分子轨道理论

合集下载

分子轨道理论

分子轨道理论

分子轨道理论简介一种理论,是原子轨道理论对分子的自然推广。

其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。

因此,分子轨道理论是一种以单电子近似为基础的化学键理论。

描写单电子行为的称轨道(或轨函),所对应的单电子能量称。

对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论那样讨论分子结构,并联系到分子性质的。

有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。

理论⒈原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。

在分子中电子的空间可用相应的分子轨道ψ(称为分子轨道)来描述。

分子轨道和原子轨道的主要区别在于:⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。

⑵原子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用σ、π、δ…符号表示。

⒉分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals,LCAO)而得到。

有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),如σ、π轨道(轴对称轨道);同时这些对称性匹配的两个原子轨道也会相减形成另一种分子轨道,结果是两核间电子的概率密度很小,其能量较原来的原子轨道能量高,不利于成键,称为反键分子轨道(antibondingmolecularorbital),如σ*、π*轨道(轨道,反键轨道的符号上常加"*"以与区别)。

分子轨道理论解释

分子轨道理论解释

分子轨道理论1 分子轨道理论分子轨道是由2个或多个原子核构成的多中心轨道。

分子轨道的波函数也是Schrödinger方程的解。

分子轨道分为成键分子轨道与反键分子轨道,前者是原子轨道同号重叠(波函数相加)形成,核间区域概率密度大,其能量比原子轨道低;后者是原子轨道异号重叠(波函数相减)形成的,核间区域概率密度小,两核间斥力大,系统能量提高,如图所示:2 同核双原子分子1).氢分子氢分子是最简单的同核双原子分子。

两个氢原子靠近时,两个1s原子轨道(AO),组成两个分子轨道(MO):一个叫成键轨道,另一个叫反键轨道。

氢分子的两个电子进入成键轨道电子构型或电子排布式为。

电子进入成键轨道,使系统能量降低,进入反键轨道将削弱或抵消成键作用。

2).分子轨道能级图与分子轨道形状第二周期元素原子组成分子时,用2s,2p 原子轨道组成的分子轨道,示于图9-3-2由图可见,分子轨道的数目等于用于组合原子轨道数目。

两个2s原子轨道组成两个分子轨道和,6个2p原子轨道组成6个分子轨道,其中两个是σ分子轨道(和)4个是π分子轨道(两个和两个)。

相应的原子轨道及分子轨道的形状如图下所示。

由图可见:●成键轨道中核间的概率密度大,而在反键轨道中,则核间的概率密度小。

●一对2p z 原子轨道以“头碰头”方式组合形成分子轨道,时,电子沿核间联线方向的周围集中;一对2p x(2p y)原子轨道以“肩并肩”方式组合形成分子轨道,时,电子分布在核间垂直联线的方向上。

3).氧分子O2共有16个电子,O2的电子构型:O2分子有两个自旋方式相同的未成对电子,这一事实成功地解释了O2的顺磁性。

O2中对成键有贡献的是(σ2p)2和(π2p)4这3 对电子,即是一个σ键和两个π键。

O2的两个π键是三电子π键,反键轨道中的一个电子削弱了键的强度,一个三电子π键相当于半个键,故O2的叁键实际上与双键差不多。

4).氮分子N2的分子轨道能级图与O2比较,只是在和的相互位置有区别。

量子化学第五章分子轨道理论

量子化学第五章分子轨道理论

第五章分子轨道理论5.1 Hatree-Fock 方程Hatree-Fock 近似,也就是分子轨道近似,是量子化学中心之一,分子中的电子占据轨道,这是化学家头脑中很容易想到的。

