有机化学理论课 第十八章 分子轨道理论简介

有机化学理论课 第十八章  分子轨道理论简介
有机化学理论课 第十八章  分子轨道理论简介

第十八章分子轨道理论简介

一、教学目的和要求

(1)了解分子轨道理论的原理。

(1)了解周环反应的一般规律。

(2)了解分子轨道对称守恒原理在有机合成中的作用。

二、教学重点与难点

分子轨道理论的原理,周环反应的理论。

三、教学方法和教学学时

1、教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合。

2、教学学时:2学时

四、教学内容

第一节电环化反应

第二节环加成反应

第三节σ迁移反应

第四节周环反应的理论

一、电环化反应机理

二、环加成反应机理

三、σ键迁移反应机理

五、课后作业、思考题

习题:1、2、4、6、11。

§18-1 周环反应的理论

一、周环反应

前面各章讨论的有机化学反应从机理上看主要有两种,一种是离子型反应,另一种是自由基型反应,它们都生成稳定的或不稳定的中间体。还有另一种机理,在反应中不形成离子或自由基中间体,而是由电子重新组织经过四或六中心环的过渡态而进行的。这类反应表明化学键的断裂和生成是同时发生的,它们都对过渡态作出贡献。这种一步完成的多中心反应称为周环反应。

周环反应:反应中无中间体生成,而是通过形成过渡态一步完成的多中心反应。

反应物——→产物

周环反应的特征:

(1) 多中心的一步反应,反应进行时键的断裂和生成是同时进行的(协同反

应)。 例如:

(2) 反应进行的动力是加热或光照。不受溶剂极性影响,不被酸碱所催化,不受任何引发剂的引发。 (3) 反应有突出的立体选择性,生成空间定向产物。 例如:

二、周环反应的理论 (一) 轨道和成键

周环反应的过程,广泛的应用轨道来描述,这些轨道往往是用图形来表示。有机化学中涉及最多的原子轨道为1p 轨道和2s 轨道。

原子轨道线形组合成分子轨道。当两个等价原子轨道组合时,总是形成两个新的分子轨道,一个是能量比原子轨道低的成键轨道,另一个是能量比原子轨道高的反键轨道。

(二)分子轨道对称守恒原理

原子轨道组合成分子轨道时,遵守轨道对称守恒原理。即当两个原子轨道的对称性相同(位相相同)的则给出成键轨道,两个原子轨道的对称性不同(位相不同)的则给出反键轨道。

CHO +

CHO

R h υ

R = -COOCH

3

成键轨道

原子轨道

X 1

2

分子轨道对称守恒原理是1965年德国化学家五德沃德(R .B .Woodward )和霍夫曼(R .Hoffmann )根据大量实验事实提出的。

分子轨道对称守恒原理有三种理论解释:前线轨道理论;能量相关理论;休克尔-莫比乌斯结构理论(芳香过渡态理论)。这几种理论各自从不同的角度讨论轨道的对称性。其中前线轨道理论最为简明,易于掌握。

分子轨道对称守恒原理和前线轨道理论是近代有机化学中的重大成果之一。为此,轨道对称守恒原理创始人之一R .霍夫曼和前线轨道理论的创始人福井谦一共同获得了1981年的诺贝尔化学奖。

1. σ-键的形成

当两个原子轨道沿着键轴方向对称重叠时,可形成两个σ-键的分子轨道。对称

性相同的原子轨道形成σ-成键轨道,对称性不同的原子轨道形成σ*

成键轨道。见P 532~533。

2.π-键的形成

当两个P 轨道侧面重叠时,可形成两个π分子轨道。对称性相同的P 轨道形成

成键π轨道。对称性不同的P 轨道形成反键π*

轨道。见P 533~534。

(三)前线轨道理论

前线轨道理论的创始人福井谦一指出,分子轨道中能量最高的填有电子的轨道和能量最低的空轨道在反应只是至关重要的。福井谦一认为,能量最高的已占分子轨道(简称HOMO )上的电子被束缚得最松弛,最容易激发到能量最低的空轨道(简称LUMO )中去,并用图象来说明化学反应中的一些经验规律。因为HOMO 轨道和LUMO 轨道是处于前线的轨道,所以称为前线轨道(简称FMO )。 例如,丁二烯分子中总共有4个π电子,可形成4 个分子轨道ψ1,ψ2,ψ3,ψ4,其中ψ1和ψ2为成键轨道,ψ3和ψ4为反键轨道。当丁二烯处于基态时,分子

