生物脱氮除磷
几种生物脱氮除磷工艺的区分

几种生物脱氮除磷工艺的区分一、四段Bardenpho脱氮工艺图1 四段Bardenpho脱氮工艺示意图如图1所示,四段Bardenpho脱氮工艺的设计目标是在不投加碳源时脱氮效率达到90%以上。
沉淀池的污泥回流到缺氧池1,同时,好氧池1的混合液也回流到缺氧池1。
沉淀池污泥回流比设计为100%,主要脱氮作用发生在缺氧池1,可实现脱氮70%。
缺氧池2的停留时间可以达到内源呼吸要求,靠微生物的内源呼吸作用去除好氧池1出水中的硝态氮。
BOD去除、氨氮氧化、磷的吸收主要发生在好氧池1。
磷得不到充分地释放,生物除磷效果较差。
二、五段Bardenpho脱氮除磷工艺图2 五段Bardenpho脱氮除磷工艺示意图为了改善四段Bardenpho脱氮工艺的生物除磷效率,发展了五段Bardenpho脱氮除磷工艺。
如图2所示,五段Bardenpho脱氮除磷工艺的设计特点是在首端增加了厌氧池,沉淀池的污泥回流到厌氧池强化了生物除磷,污泥回流比设计为100%。
好氧池1的混合液回流到缺氧池1,好氧池1的混合液回流比设计为400%。
缺氧池2的反硝化效率明显低于缺氧池1,没有发挥显著的脱氮作用。
三、UCT脱氮除磷工艺图3 UCT脱氮除磷工艺示意图如图3所示,UCT脱氮除磷工艺的设计目的之一是减小沉淀池回流的活性污泥对生物除磷效率的影响,因为活性污泥中含有硝酸盐,如果回流到厌氧池,会影响磷的释放,所以改为回流到缺氧池。
建立缺氧池出水混合液回流到厌氧池,降低厌氧池的硝态氮负荷。
厌氧池污泥浓度偏低。
如果进水的TKN/COD的比值大于0.12~0.14,除磷效果较差。
四、改良UCT脱氮除磷工艺图4 改良UCT脱氮除磷工艺示意图如图4所示,改良UCT脱氮除磷工艺将缺氧池一分为二,沉淀池的活性污泥回流到缺氧池1,好氧池的混合液回流到缺氧池2,反硝化脱氮作用主要发生在缺氧池2。
厌氧池污泥浓度偏低。
要求进水的TKN/COD的比值不大于0.11。
五、A/O除磷工艺图5 A/O除磷工艺示意图A/O除磷工艺为了保证进水与回流的活性污泥混合后仍然保持一个厌氧状态,所以好氧池的水力停留时间设计非常短,在1.5~2.5小时。
生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害;然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污废水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除;同时产生N NH -3、N NO --3和-34PO 和-24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准;因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要;2 生物脱氮除磷机理生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即,将3NH 转化为N NO --2和N NO --3;在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将N NO --2经反亚硝化和N NO --3经反硝化还原为氮气,溢出水面释放到大气,参与自然界氮的循环;水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的1;错误!硝化——短程硝化:O H HNO O NH 22235.1+→+硝化——全程硝化亚硝化+硝化:O H HNO O NH 22235.1+−−−→−+亚硝酸菌错误!反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+反硝化——厌氧氨反硫化脱氮:O H S N SO H NH 2242342++→+废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分;主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮;硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮;其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从+4NH 或-2NO 的氧化反应中获取能量;其中硝化的最佳温度在纯培养中为25-35 ℃,在土壤中为30-40 ℃,最佳pH 