首先,我们推导一下Hatree-Fock 方程。

由于绝大多数分子都是闭壳层的,因此我们都可以用单slater 行列式作为其波函数,即12N C f f f ψ=设我们有正交集i j ij f f δ= 则一、二阶约化密度矩阵为:'*'11111''111112''21212''112122(,)()()(,)(,)1(,;,)2(,)(,)i i ix x f x f x x x x x x x x x x x x x ρρρρρρ∧∧∧∧∧∧==∑改写一下(Dirac ):*'*'11122*'*'2122''1212()()()()12()()()()1[()()()()]2NNi i i i iiNNj j j j jjN i j i j i jj i i jf x f x f x f x f x f x f x f x f x f x f x f x f f f f ρ∧≠==-∑∑∑∑∑12(1)(1,2)1(1)[(1,2)(1,2)]2(1,2)(1,2)1[]2r r Ni i i j i j i j j i ii ji i i ii i i i Ni i i j i j i j j i iijE T h T g f h f f f g f f f f g f f f f g f f f f g f f E f h f f f g f f f f g f f ρρ∧∧∧∧≠=+=+--=+-∑∑∑∑因为i=j 时,=0不影响上式因此现在就是要利用变分法,看在限制i j ij f f δ=下,什么样i f 的会使E 最小,所以要利用Lagrange 乘子法:**()Nij i j ij ij iji ij ij Nij i jij ij iji j i j j i ij ij ji ij L E f f f L E f f L f f f f f f εεδεδεεεεεεε=--=-=∴=∑∑ 对变分,为常数,可不管。

第五章_分子轨道理论

第五章_分子轨道理论

轨道进行简单的介绍。
四 、配位化合物中的分子轨道理论
要点:
A、配体原子轨道通过线性组合,构筑与中心原子 轨道对称性匹配的配体群轨道。 B、中心原子轨道与配体群轨道组成分子轨道。
金属与配体间σ分子轨道(d轨道能级分裂)
1.可形成σ分子轨道的中心原子轨道 在八面体配合物MX6中,每个配体可提供一个Pz 轨道用于形成σ分子轨道。
(2)分子轨道由原子轨道线性组合而成的,而且
组成的分子轨道的数目同互相化合原子的原子轨道
的数目相同。 (3)分子中电子的排布遵从原子轨道电子排布三 原则,即能量最低原理、泡利不相容原理和洪特规 则。
1. 原子轨道线性组合的方式
形成LCAO-MO的三原则:
linear combination of atomic orbital-molecular orbital
分子轨道理论的作用:
1. 可以解释包括羰基配合物、 π 配合物等特殊配合物 在内的配位键的形成;
2. 可以计算出所形成配合物分子轨道能量的高低;
3. 可以定量地解释配合物的某些物理和化学性质;
不足:
计算分子轨道能量的高低需要冗长的计算,非常繁琐;
通常采用简化或某些近似的方法来得到分子轨道能量的相对 高低。这里只定性地对常见的八面体配位构型配合物得分子
分子 H2 He2 He2+
键级
磁性
1s σ
1s
σ 1s*1 1s
分子 Li2 Be2 B2 C2 N2 O2 + O2 O2 F2 Ne2 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ
出的一个序列。 N2[(σ1s)2(σ1s*)2(σ2s)2(σ2s*)2(π2py)2(π2pz)2(σ2px)2]

什么是分子轨道理论

什么是分子轨道理论

什么是分子轨道理论
分子轨道理论(Molecular Orbital Theory,简称MO理论)是1932年由美国化学家马利肯(R.S.Mulliken)及德国物理学家洪特(F.Hund)提出的一种描述多原子分子中电子所处状态的方法。

