题卷的相应位置)11.请你写出一个有一根为1的一元二次方程____________________12.二次函数y=21(x -1)2+3,当x 时,函数值y 随x 的增大而增大。

2020-2021上海市初三数学上期中模拟试题含答案

2020-2021上海市初三数学上期中模拟试题含答案

2020-2021上海市初三数学上期中模拟试题含答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 2.方程x 2+x-12=0的两个根为( ) A .x 1=-2,x 2=6 B .x 1=-6,x 2=2 C .x 1=-3,x 2=4D .x 1=-4,x 2=3 3.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°4.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( ) A .16B .29C .13D .235.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是 180° D .抛一枚硬币,落地后正面朝上6.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠37.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .12B .1∶2C 32D .138.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .199.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( ) A .120B .19100C .14D .以上都不对11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④12.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .2二、填空题13.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.写出一个二次函数的解析式,且它的图像开口向下,顶点在y 轴上______________ 16.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__.17.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.18.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB =3 cm ,则此光盘的直径是________ cm .19.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm². 20.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题21.小明和小亮利用三张卡片做游戏,卡片上分别写有A ,B ,B .这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由. 22.如图,ABO V 与CDO V 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE .求证:FD=BE .23.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件. (1)若涨价x 元,则每天的销量为____________件(用含x 的代数式表示); (2)要使每天获得700元的利润,请你帮忙确定售价. 24.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.25.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元(0)x >时,平均每天可盈利y 元.()1写出y 与x 的函数关系式;()2当该专卖店每件童装降价多少元时,平均每天盈利400元? ()3该专卖店要想平均每天盈利600元,可能吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.考点:解一元二次方程-因式分解法3.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理4.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.5.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.B解析:B 【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B. 考点:函数图像与x 轴交点的特点.7.B解析:B 【解析】 【分析】 【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC , ∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C , ∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′, 则△PBP ′是等腰直角三角形, ∴∠BP ′P =45°,PP ′=2PB ,∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°, ∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x ,∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2. 故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P′A、P′C以及P′B长度的2倍转化到同一个直角三角形中是解题的关键.8.A解析:A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C解析:C 【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=, 故选C . 点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.11.D解析:D 【解析】 【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 故选:D. 【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-, 根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.二、填空题13.