值偏碱性;反硝化作用是反硝化菌大多数是异养型兼性厌氧菌,DO< mg/L 在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为2N 或-2NO ,同时降解有机物2;生物除磷原理磷在自然界以2 种状态存在:可溶态或颗粒态;所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离;废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放;进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程;将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的3;聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP 以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB;与此同时释放出-34PO 于环境中1; 好氧吸磷过程聚磷菌在好氧条件下,分解机体内的PHB 和外源基质,产生质子驱动力将体外的-34PO 输送到体内合成ATP 和核酸,将过剩的 -34PO 聚合成细胞贮存物:多聚磷酸盐异染颗粒; 3 生物脱氮除磷工艺从生物脱氮除磷的机理分析来看,生物脱氮除磷工艺基本上包括厌氧、缺氧、好氧3 种状态,这3个不同的工作状态可以在空间上进行分离,也可以在时间上进行分离;近年来,随着对生物脱氮除磷的机理研究不断深入,以及各种新材料、新技术、新设备的不断运用,衍生出了许多新的生物脱氮除磷工艺,其中典型的几种处理工艺如下;SBR 工艺SBR 工艺是一种新近发展起来的新型处理废水的工艺,即为序批式好氧生物处理工艺,其去除有机物的机理在于充氧时与普通活性污泥法相同,不同点是其在运行时,进水、反应、沉淀、排水及空载5个工序,依次在一个反应池中周期性运行,所以该法不需要专门设置二沉池和污泥回流系统,系统自动运行及污泥培养、驯化均比较容易;该法处理焦化废水有着独有的优势:一是不要空间分割,时序上就能创造出缺氧和好氧的环境,即具有A /O 的功能,十分有利于氨氮和COD 的去除;二是该法的沉淀是一种静止的沉淀,对污泥沉淀性能不好的废水,固液分离效果非常明显;三是该法可以省去二沉池,其占地面积相对要小一些;自动控制系统的发展和完善,为SBR 工艺的应用提供的物质基础;但因为SBR 是间歇运行的,为了解决连续进水问题,至少需要设置两套SBR 设施,进行切换运行;SBR 工艺流程图见图14;CAST 工艺CAST 实际上是一种循环SBR 活性污泥法,应器中活性污泥不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,与SBR 同样使用滗水器;污水首先进入选择器,污水中溶解性的有机物通过生物作用得到去除,回流污泥中硝酸盐也此时得到反硝化;然后进入厌氧区,此时为微生物释磷提供条件;第三区为主曝气区,主要进行BOD 降解,同时硝化反硝化;CAST 选择器设置在池首,防止了污泥膨胀; 3.3 MSBR 工艺连续流序批式活性污泥法工艺ModifiedSequencing Batch Reactor,简称MSBR;首先,污水进入厌氧池,回流活性污泥中的聚磷菌在此充分释磷,然后混合液进入缺氧池反硝化;反硝化后的污水进入好氧池,有机物在好氧条件下被降解,活性污泥充分吸磷后再进入起沉淀作用的SBR,澄清后上清液排放;此时另一边的SBR 在回流量的条件下进行反硝化、硝化或静置预沉;回流污泥首先进入浓缩池浓缩,上清液直接进入好氧池,而浓缩污泥进入缺氧池;这样,一方面可以进行反硝化,另一方面可先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后进行的厌氧释磷提供更为有利的条件;CAST 