该理论认为原子形成分子后,电子不再属于个别的原子轨道,而是属于整个分子的分子轨道,分子轨道是多中心的。

分子轨道由原子轨道组合而成,形成分子轨道时遵从能量近似原则、对称性一致(匹配)原则、最大重叠原则,即通常说的“成键三原则”。

在分子中电子填充分子轨道的原则也服从能量最低原理、泡利不相容原理和洪特规则。

以上信息仅供参考,建议查阅化学专业书籍文献或咨询化学专业人士获取更全面更准确的信息。

分子轨道理

分子轨道理

分子轨道理分子轨道是描述分子中电子运动状态的波函数。

主要有4种类型的分子轨道:σ轨道、π轨道、非键轨道和反键轨道。

这些轨道的形状和能量级别决定了分子中电子的排布和化学性质。

下面将详细介绍这几种分子轨道的特征和相关理论。

首先是σ轨道。

σ轨道是分子中电子云最密集的轨道,具有球对称的形状。

它沿着化学键的轴向分布,所以也被称为轴向轨道。

σ轨道可以由两个原子轨道叠加而成,每个原子提供一个电子。

根据平面对称性的不同,σ轨道可以分为σ-s和σ-p轨道,前者为电子密度在分子中心沿轴向对称的轨道,后者为电子密度在分子平面中的两个方向上对称的轨道。

σ轨道主要参与形成化学键,是稳定的分子轨道。

接下来是π轨道。

π轨道具有两个相互垂直的环面,分别在化学键的上、下两侧。

与σ轨道不同,π轨道是运动在较大空间范围内的,所以也被称为侧向轨道。

π轨道可以由两个平行的原子轨道叠加而成,每个原子提供一个电子。

根据能级的不同,π轨道可以细分为π-s和π-p轨道,两者的电子密度在平面内的分布形式不同。

π轨道在化学键的形成中起到重要作用,决定了分子的共轭结构和反应性质。

非键轨道是分子中存在于原子之间的轨道。

它们是离域的电子轨道,不通过化学键与特定原子相关联。

非键轨道的能量相对较高,电子密度较低。

由于非键轨道的存在,分子可以吸收外部能量激发电子至非键轨道,从而进行各种光化学和电化学反应。

反键轨道与化学键中的σ和π轨道相对应,具有相同的空间分布形式,但电子的运动方向相反。

反键轨道的能级相对较高,电子密度较低。

它们主要参与分子中电子的排斥和共振现象,以及反应中的电荷转移。

分子轨道理论是通过量子力学的计算方法和原理来描述分子中电子的分布和运动状态,为解释分子光谱和化学反应提供了依据。

根据分子轨道理论,可以计算分子轨道的能级、形状和电子密度,并预测分子的化学性质。

分子轨道理论的成功应用包括描述分子的电子结构、解释分子间相互作用、预测分子的稳定性和反应性,以及设计新的功能分子。

分子轨道理论

分子轨道理论
σ1s: 成键分子轨道,电子在两核间出现的几 率较大
σ*1s:反键分子轨道,电子在两核的左右两 侧出现几率较大,核间节面处电子云密 度等于零。
电子排布三原则:保里原理,能量最低原理, 洪特规则。
s2*p p2*p s2p
p2p s2*s s2s
分子光谱实验数据
s, p轨道相互作用问题
Li2 Be2 B2
其中对成键有贡献的是一
个σ键。与价键结构式完全
一致。
FF
苯分子的结构——离域π键的概念
实验测得苯分子中6个C-C键的键长相等 各键角都等于120o
NO2分子的结构—— π33离域π键
非键轨道
Ozone的分子结构
价键理论和分子轨道理论的比较:
✓价键理论将共价键看作原子之间的定域键 ✓反映了原子间直接的相互作用 ✓形象直观而易于与分子的几何构型相联系
Molecular-orbital diagrams for the diatomic molecules and ions of the first-period elements.
Molecular Orbitals of the Second Period
LCAO– Linear combination of atomic orbitals
2.1 周环反应概况简解
1. 定义
周环反应 在化学反应过程中,能形成环状过渡态的协同反应。
协同反应 协同反应是指在反应过程中有两个或两个以上的化学 键破裂和形成时,它们都相互协调地在同一步骤中完成。
+
环状过渡态
2. 周环反应的特点:
1. 反应过程中没有自由基或离子这一类活性中间体产生; 2. 反应速率极少受溶剂极性和酸,碱催化剂的影响,也