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线5=,∴S 侧=12×2πr×5=12×2π×3×5=15π, 故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.14.【解析】【分析】【详解】∵将△ABC 绕点B 顺时针旋转60°得到△BDE ∴△ABC ≌△BDE ∠CBD=60°∴BD=BC=12cm ∴△BCD 为等边三角形∴CD=BC=BD=12cm 在Rt △ACB 中AB解析:【解析】 【分析】 【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE , ∴△ABC ≌△BDE ,∠CBD=60°, ∴BD=BC=12cm , ∴△BCD 为等边三角形, ∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ), 故答案为42. 考点:旋转的性质.15.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】 【分析】由题意可知:写出的函数解析式满足0a <、02ba-=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++ ∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a=-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .16.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【解析】【分析】先根据∠AOC的度数和∠BOC的度数可得∠AOB的度数再根据△AOD中AO=DO可得∠A的度数进而得出△ABO中∠B的度数可得∠C的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.18.【解析】【分析】先画图根据题意求出∠OAB=60°再根据直角三角形的性质和勾股定理即可求得结果【详解】解:∵∠CAD=60°∴∠CAB=120°∵AB和AC与⊙O相切∴∠OAB=∠OAC=∠CAB=【解析】【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理即可求得结果.【详解】解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC=∠12CAB=60°,∴∠AOB=30°,∵AB=3cm,∴OA=6cm,∴2233cmOB OA AB=-=所以直径为2OB=63cm故答案为:63.【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.19.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R圆锥侧面展开图为解析:2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π,∴圆锥的侧面积=12×2π×2=2π.故答案为2π.【点睛】本题考查了圆锥的侧面积公式:S=12l•R.圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径.20.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:1 4【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164,故答案为:14.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题21.这个游戏对双方不公平,理由见解析.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:59;∴小明胜的概率为59,小亮胜的概率为49,∵59≠49,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【点睛】本题考查了树状图法求概率,判断游戏的公平性.22.详见解析【解析】【分析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可.【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD ,OA=OC .∵AF=CE ,∴OF=OE .∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE .23.(1)200-20x ;(2)15元.【解析】试题分析:(1)如果设每件商品提高x 元,即可用x 表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x 的方程,进而求出未知数的值. 试题解析:解:(1)200-20x ;(2)根据题意,得 (10-8+x )(200-20x )=700,整理得 x 2-8x +15=0,解得 x 1=5,x 2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x =5.所以售价为10+5=15(元),答:售价为15元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.24.(1)()()2060A B -,,,,26x -剟;(2)m n ,的值分别为72,1. 【解析】【分析】 (1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围;(2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【详解】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,, ∴()()2060A B -,,,. 由函数图象得,当0y …时,26x -剟. (2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =, ∴()()217121622m =-⨯-+⨯-+=, ∴m n ,的值分别为712,. 【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.25.(1)2220400y x x =-++;(2)10元:(3)不可能,理由见解析【解析】【分析】 ()1根据总利润=每件利润⨯销售数量,可得y 与x 的函数关系式;()2根据()1中的函数关系列方程,解方程即可求解;()3根据()1中相等关系列方程,判断方程有无实数根即可得.【详解】解:()1根据题意得,y 与x 的函数关系式为()()22026040220400y x x x x =+--=-++; ()2当400y =时,2400220400x x =-++,解得110x =,20(x =不合题意舍去).答:当该专卖店每件童装降价10元时,平均每天盈利400元;()3该专卖店不可能平均每天盈利600元.当600y =时,2600220400x x =-++,整理得2101000x x -+=,2(10)411003000=--⨯⨯=-<Q V ,方程没有实数根,答:该专卖店不可能平均每天盈利600元.【点睛】本题主要考查二次函数的应用、一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.。