综合了以往除磷脱氮工艺的优点,保证了各污染物质降解的最大速率环境,去除有机污染物效率更高,脱氮除磷效果更好A/2工艺OA/2工艺传统OA/2工艺或称AAO工艺,在一个处理系统中同时具有厌氧区、缺氧区、好氧区,能够同时作到脱氮、O除磷和有机物的降解,其工艺流程见图2;污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧条件下释磷,同时转化易降解COD、VFA为PHB,部分含氮有机物进行氨化;污水经过第一个厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮;硝态氮通过混合液内循环由好氧反应器传输过来,通常内回流量为2~4倍原污水流量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除;混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一不降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中过量吸收的磷通过剩余污泥排除;该工艺流程简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好5;它将厌氧段、缺氧段放在工艺的第一级, 充分发挥了厌氧菌群承受高浓度、高有机负荷能力的优势, 处理效果较好, 产生的污泥较一般的生物法少;可用于处理工业废水比重较大城市污水, 另外, 由于它是在普通活性污泥法的基础上发展起来的, 因而也较容易用于生物法处理的老污水厂的改造;A/2工艺改良O改良O A /2工艺是中国市政工程华北设计研究院提出的,工艺综合了A/O 工艺和改良UCT 工艺的优点,即在厌氧池之前增设厌氧/缺氧池;首先回流污泥和10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐;90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA ;聚磷菌释磷,同时吸收VFA 以PHB 的形式贮存于胞内;在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷;通过沉淀、排除剩余污泥达到除磷的目的;该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能6;3.5 UCT 改良工艺改良的UCT 工艺University of Cape Town 脱氮除磷工艺由厌氧池、缺氧1 池、缺氧2 池、好氧池、沉淀池系统组成,有2 个缺氧池;缺氧1 池只接受沉淀池的回流污泥,同时缺氧1 池有混合液回流至厌氧池,以补充厌氧池中污泥的流失;回流污泥携带的硝态氮在缺氧1 池中经反硝化被完全去除;在缺氧2池中接受来自好氧池的混合液回流,同时进行反硝化,缺氧1 池出水中的N NO --3 带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率7;立体循环一体化氧化沟氧化沟是一种而有效的污水处理技术,具有稳定的处理效果,是污水生物处理技术之一;特别是用于污水脱氮,氧化沟比其它生物脱氮工艺费用低、TN 去除效率高;然而,与活性污泥法相比,氧化沟占地面积较大,在土地紧张的城市或地区,氧化沟的应用受到限制8;针对常规氧化沟存在的问题,成功地研究出立体循环一体化氧化沟;其特点是:① 氧化沟采用立体循环,在循环过程中完成降解有机物和脱氮过程;与现有氧化沟相比,占地面积可减少约50%;② 沉淀区与氧化沟合建,沉淀的污泥可自动回流到氧化沟内,可节省投资和能耗;③ 结构紧凑,运行操作简便;新型立体循环一体化氧化沟既保留氧化沟设备和运行操作简单等优点,又可减少占地面积; 4 结语污水生物脱氮除磷是当今水处理的热点与难点;新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向;如:SND 同时硝化反硝化工艺、SHARON 工艺、氧限制自氧硝化—反硝化工艺、厌氧氨氧化工艺以及短程硝化—厌氧氨氧化组合工艺等;但是,生物脱氮除磷工艺的发展已不仅仅要求对N,P 去除率,而且要求处理效果稳定,可靠的运行工艺;今后对此技术的研究应集中在以下方面:第一、加深除磷机理的研究;反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾;为新型同步脱氮除磷工艺提供了理论依据;但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究;应突破传统理论,从微生物的角度来调控工艺;第二、随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题;同时发现颗粒污泥对N,P 的去除要远远优于絮状污泥;今后在对颗粒污泥的研究上应更加深入,研究了解颗粒污泥外部的胞外聚合物是否对N,P 有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率;。
工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