分子轨道理论

分子轨道理论
一起满足18电子规则,具有反磁性。
M
Cr
Mn
Fe
Co
Ni
价电子数 需要电子数
6 12
7 11
8 10
9 9
10 8
Ni(CO)4
形成的羰基配
位化合物
Cr(CO)6 Mn2(CO)10
Fe(CO)5 Co2(CO)8



e
g
配位 体群 轨道
反键MO
s
d
△ 非键MO σ
eg t1u
金属 a1g 络合物
成键 MO 配位体
分子轨道理论不像晶体场理论那样只考虑静电作用,也考虑 到了d轨道的能级分裂。
在晶体场理论中: 其差别在于: 分子轨道理论中:
E
0
eg
Et Et
2g
E
0
e g
2g
⑴ [FeF6]3-
中心金属和配位体之间σ配键和反馈∏键的形成是同时进 行的,而且σ配键的形成增加了中心原子的负电荷,对反馈 ∏键的形成更加有利,反馈∏键的形成则可减少中心原子的 负电荷,对σ配键的形成更加有利。两者互相促进,互相加 强,这就是协同效应。
大多数羰基配位化合物具有如下特点:
每个金属原子的价电子数和它周围配位体提供的价电子数加在
dx2-y2 dz2
eg Δ
这种π型轨道的形 成,使得体系的分裂能 Δ增大。 故,此类配合物常 是低自旋构型。 配体的π 空轨道
Δ=10 Dq
E0 3d
中央原子 轨道
t2g
dxy dxz dyz
t2g
受配位场微扰 d轨道分裂 分子轨道
例如,CN-、CO、NH3、NO2- 等就属于此类配体,其造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 轨道数守恒定律 n个AO 线性组合 → n个MO 成键轨道:能级低于原子轨道的分子轨道 反键轨道:能级高于原子轨道的分子轨道 非键轨道:能级等于原子轨道的分子轨道
成键与反键轨道成对出现 ,其余为非键轨道。
3.3.5 分子轨道理论的要点:
1. 采用轨道近似,分子中的每一个电子可以 用一个单电子波函数来描述: i(i)(i) i(i):分子轨道 2. 由LCAO-MO得到,变分系数由变分法 得到 3. LCAO-MO时,AO应满足对称性匹配、 能量相近和最大重叠原则
*2pz *2px *2py 2px 2py 2pz *2s 2s
O 2 F2
2 u 1 g 1 u
2 g
1 u 1 g
KK
Li2, Be2, B2 , C2, N2 (2s-2p轨道能级差小,sp混杂显著)
1 g 1 u 2 g道:KK
O2, F2, Ne2
1 g 1 u
KK 1g 1u 2g 1u 1g 2u
Li2, Be2, B2 , C2, N2
KK 1g 1u 1u 2g 1g 2u
3.3.4 分子中电子的排布
1 排布遵守的原则: Pauli 原理 能量最低 Hund规则
a a
1 1 EH S ab S ab a b d EH S ab K R ra
Sab