九上期中参考答案.

九上期中参考答案.
九年级数学答案 第 1 页(共 2 页)
23、①在图 1 中按要求完成作图 ┄1 分 ②△MAC 的形状为 等腰直角三角形 ,┄2 分 ③∠ACB= 45° ;┄3 分
(2)证明:延长 CB 至 M 使得 BM=CD,连接 AM 依题意得,∠ABM=∠D,AB=AD,∴△CAD≌△MAB (SAS) ┄4 分 可得∠CAM=∠BAD=60°,CA=MA,∴△ACM 为等边三角形 ∴CA=CM=CB+BM=CB+CD ┄6 分
19、(共 8 分,正确设出未知数并列对方程给 5 分,结果正确 2 分,未写出 x2=-2.2 扣去 1 分,写答 1 分)
解:设资金年平均增长率为 x,则 30(1+x)²=43.2 所以 x1=0.2
x2=-2.2(舍去)
答:资金年平均增长率为 20%.
20、(共 8 分,2 分+3 分+3 分)
∵∠DBE+∠DBC=180°,∴ ∠DAE+∠DBC=180°. ┄10 分
(※注:本题证法不唯一,延长 CB 至 N 使得 BN=CD,使△ADC≌△ABN,或过 A 作 CB、CD 的垂线段均可完成本题证明)
24、(共 12 分,第 1 问 3 分,第 2 问 4 分,每个答案 2 分,第 3 问 5 分) (1)A(-3,0)、B(1,0)、C(0,-3) ┄3 分 (2)解:当点 D 位于第一象限时,如图,令 AD1 交 y 轴于 M,由(1)知,OA=OC=3,
∴CD=CE,∠BCD=∠BCA-∠ACD=∠DCE-∠ACD=∠ACE
△BCD≌△ACE,DE=DA+AE=BD+AD=8,CD=DE=8 ┄6 分
作 CM⊥ED 于 M,,在 Rt△CDM 中,DM= CD= ,CM=

2020年~2021年九年级第一学期期中考试数学试卷及答案

2020年~2021年九年级第一学期期中考试数学试卷及答案

2020年~2021年九年级第一学期期中考试数学试卷一 选择题(1~10小题各3分;1~16小题各2分,共42分)1.下列图形中,不是中心对称图形的是( )2.若关于x 的一元二次方程(3-a)x 2+21x+a 2-9=0的一个根是x=0,则a 的值是( )A.0 B.3 C.-3 D.3或-33.下列有关圆的说法中,不正确的是( )A.圆既是轴对称图形又是中心对称图形B.三角形内切圆的圆心是三角形三条高线的交点C.半圆是一条弧D.在圆中,900的圆周角所对的弦是直径4.已知A(a,1)与B(-5,b)关于原点对称,则a b 的值为( ) A.51 B. -51 C.-5 D.55.已知在△ABC 中,∠C=1150,以AB 为直径作⊙O ,则点C 与⊙O 的位置关系是( )A.点C 在⊙O 上B.点C 在⊙O 外C.点C 在⊙O 内D.无法确定6.在一个不透明袋子中有除颜色外完全相同的5个黑球和3个白球,从袋子中随机摸出4个球,则下列说法中不正确的是( ) A.4个球都是白球是不可能事件 B.4个球2黑2白是随机事件 C.4个球都是黑球是必然事件 D.4个球至少有1个黑球是确定事件7.已知函数y=-x 2+bx+c ,其中b>0,c<0,此函数的图象可以是( )8.在一个不透明的箱子中装有24个红球和若干个白球,它们除颜色外其他都相同,甲每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到白球的频率稳定在0.25左右,则箱子中白球的个数约为( )A.6B.8C.72D.759.已知关于x 的一元二次方程ax 2+3x-3=0有实数根,则a 的取值范围是( )A.a <-43B.a≤-43C.a >-43且a≠0D. a ≥-43且a≠0 10.如图1,在△ABC 中,∠ACB=40°,将△ABC 绕点A 逆时针旋转一定角度后得到△AB'C',且C'B'的延长线经过点C ,则旋转角的度数为( ) A.100° B.110° C.120° D.无法确定11.某鞋店销售一种进价为每双40元的鞋,若售价为每双50元,则一个月可售出500双;若售价在每双50元的基础上每涨价1元,则月销售量就减少10双,要使销售该种鞋的月利润最大,该种鞋的售价应为每双( )A.50元B.60元C.70元D.80元12.如图2,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,连接BC 、CD 、BD,若∠C=1220,则∠ABD 的度数为( )A.22°B.28°C.30°D.32°13.如图3,在矩形ABCD 中,BC=2,将边BC 绕点C 按顺时针方向旋转一定角度,点B 刚好落在边AD 的中点E 上,则点B 的运动轨迹长为( ) A.3π B. 32π C.π D.无法确定 14.在平面直角坐标系中,将抛物线y=x 2-(m-1)x+m(m>1)沿y 轴向下平移3个单位长度,则平移后得到的抛物线的顶点一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限15.某小区准备在一块长为34m 、宽为30m 的矩形草坪内修建四条宽度相等,且与各边垂直的小路,这四条小路围成的中间空白部分恰好是一个正方形,如图4所示,若所围成的正方形的边长是小路宽度的8倍,且四条小路所占面积为192m 2,则小路的宽度为( ) A.1.25m B.1.5m C. 2m D.2.25m16.对于二次函数y=(x-p)2-p+1,下列说法:①该二次函数图象的顶点在直线y=-x+1上;②当P<1时,该二次函数图象与x 轴有交点;③当1<x<4时,y 随x 的增大而增大,则p≤1;④点A(x 1,y 1)与点B(x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2p ,则y 1>y 2,其中正确的是( ) A.①③ B.②④ C.①②③ D.①③④二填空题(17~18小题各3分;19小题有3个空,每空2分,共12分)17.方程x2=-3x的根是 .18.如图5,抛物线y=ax2+c与直线y=mx+n交于A(-1,P),B(3,q)两点,则不等式ax2-mx+c>n的解集是 .19.如图6,⊙O的半径为6,A,C是⊙O上的定点,B是⊙O上的动点,∠ABC=30°,AD⊥BC于点D,连接OD,E 是AC的中点,连接DE.(1)以AC为边可以作圆的内接正边形;(2)阴影部分的面积是 . (3)OD的最小值是 .三解答题(7个大题,共66分)20.