简述生物脱氮和生物除磷的基本原理和过程

生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
简述生物脱氮除磷的原理

简述生物脱氮除磷的原理
生物脱氮除磷的原理是通过微生物在厌氧和好氧条件下的代谢作用,将废水中的氮和磷分别转化为气态和固态的形式,从而实现废水的净化。
具体来说,生物脱氮是通过硝化和反硝化过程实现的。
在硝化过程中,亚硝化单胞菌将废水中的NH3-N氧化为亚硝酸盐,然后再由硝化杆菌将其转化为更加稳定的硝酸盐。
在反硝化过程中,缺氧条件下污水中存在的硝酸盐被微生物还原为氮气,实现脱氮。
而生物除磷则是通过聚磷菌在厌氧条件下释放磷,有氧条件下摄取磷,通过排除富磷污泥达到除磷目的。
为了保证聚磷菌的繁殖以及有效的生物除磷作用,需要有充足的挥发性脂肪酸。
在污水处理厂的生物脱氮除磷系统中,一
般会采用A/A/O方法,即厌氧池-缺氧池-好氧池组成,以达到同时脱氮、除磷和降解有机物的目的。
生物脱氮除磷机理

生物脱氮除磷机理1. 大家好啊!今天咱们来聊一聊特别有意思的生物脱氮除磷机理,说白了就是小生物们帮我们处理水里的氮和磷的过程,简直就像是大自然给我们安排的一支清洁队!2. 说到脱氮,就得提到我们的主角:硝化菌和反硝化菌。
这些小家伙可有意思了,它们就像是水处理界的"双子星",一个负责把氨氮变成硝态氮,另一个则把硝态氮变成无害的氮气放飞。
3. 硝化过程就像是一场接力跑。
氨氮先被亚硝化菌抓住,变成亚硝态氮,就好比第一棒选手跑完把接力棒交给第二棒。
然后亚硝态氮又被硝化菌接手,变成硝态氮,这就完成了整个接力比赛!4. 反硝化过程更有意思,就像是魔术师表演消失术。
反硝化菌在缺氧环境下,把硝态氮变成氮气,噗的一下就飘到空气中去了!这些小家伙可真是环保小能手。
5. 再说说除磷,这里的主角是聚磷菌,它们可是"囤积居奇"的高手。
在有氧环境下,它们疯狂吸收水中的磷,就像是双十一购物一样,能储存好多好多!6. 有趣的是,这些聚磷菌还会玩"存取游戏"。
缺氧时把储存的能量放出来,有氧时又疯狂吸收磷,周而复始,乐此不疲。
这不就跟我们存钱取钱一个道理嘛!7. 整个处理过程需要不同的环境条件,就像是给这些小生物准备不同的"游乐场"。
有氧区、缺氧区、厌氧区,每个区域都有自己的"常客",配合得天衣无缝。
8. 温度对这些小家伙的影响可大啦!它们最喜欢二十多度的温度,太冷了就懒洋洋的不爱干活,太热了又会中暑罢工,简直比我们人类还挑剔!9. 酸碱度也是个讲究活,这帮小家伙喜欢中性环境。
太酸或太碱都会让它们不舒服,就像我们人喝水,总不能老喝醋或者肥皂水吧!10. 溶解氧就更有意思了,不同的小家伙对氧气的要求不一样。
硝化菌爱氧气,跟我们人一样;反硝化菌却是"闷罐子",不要氧气反而干活更起劲。
11. 这些微生物的工作效率受很多因素影响,就像我们上班一样,环境好了干劲足,条件差了就蔫头耷脑的。
污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
生物脱氮除磷

反硝化反应可使有机物得到分解氧化,实际是利用了硝 酸盐中的氧,每还原1gNO3--N所利用的氧量约2.6g。
反硝化-2
当缺乏有机物时,则无机物如氢、Na2S等也可作为反硝 化反应的电子供体 (1)反硝化菌属于异养型兼性厌氧菌,在缺氧条件下, 进行厌氧呼吸,以NO3-—O为电子受体,以有机物的氢为电子 供体。
亚硝酸氮,控制氨根离子与亚硝酸根离子比例为1:1,然后通 过厌氧氨氧化作为反硝化实现脱氮的目的。全过程为自养的好
氧亚硝化反应结合自养的厌氧氨氧化反应.无需有机碳源,对 氧的消耗比传统硝化/反硝化减少62.5%,同时减少碱消耗量和 污泥生成量。
二、硝化—反硝化过程影响因素
1.温度 硝化反应的适宜温度范围是30~35℃,温度不但影响硝化茵的比 增长速率,而且影响硝化菌的活性,在5~35℃的范围内,硝化反应 速率随温度的升高而加快,仅超过30℃时增加幅度减少,当温度低于 5℃时,硝化细菌的生命活动几乎停止。对于同时去除有机物和进行 硝化反应的系统,温度低于15℃即发现硝化速率迅速降低,低温对硝 酸菌的抑制作用更为强烈,因此在低温12~14℃时常出现亚硝酸盐的 积累。在30~35℃较高温度下,亚硝酸菌的最小倍增时间要小于硝酸 菌,因此,通过控制温度和污泥龄,也可控制反应器中亚硝酸菌的绝 对优势。 反硝化反应的最佳温度范围为35~45℃,温度对硝化菌的影响比 反硝化菌大。
6.2.1 生物脱氮除磷