E1
键合后体系能 量降低更多
影响Sab的因素:
核间距要小;
在核间距一定时,两原子轨道按合适 的方向重叠(化学键的方向性)
3.3.2 分子体系的S方程
1. 分子体系:m个核,n个电子
4. i-Ei,电子填充按能量最低、Pauli原理和 Hund规则
c. 单电子近似
单电子近似:假定分子中的任一电子处于m 个核和其它n-1个电子的有效平均势场中运 动,每个电子的运动可以用单电子波函数( 分子轨道)来描述。
1 2 m Za ˆ 单电子能量算符:H i i Vi (i) 2 a 1 rai ˆ 单电子S方程: H i i Ei i
ψ1 = c1ψa +c2ψb
ψ2= c1ψa -c2ψb
这种组合和杂化轨道不同,杂化轨道是同一 原子内部能量相近的不同类型的轨道重新组 合,而分子轨道却是由不同原子提供的原子 轨道的线性组合。 3、原子轨道线性组合成分子轨道后,分子 轨道能级高于原子轨道的称为反键轨道,能 级低于原子轨道的称为成键轨道,能级相等 或接近的为非键轨道。 4、原子轨道要有效地线性组合成分子轨道, 必须遵循下面三条原则:
分子体系总的波函数用自旋-轨道的Slater行列 式来描述
3.3.3 MO的类型、符号和能级次序
MO按照分子轨道沿键轴分布的特点分类:
、、
表示方法:
*g/u AO
:MO的类型、、
下标: 宇称(中心反演)情况 g-中心对称;u-中心反对称 上标: 成键与反键(*)轨道 AO:构成MO的AO,
3.3.1 分子轨道理论
分子轨道的思想:分子中电子运动的整体性
(分子轨道理论认为原子在相互接近时,发 生相互作用形成分子轨道,成键后电子是在 遍布于整个分子的分子轨道上运动; 它不是认为两个原子在相互接近时,分别提 供自旋相反的电子配对而成键) 分子轨道:分子中电子波函数的空间部分
分子轨道理论的基本要点
(3) 最大重叠原则。原子轨道发生重叠时, 在对称性匹配的条件下,原子轨道ψa和 ψb沿一定方向的重叠程度愈大,β 积分的 绝对值增大,成键轨道相对于组成的原子 轨道的能量降低得愈显著,形成的化学键 愈稳定。
1 2 1 1 1 ˆ Hb d b d rb ra R 2
分子轨道的分类:
a. 按原子轨道来源分:
1s *1s 2s *2s 2pz *2pz
b. 按MO关于中心的对称性分:
g1s u1s g2s u2s g2p u2p
z
z
反对称 有关于键轴的节面 能量高
2. 分子轨道和 键 MO图像关于包含键轴的平面反对称 即含有一个包含键轴的节面
LCAO-MO原子轨道选取的原则:
对称性匹配 能量相近 最大重叠
(1) 对称性匹配原则。只有对称性匹配的原子轨道才 能有效地组合成分子轨道。哪些原子轨道之间对称 性匹配呢?
+
+ + + + 对称性不匹配, = 0
+
要求波函数的符号产生净 的同号重叠,保证β 积分 不为0。
+ +
+ +
EH Sab K
_ +
反键MO *2px g g2px
成键MO 2px u u2px
肩并肩 px-px、 py-py沿z轴(键轴)重叠,形成分子轨道
反键MO 成键MO
*

g 中心对称
u 中心反对称
3. 分子轨道
由低到高 4. 分子轨道的能级次序 MO的能级顺序可由光电子能谱来确定
O2, F2, Ne2 (2s-2p轨道能级差大,sp混杂少)
1、分子轨道理论的基本观点是把分子看作一个整 体,其中电子不再从属于某一个原子而是在整个分 子的势场范围内运动。正如在原子中每个电子的运 动状态可用波函数(ψ)来描述那样,分子中每个 电子的运动状态也可用相应的波函数来描述。 2、分子轨道是由分子中原子的原子轨道线性组合 (linear combination of atomic orbitals, LCAO)而 成。组合形成的分子轨道数目与组合前的原子轨道 数目相等。如两个原子轨道ψa和ψb线性组合后形成 两个分子轨道ψ1和ψ1*
1. 分子轨道和键
分子轨道图像关于键轴呈圆柱形对称
AO头碰头重叠 s-s s-pz pz -pz
_
2s 2s
反键MO *2s u u2s
成键MO 2s g g2s
+
反键MO *2pz u u2pz 成键MO 2pz g g2pz
键: 由于电子占据在分子轨道上,使分子稳
定存在而形成的化学键 电子
Ĥ=E
1 n 2 m n Z a n n 1 m m Z a Zb ˆ H i 2 i 1 a 1 i 1 rai i 1 j i rij a 1 b a Rab
2. 分子轨道理论在模型上的三个近似
a. Born-Oppenheimer近似,核固定近似 原子核间的排斥能为常数,可单独考虑 b. 非相对论近似: ve<<c, (ve~108cm/s<3×1010cm/s), me=m0
对称性匹配, 0 β
同样是为了保证Sab不为零
成键轨道
反键轨道
非键轨道
(2) 能量相近原则。只有能量相近的原子 轨道才能组合成有效的分子轨道。能量愈 相近,组成的分子轨道越有效。若两个原 子轨道的能量相差很大,则不能组成分子 轨道,只会发生电子转移而形成离子键。 结论 只有两个原子轨道能量相近时,才能形成 有效的分子轨道。当两个原子轨道能量相 差悬殊时(>10 eV),不能形成有效的分子 轨道。
相关文档
最新文档