(8分)用适当的方法解下列方程 (1)x2-16x=17 (2)3x2+5x-2=021.(8分)如图,在正方形网格中,点A,B都在格点上,点A,B之间的一段弧记做︵AB,△CDE的顶点也都在格点上.(1)求作︵AB的圆心,记做点O;(2)将△CDE绕(1)中作出的点O按逆时针方向旋转90°,作出旋转后的图形△C1D1E1.22.(9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某市一家“大学生自主创业”的快递公司,今年3月份与5月份完成投递的快递总件数分别是10万件和12.1万件,现假设该公司投递的快递总件数的月平均增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果每人每月最多可投递0.6万件,那么该公司现有的22名快递业务员能否完成今年6月份的快递投递任务?请说明理由.23.(9分)西藏阿里是河北省的对口支援地区,河北某中学要从5名骨干教师(分别用A,B,C,D,E来表示)中随机选取若干名去支援西藏的教育,已知每名教师被选中的可能性都相同.(1)若随机选取一名教师去支援西藏,则A教师被选中的概率是多少?(2)若随机选取两名教师去支援西藏,则A,C教师同时被选中的概率是多少?(请用画树状图或列表法解答)24.(10分)如图,在△ABC中,⊙O是△ABC的外接圆,AB是⊙O的直径,CG⊥AB,连接OC,恰好过弦AD的中点E,AD与CG交于点F.(1)求证:∠AOC=2∠CAD;(2)AF与CF有怎样的数量关系?判断并说明理由;(3)试判断AC 与DG的位置关系,并说明理由.25.(10分)如图,AB是⊙O的直径,BC与⊙O切于点B,AD∥OC,交⊙O于点D,连接CD,∠ADB的平分线交⊙O 于点E,过点E作EF⊥DE,交DB的延长线于点F.(1)求证:CD是⊙O的切线;(2)若AB=10,AD=6,求DE的长26.(12分)如图,抛物线y=(x-1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,-3),P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m 的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.2020年~2021年九年级第一学期期中考试数学试卷参考答案1.A2.C3.B4.A5.C6.C7.D8.B9.D 10.A 11.C 12.D 13.B 14.D 15.C 16.A17.x1=0,x2=-3 18.x<-1或x>3 19.(1)六(2)6π-93;(3)33-3(19.∵AD⊥BC,∴点D始终在以AC为直径的圆上,即DE的长为定值.连接OE,可得OE为定值,OD+DE≥OE,当O,D,E在同一直线上时,OD+DE=OE,此时OD最短)20.解:(1)x1=-1,x2=17;(2)x1=-2,x2=1/3.21.解:(1)如图;(2)如图.22.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意,得10(1+x)2=12.1,解得x1=0.1,x2=-2.1(不合题意,舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵每人每月最多可投递0.6万件,∴22名快递业务员能完成的最大快递投递任务是:0.6×22=13.2(万件).∵13.2<13.31,∴该公司现有的22名快递业务员不能完成今年6月份的快递投递任务.23.解:(1)1/5;(2)如图,共有20种等可能的情况,其中只有两种情况符合A,C教师同时被选中,所以A,C教师同时被选中的概率是1/10.24.解:(1)证明:∵AE=DE,OC是⊙O的半径,∴OC⊥AD,∴弧AC=弧CD,∴∠CAD=∠ABC.∵∠AOC=2∠ABC,∴∠AOC=2∠CAD;(2)AF=CF;理由:∵CG⊥AB,AB是⊙O的直径,∴弧AG=弧AC,∴∠ACG=∠ABC.由(1)可知∠CAD=∠ABC,∴∠ACG=∠CAD,∴AF=CF;(3)AC∥DG;理由:由(2)可知∠CAD=∠ACG.∵∠ACG=∠ADG,∴∠CAD=∠ADG,∴AC∥DG.25.解:(1)证明:连接OD.∵OA=OD,∴∠ODA=∠OAD.∵AD∥OC,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC(SAS).∴∠ODC=∠OBC.∵BC是⊙O的切线,且AB为直径,∴∠OBC=90°,∴∠ODC=90°,即CD⊥OD,∴CD是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°.∵∠ADB的平分线交⊙O 于点E,∴弧AE=弧BE,∠ADE=∠FDE=45°,∴AE=BE.∵DE⊥EF,∴∠F=∠FDE=45°,∴DE=EF,即△DEF是等腰直角三角形.∵AB是⊙O的直径,∴∠AEB=90°.∴∠AEB-∠BED=∠DEF-∠BED,即∠AED=∠FEB,∴△AED≌△BEF (SAS),∴BF=AD=6.∵AB=10,AD=6,∴BD=8,∴DF=14,∴DE=72.26.解:(1)∵抛物线y=(x-1)2+k过点C(0,-3),∴-3=(0-1)2+k,解得k=-4,∴y=(x-1)2-4=x2-2x-3;(2)令y=0,则有x2-2x-3=0,解得x1=-1,x2=3,∴A(-1,0),B(3,0),∴AB=4.∵抛物线的顶点为(1,-4),∴当点P位于抛物线顶点时,△ABP的面积最大,为S=×4×4=8;(3)①当0<m≤1时,h=-3-(m2-2m-3)=-m2+2m;当1<m≤2时,h=-3-(-4)=1;当m>2时,h=m2-2m-3-(-4)=m2-2m+1;②当h=9时,△BCP的面积为6.〔结合图形可得h=9时,m>2,即m2-2m+1=9,解得m1=4,m2=-2(舍去),∴P(4,5)〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021上海宝钢新世纪学校九年级数学上期中试卷(带答案)一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°3.如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…若点A(32,0),B(0,2),则点B2018的坐标为()A.(6048,0)B.(6054,0)C.(6048,2)D.(6054,2)4.若α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为()A.2020B.2019C.2018D.20175.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()A .1B .22C .2D .2 6.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2 B .3 C .