氮和磷的排放会加速导致水体的富营养化,其次是氨 氮的好氧特性会使水体的溶解氧降低,此外,某些含氮化 合物对人和其他生物有毒害作用。因此,国内外对氮磷的 排放标准越来越严格。本章阐述生物脱氮除磷技术。生物 脱氮除磷技术是近20年发展起来的,一般来说比化学法和 物理化学法去除氮磷经济,尤其是能有效地利用常规的二 级生物处理工艺流程进行改造达到生物脱氮除磷的目的, 是日前应用广泛和最有前途的氮磷处理方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓ 0.5O2+ 2H++2e- → H2O ΔG0= -137kJ/mol
➢ NO2-+0.5 O2→ NO3ΔG0= -54 kJ/mol
亚硝酸盐氧化所需的氧是由水提供的
(三)硝化反应的化学计量关系 (1)硝化反应生物合成反应式: 若考虑硝化细菌新细胞的合成,则反应式为: • 第一步 1.00NH4++1.44O2+0.0496HCO3-→ 0.99NO2-+0.01 C5H7NO2+0.97H2O+1.99H+ • 第二步 1.00NO2-+ 0.50O2+ 0.031CO2+ 0.00619NH4++0. 124H2O →1.00NO3-+0.00619C5H7NO2+0.00619H+
dX dtg
dX dtT
KdX
上式各项除 X 得: μg
μN
dX dt g
X
dX dt T
X
Kd
或
g NKd
式中:
dX
g
dt X
g
——亚硝酸菌净比增殖速度。
(2)硝化的最小污泥龄 污泥龄与净比增值速率的关系:
代入
c
1 g
g NKd
得:
c
N
1 Kd
为了维持硝化菌的数量,设计最小污泥龄θcmin必须满足:
2.1.2 硝化反应与微生物
二、硝化反应式 (一)硝化反应的化学反应式
✓ NH3+3/2O2→ NO2-+H2O+H+ ✓ NO2-+1/2 O2→ NO3➢ NH3+2O2→ NO3-+H2O+H+
硝化反应 耗氧量:
• NH4+→NO3- 4.57 g O2/g NH4+-N • NH4+→NO2- 3.43 g O2/g NH4+-N • NO2-→NO3- 1.14 g O2/g NO2--N
2.1.2 硝化反应与微生物
以NO2-为唯一能源,自养生长时,以CO2为唯一碳源; 混养时,可同化有机物。
2.1.2 硝化反应与微生物
一、硝化反应微生物 ➢ 二、硝化反应式
➢ 二、硝化反应式 (一)硝化反应的理论反应式 (二)硝化反应的生化反应式 (三)硝化反应的化学计量关系 (四)硝化反应代谢途径与电子转移数
➢ 消耗氧的计量关系: 完全氧化1gNH4+-N,需消耗4.25gO2 完全氧化生成1gNO3--N,需消耗4.34gO2
(四)硝化反应代谢途径与电子转移数
✓ 代谢过程由多种酶催化
氨单加氧酶(AMO)、羟胺氧还酶(HAO)、亚硝酸盐氧还酶(NOR)。
✓ 硝化反应代谢途径:
NH4+→ NH2OH→ NO → NO2✓ 电子转移数:
二、硝化反应式 (二)硝化反应的生化反应
氨单加氧酶
羟胺氧还酶
羟胺氧还酶
NH3 → NH2OH → NO → NO2- → NO3-
亚硝酸盐氧还 酶
(1)氨氧化为羟氨:氨单加氧酶 ✓ NH3 + O2 → NH2OH
(二)硝化反应的生化反应式
(2)羟胺氧化为亚硝酸盐:羟胺氧还酶 分两步,中间产物为NO
→ NO3-
• NH4+氧化为NO2-,经历了多个步骤、6个电子变化,说明亚硝酸菌的酶系统十分复杂。 • 亚硝酸氧化反应只经历了1步、2个电子变化。
2.1 生物脱氮机理及生物学基础
• 2.1.1 生物脱氮反应过程 • 2.1.2 硝化反应与微生物 • 2.1.3 反硝化反应
2.1.3 反硝化反应
NO3- + 5/6CH3OH → 5/6CO2 + 1/2N2 + 7/6H2O + HO-
➢ 完全还原 1gNO3-→ N2
• 相当于提供了2.86gO2, • 产生0.45gVSS, • 产生3.57g碱度
当NO3--N浓度为1mg/L以上时,可认为反应速率为零级反应
(4)反硝化反应化学计量关系 以甲醇为电子供体的反硝化反应式:
N3 O BO N D 2 C2 O H 2 O O H 新细胞
有机物为供氢体
(2)反硝化代谢途径 • 反硝化过程中NO2-和NO3-的转化是通过反硝化细菌的异化作用完成的,被还原成N2。 • 同化作用是NO2-和NO3-被还原成NH3-N,用于新细胞的合成。
NO3-
NO2-
NH2OH
NH3
硝化菌由亚硝酸细菌(氨氧化细菌)和硝酸细菌(亚硝酸盐氧化细菌)两个亚群组成。 自养型硝化菌都是一些革兰氏阴性菌,硝化时它们以氧作为最终的电子受体,属于严格的好氧菌。