-2或3 D .-2且37.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm8.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=219.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .10.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D . 11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个 12.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-二、填空题13.若关于x 的方程x 2+2x +m =0没有实数根,则m 的取值范围是_______.14.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.15.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.16.请你写出一个二次函数,其图象满足条件:①开口向下;②与y 轴的交点坐标为(0,3).此二次函数的解析式可以是______________17.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.18.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .19.如图,已知△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为_____.20.如图,将ABC V 绕点A 逆时针旋转150 ,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.三、解答题21.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数. 购买件数销售价格 不超过30件单价40元 超过30件 每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元22.为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.23.2021年我省开始实施“ 3+1+2”高考新方案,其中语文、数学、外语三门为统考科目( 必考), 物理和历史两个科目中任选 1门,另外在思想政治、地理、化学、生物四门科目中任选 2门,共计6门科目,总分750 分, 假设小丽在选择科目时不考虑主观性. (1)小丽选到物理的概率为 ;(2)请用“画树状图”或“列表”的方法分析小丽在思想政治、 地理、 化学、生物四门科目中任选 2门选到化学、生物的概率.24.已知二次函数243y x x =-+.(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象. (2)若1122(,),(,)A x y B x y 是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y 、的大小关系(直接写出结果).25.我国古代数学著作《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔各几何?”其大意是:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的各是多少步?”试用列方程解应用题的方法求出问题的解。

【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC 的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】试题解析:∵四边形ABCD 为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D .3.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2, ∴Rt △AOB 中,AB 22352()22+=, ∴OA +AB 1+B 1C 2=32+2+52=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054,点B2018的纵坐标为:2,即B2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.4.B解析:B【解析】【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.【详解】解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3=2018﹣2+3=2019,故选:B.【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.5.D解析:D【解析】【分析】【详解】解:连接AO,并延长交⊙O于点D,连接BD,∵∠C=45°,∴∠D=45°,∵AD为⊙O的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴AD=22222222AB BD +=+=,∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.B解析:B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.7.A解析:A【解析】【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠Q ==,=,30A B ︒∴∠∠==,1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意.故选B .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确; ②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B .12.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.二、填空题13.【解析】【分析】根据方程没有实数根得出判别式小于0列出关于m 的不等式求解即可【详解】∵关于x 的方程x2+2x +m =0没有实数根∴解得:故填:【点睛】本题主要考查根的判别式和解一元一次不等式熟练运用根解析:1m >【解析】【分析】根据方程没有实数根得出判别式小于0,列出关于m 的不等式求解即可.【详解】∵关于x 的方程x 2+2x +m =0没有实数根∴2=240m ∆-<解得:1m >故填:1m >.【点睛】本题主要考查根的判别式和解一元一次不等式,熟练运用根的判别式进行根的情况的判断是关键.14.【解析】试题分析:解:连接OD ∵CD 是⊙O 切线∴OD ⊥CD ∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB ⊥OD ∴∠AOD=90°∵OA=OD ∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.15.3【解析】【分析】设横向的甬路宽为3x 米则纵向的甬路宽为2x 米由剩余部分的面积为144米2即可得出关于x 的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x 米则纵向的甬路宽为2x 米根解析:3【解析】【分析】设横向的甬路宽为3x 米,则纵向的甬路宽为2x 米,由剩余部分的面积为144米2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x 米,则纵向的甬路宽为2x 米,根据题意得:(20﹣2×2x )(12﹣3x )=144整理得:x 2﹣9x +8=0,解得:x 1=1,x 2=8.∵当x =8时,12﹣3x =﹣12,∴x =8不合题意,舍去,∴x =1,∴3x =3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【解析】【分析】根据二次函数图像和性质得a0c=3即可设出解析式【详解】解:根据题意可知a0c=3故二次函数解析式可以是【点睛】本题考查了二次函数的性质属于简单题熟悉概念是解题关键解析:223,y x =-+【解析】【分析】根据二次函数图像和性质得a <0,c=3,即可设出解析式.【详解】解:根据题意可知a <0,c=3,故二次函数解析式可以是2y 2x 3,=-+【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键.17.【解析】【分析】列举出所有情况找出取2个球的编号之和大于12的情况即可求出所求的概率【详解】列树状图得::共有9种等可能的情况其中编号之和大于12的有6种所以概率=故答案为:【点睛】此题主要考查了利 解析:23【解析】【分析】列举出所有情况,找出取2个球的编号之和大于12的情况,即可求出所求的概率. 【详解】列树状图得::共有9种等可能的情况,其中编号之和大于12的有6种,所以概率=6293=, 故答案为:23 . 【点睛】此题主要考查了利用树状图法求概率,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题的关键. 18.m 【解析】【分析】利用勾股定理易得扇形的半径那么就能求得扇形的弧长除以2π即为圆锥的底面半径【详解】解:易得扇形的圆心角所对的弦是直径∴扇形的半径为:m∴扇形的弧长为:=πm∴圆锥的底面半径为:π÷解析:2m.【解析】【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【详解】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:2m,∴扇形的弧长为:2902180π⨯=2πm,∴圆锥的底面半径为:2π÷2π=28m.【点睛】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.19.【解析】【分析】连接OAOB根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA=OBAB=4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵解析:22.【解析】【分析】连接OA,OB,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB=90°,又OA=OB,AB=4,根据勾股定理,得圆的半径是22.【详解】解:连接OA,OB∵∠C=45°∴∠AOB=90°又∵OA=OB,AB=4∴2224OA OB+=∴OA=22.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB=90°是解题的关键.20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题21.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.22.(1)本次调查的学生总人数为40人,∠α=108°;(2)补图见解析;(3)书法与乐器组合在一起的概率为16.【解析】【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为21 126.【点睛】本题考查了条形统计图、扇形统计图、列表法与树状图法求概率,读懂统计图、熟练掌握列表法或树状图法求概率是解题的关键.23.(1)12;(2)16【解析】【分析】(1)由题意可知小丽只有两种可选择:物理或历史,即可求解;(2)从所有等可能结果中找到同时包含生物和化学的结果数,再根据概率公式计算可得.【详解】(1)因为小丽只有两种可选择:物理或历史,所以小丽选到物理的概率为1 2(2)设思想政治为 A,地理为 B,化学为 C,生物为 D,画出树状图如下:共有 12 种等可能情况,选中化学、生物的有2 种,∴P(选中化学、生物)=212=16.【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性,求出相应的概率.24.(1)顶点(2,1)-;对称轴:直线2x =;与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),图象见解析;(2)12y y >.【解析】【分析】(1)根据二次函数解析式即可确定出顶点坐标、对称轴、与两坐标轴的交点坐标,再在坐标系中画出函数图象即可;(2)根据二次函数的图象解答.【详解】解:(1)二次函数y =x 2﹣4x +3=(x ﹣2)2﹣1,当x =0,y =3,当y =0时,x 2﹣4x +3=0,解得:11x =,23x =,∴抛物线的顶点为(2,﹣1),对称轴为直线x =2,与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),画出图象,如图所示:(2)∵当x <1时,y 随x 的增大而减小,∴当121x x <<时,12y y >.【点睛】此题考查了抛物线的图象与性质和二次函数与坐标轴的交点,熟练掌握二次函数的性质是解本题的关键.25.该矩形长36步,宽24步.【解析】试题分析:如果设矩形田地的长为x 步,那么宽就应该是(x -12)步,根据矩形面积864=矩形的长×矩形的宽4,即可得出方程求解即可.解:设矩形长为x 步,宽为(x -12)步x (x -12)=864x 2-12x -864=0解得x 1=36,x 2=-24(舍)∴x -12=24答:该矩形长36步,宽24步。

相关文档
最新文档