(1)第一步由亚硝酸菌将氨氮(NH4+和NH3)转化成亚硝酸盐(NO2-); (2)第二步再由硝酸菌将NO2-氧化成硝酸盐(NO3-)。
由以上公式, 令
N max
YN
KN
则NH4+-N氧化 Monod 动力学关系式如下:
NH4+-N氧化速度
q NmaxNX
YN (KSN N)
最大氨氮氧化速度
qdN KNXN dt KSN N
NH4+-N 比氧化速度
qN
NmaxN
YN(KSN N)
dN
qN
dt X
KN N KSN N
三、硝化的最小污泥龄
(1)亚硝酸菌的净增值速度
式中:
dX dt g
dX dX dX dtg dtT dtE
——亚硝酸菌净增殖速度;
dX ——亚硝酸菌合成速度; dt T
dX d t
E
——亚硝酸菌自身分解速度。
dX dt
E
Kd
X
式中 Kd ——亚硝酸菌自身分解系数,1/d。
将上式代入公式得:
• 约消耗 2.47g甲醇, • 产生 0.45gVSS, • 产生 3.57g碱度
(假设水中无NH3)
二、对反硝化菌的认识
• 反硝化菌是异养兼性厌氧菌 反硝化菌的能源
➢ (1)化能型: 大多数为化能异养型
以有机物作为能源和碳源 少数化能自养,以氢、氨、硫、硫化氢等无机物为能源;
S +NO3-+H2O → SO42-+N2+H+ ➢ (2)光能型(光合细菌):有光时,光能异养生长。
NXd dX tTNmaK xSN N N X
式中 μ——亚硝酸菌增殖速度,mg/(L•d)
(3)NH4+-N氧化速度 可用下式表示: NH4+-N氧化速度
NH4+-N比氧化速度,
q mg/(L﹒d)
dN dt
dN
qN
q1/d X
dt X
式中
• N—— NH4+-N浓度,mg/L; • X——亚硝酸菌浓度,mg/L;
Nitrosovibrio 自养、混养;
Nitrosolobus 自养、混养;
以氨为唯一能源,自养生长时,以CO2为唯一碳源; 混养时,可同化有机物。
(二) 对硝化细菌的新认识
✓ 硝酸细菌:自养型,有些可混养生长,某些菌株能异养生长。 Nitrobacter 自养、可异养,自养快于异养 Nitrococcus 严格自养 Nitrospina 严格自养 Nitrospira 自养、混养
✓ NH2OH+ H2O → HNO2+4H+ + 4 eΔG0= +23 kJ/mol
✓ 0.5 O2 + 2H+ + 2 e-→ H2O ΔG0= -137kJ/mol
✓ NH2OH+0.5 O2 → HNO2+2H+ + 2 eΔG0= -114 kJ/mol
羟胺氧化所需的氧是由水提供的
(二)硝化反应的生化反应式 (3)亚硝酸氧化为硝化盐: 亚硝酸盐氧还酶
一、反硝化原理 (1)原理与反应 (2)反硝化代谢途径 (3)参与反硝化代谢的酶 (4)反硝化反应化学计量关系 二、对反硝化菌的新认识
2.1.3 反硝化反应 一、反硝化原理 (1)原理与反应 生物反硝化是指污水中的硝态氮NO3-和亚硝态氮NO2-,在无氧或低氧条件下被反硝化细菌还原成氮 气的过程。反应式如下: NO3-+2H→ NO2-+H2O NO2-+3H→ 1/2N2+H2O+OH- 总: NO3-+5H→ 1/2N2+2H2O+OH-
黑暗条件,化能异养生长。
第2章 生物脱氮机理及生物学基础
2.1 生物脱氮机理及生物学基础 2.2 生物脱氮反应动力学 2.3 生物脱氮影响因素 2.4 生物脱氮新理论 2.5 生物脱氮新工艺
2.2 生物脱氮反应动力学
• 2.2.1 硝化反应动力学 • 2.2.2 反硝化反应动力学
2.2.1 硝化反应动力学
同化反硝化,合成细胞
NO → N2O 气态
N2
异化反硝化
(3)参与反硝化代谢的酶
✓ 1)硝酸盐还原酶 NO3- →NO2-
✓ 2)亚硝酸盐还原酶 NO2- →NO
✓ 3)NO还原酶 NO → N2O
✓ 4)N2O还原酶 N2O→ N2
(4)反硝化反应化学计量关系 以甲醇为电子供体的反硝化反应式:
生物脱氮除磷
第1章 概述
• 1.1 我国氮磷的污染状况 • 1.2 氮磷对水体的危害
O2 碱度 O2 碱度
有机氮 水解
NH4+ 亚硝酸 菌NLeabharlann 2硝酸菌同化作用 厌氧氨氧化
BOD
碱度
有机氮 (产生细胞物质)
NO3-
反硝化菌
N2、NxO
第2章 生物脱氮机理及生物学基础
2.1 生物脱氮机理及生物学基础 2.2 生物脱氮反应动力学 2.3 生物脱氮影响因素 2.4 生物脱氮新理论 2.5 生物脱氮新工艺
2.1 生物脱氮机理及生物学基础
• 2.1.1 生物脱氮反应过程 • 2.1.2 硝化反应与微生物 • 2.1.3 反硝化反应