轨道ψ1和ψ2各有两个电子,电子态为ψ12,ψ22

,因E 2 > E 1,所以ψ2就是HOMO 轨道。ψ3和ψ4是空轨道,而E 3 < E 4,所以ψ3是LUMO 轨道。ψ2和ψ3都为前线轨道。

化学键的形成主要是由FMO 的相互作用所决定的。

原子轨道图形对称不对称

轨道轨道

S P

§ 18-2 电环化反应

电环化反应是在光或热的条件下,共轭多烯烃的两端环化成环烯烃和其逆反应——环烯烃开环成多烯烃的一类反应。例如:

电环化反应是分子内的周环反应,电环化反应的成键过程取决于反应物中开链异构物的HOMO 轨道的对称性。

一、含4n 个π电子体系的电环化

以丁二烯为例讨论——丁二烯电环化成环丁烯时,要求:

① C 1—C 2,C 3—C 4沿着各自的键轴旋转,使C 1和C 4的轨道结合形成一个新

的σ-键。 ② 旋转的方式有两种,顺旋和对旋。

③ 反应是顺旋还是对旋,取决于分子是基态还是激发态时的HOMO 轨道的对

称性。 丁二烯在基态(加热)环化时,起反应的前线轨道HOMO 是ψ2

所以丁二烯在基态(加热)环化时,顺旋允许,对旋禁阻。

ψψψ

ψ1

23

4

E 1

E 2

E 3

E 4

基态

激发态

丁二烯的分子轨道图

丁二烯在激发态(光照)环化时,起反应的前线轨道HOMO 是ψ

所以丁二烯在激发态(光照)环化时,对旋允许,顺旋是禁阻的。

其他含有π电子数为4n 的共轭多烯烃体系的电环化反应的方式也基本相同。 例如:

二、4n+2个π电子体系的电环化

以己三烯为例讨论,处理方式同丁二烯。先看按线性组合的己三烯的六个分子轨道。

顺旋

允许的

禁阻的

υh υh 对旋(允许)

顺旋(禁阻)

CH 3CH 3Ph Ph

33Ph CH 3Ph

CH 3

℃25顺旋

υ

H 3C

CH 3

H H

H CH 3H

CH 3

CH 3H

H CH 3

顺旋

对旋

π轨道 从己三烯为例的π轨道可以看出:

4n+2π电子体系的多烯烃在基态(热反应时)ψ

3为HOMO ,电环化时对旋是轨道对称性允许的,C 1和C 6间可形成σ-

键,顺旋是轨道对称性禁阻的,C 1和C 6间不能形成σ-键。

4n+2π电子体系的多烯烃在激发态(光照反应时)ψ4

为HOMO 。电环化时顺旋是轨道对称性允许的,对旋是轨道对称性禁阻的。

ψψ

ψψψψ2354

61

E 1

E 2E 3E 4

E 5E 6基态

激发态

ψ3

对旋(允许)

己三烯的热环合

CH 3CH 3

H H 130对旋

33

顺旋

℃ψ4

顺旋(允许)

己三烯的光照环合

υh υ

其它含有4n+2个π电子体系的共轭多烯烃的电环化反应的方式也基本相似。 例如:

从以上讨论可以看出,电环化反应的空间过程取决于反应中开链异构物的HOMO 的对称性,若一共轭多烯烃含有4n 个π电子体系,则其热化学反应按顺旋方式进行,光化学反应按对旋进行;如果共轭多烯烃含有4n+2个π电子体系,则进行的方向正好与上述相反。此规律称为伍德沃德 — 霍夫曼规则,见表17-1

电环化反应在有机合成上的应用也是很有成效的。见P 538~539。

§ 18-3 环加成反应

两分子烯烃或共轭多烯烃加成成为环状化合物的反应叫环加成反应。例如:

环加成反应根据反应物的P 电子数可分为[2+2]环加成和

[4+4] 环加成类型。 环加成反应:

1)是分子间的加成环化反应。

(2)由一个分子的HOMO 轨道和另一个分子的LOMO 轨道交盖而成。 (3)FMO 理论认为,环加成反应能否进行,主要取决于一反应物分子的

HOMO

顺旋

对旋

υCH 2CH 2

CH 2CH 2+

υ

h CHO

CHO

+

轨道与另一反应物分子的LOMO 轨道的对称性是否匹配,如果两者的对称性是匹配的,环加成反应允许,反之则禁阻。

从分子轨道(FMO )观点来分析,每个反应物分子的HOMO 中已充满电子,因此与另一分子的的轨道交盖成键时,要求另一轨道是空的,而且能量要与HOMO 轨道的比较接近,所以,能量最低的空轨道LOMO 最匹配。

一、[ 2+2 ]环加成 以乙烯的二聚为例

在加热条件下,当两个乙烯分子面对面相互接近时,由于一个乙烯分子的

HOMO 为π轨道,另一乙烯分子的LOMO 为π*

轨道,两者的对称性不匹配,因此是对称性禁阻的反应。

光照条件下,到处于激发态的乙烯分子中的一个电子跃迁π*

轨道上去,因此,

乙烯的HOMO 是π*,另一乙烯分子基态的LOMO 也是π*

,两者的对称性匹配是允许的,故环加成允许。

[ 2+2 ]环加成是光作用下允许的反应。

与乙烯结构相似的化合物的环加成方式与依稀的相同。例见P 540。

二、[ 4+2 ]环加成 以乙烯与丁二烯为例讨论

从前线轨道(FMO )来看,乙烯与丁二烯HOMO 和LUMO 如下图:

A B π*π

LUNO

HOMO

热反应(对称性禁阻)

A B π

*

LUNO LUNO HOMO 原光反应(对称性允许)

)Me

Me

Me Me

Me

Me

Me

Me

当乙烯与丁二烯在加热条件下(基态)进行环加成时,乙烯的HOMO 与丁二烯的LUMO 作用或丁二烯的HOMO 与乙烯的LUMO 作用都是对称性允许的,可以重叠成键。所以,[ 4+2 ]环加成是加热允许的反应。如下图:

对称性允许的

乙烯和丁二烯的环加成(热反应)图

在光照作用下[ 4+2 ]环加成是反应是禁阻的。因为光照使乙烯分子或丁二烯分

子激活,乙烯的π*LUMO 或丁二烯的π3*LUMO 变成了π*HOMO 或π3*

HOMO ,轨道对称性不匹配,所以反应是禁阻的。如下图:

对称性禁阻的

乙烯和丁二烯的环加成(光作用)图

大量的实验事实证明了这个推断的正确性,例如D-A 反应就是一类非常容易进

行且空间定向很强的顺式加成的热反应。例如:

πHOMO LUMO π

ππ

ψ3

ψ2

2

3*

*LUMO HOMO 乙烯的前线轨道图

丁二烯的前线轨道图

πHOMO LUMO πππ

32

**

LUMO HOMO (乙烯)

(丁二烯)πHOMO LUMO π3**LUMO HOMO (乙烯)

(丁二烯)π

3

*

LUMO π*(乙烯)

(原来的 )

(原来的 )

LUMO CHO CHO

+

100

100%

其他环加成反应实例见P 541~542。

环加成除[ 2+2 ]、[ 4+2 ]外,还有[ 4+4 ]、[ 6+4 ]、[ 6+2 ]、[ 8+2 ]等。 例如:

[ 2+2 ]、[ 4+4 ]、[ 6+2 ]的归纳为π电子数4n 的一类;[ 4+2 ] 、[ 6+4 ]、[ 8+2 ]的归纳为π电子数4n+2的一类。

环加成反应规律:

§ 18-4 σ- 键迁移反应

双键或共轭双键体系相邻碳原子上的σ键迁移到另一个碳原子上去,随之共轭链发生转移的反应叫做σ键迁移反应。

CO 2CH 32CH 3+

H H

CO 2CH 3

2CH 3

O

CH 3

O CH 3

2υh H 3[ 4+4 }

+345

[ 6+4 ]

例如:

一、[1,j ] σ键迁移 1.[1,j ]σ键氢迁移 [1,j ]σ键氢迁移规律:

迁移规律可用前线轨道理论解释:

为了分析问题方便,通常假定C-H 键先均裂,形成氢原子和碳自由基的过渡态。

R CH-CH=CH-CH=CH

2

D

R CH=CH-CH=CH-CH

2

D

σ键迁移反应

从反应键型看

从迁移位置看

从几何构型看有

同面迁移异面迁移

[ i , j ]迁移[ 3,3 ]σ键迁移[ 1, j ]迁移[ 1, 3 ][ 1, 5 ][ 1,7 ]σ键迁移

σ键迁移

σ键迁移

C _ H C _ C σ键迁移

σ键迁移

主要是1,3H

υ同面迁移

3

[ 1,5 ]H

3

同面迁移

烯丙基自由基是具有三个P 电子的π体系,根据分子轨道理论,它有三个分子轨道。

从前线轨道可以看出,加热反应(基态)时, HOMO 轨道的对称性决定[1,3 ]

σ键氢的异面迁移是允许的。光反应(激发态)时,HOMO 为π3*

,轨道的对称性决定[1,3 ]σ键氢的同面迁移是允许的。如下图:

对[1,5]σ键氢迁移,则要用戊二烯自由基π体系的分子轨道来分析。

戊二烯自由基的分子轨道

由戊二烯自由基的分子轨道图可只知:

υ

h H D R

ππ

π

1

2

3

反键轨道非键轨道成键轨道

基态激发态

LUMO

HOMO

π

2

3

π

*

πππ

1

2

3

激发态

LUMO

ππ4

5

*

*

基态

在加热条件下(基态), HOMO 为π3,同面[1,5] σ键氢迁移是轨道对称性允许的。

在光照条件下(激发态),HOMO 为π4*

,异面[1,5] σ键氢迁移是轨道对称性允许的。

2.[1,j ]σ键烷基(R )迁移

[1,j ]σ键烷基迁移较σ键氢迁移更为复杂,除了有同面成键和异面成键外,还由于氢原子的1S 轨道只有一个瓣,而碳自由基的P 轨道两瓣的位相是相反的,在迁移时,可以用原来成键的一瓣去交盖,也可以用原来不成键的一瓣去成键,前者迁移保持碳原子的构型不变,而后者要伴随着碳原子的构型翻转。

[1,3 ]σ键烷基迁移(热反应,同面迁移,构型翻转)示意图 实验事实与理论推测是完全一致的。例如:

对[1,5 ]σ

键烷基迁移,加热条件下,同面迁移是轨道对称性允许的,且碳原子

3

π

4

*

π

同面允许

异面允许

热反应

光反应

过渡状态(同面迁移)

构型翻转

3

300℃ [1,3 ] σ键烷基迁移(同面 / 翻转)

3

的构型在迁移前后保持不变。讨论从略。

[1,j ]σ

二、[ 3,3 ]σ键迁移

[ 3,3 ]σ键迁移是常见的[i,j ]σ键迁移。最典型的[ 3,3 ]σ键迁移是柯普(Cope )重排和克莱森(Claisen )重排。

1.柯普(Cope )重排

由碳-碳σ键发生的[ 3,3 ]迁移称为柯普(Cope )重排。例如:

[3,3]迁移假定σ键断裂,生成两个烯丙基自由基的过渡态,当两个自由基处于椅式状态时,最高占有轨道HOMO 中,3,3′两个碳原子上P 轨道的对称性是匹配的,可以重叠。在碳原子1和1′之间的键开始断裂时,3,3′之间就开始成键,协同完成迁移反应。

CH 2CH 2CH CH CH 2CH 2

CH 2CH 2CH CH CH 2CH 2

1

2

3

1'

2'

3'

1

2

3

1'

2'

3'

CH CH

CH CH CH 2CH 2

CH CH

CH

CH

CH 2CH 2

12

3

1'

2'

3'

1

23

1'

2'

3'

CH 3CH

CH 3CH 3

CH 2CH 2CH CH C(COOC 2H 5)2CH 2

CH 3

CH

CH 2CH CH C(COOC 2H 5)2

CH 2

CH

333

33

33

2.克莱森(Claisen )重排

克莱森(Claisen )重排是由乙基烯丙基型醚类的碳-氧键参加的σ键[ 3,3 ]迁移反应。

例如:

在酚醚的克莱森(Claisen )重排反应中,如果两个邻位被占据,则烯丙基迁移到对位上。

3

CH 2O

CH=CH 2CH=CH 2H 2C CH O

CH CH 2CH 2

O OH CH 2CH=CH 2

12

3

1'

2'

3'1'

2'

3'12

3

CH 2

CH

CH

2

O OH

CH-CH=CH 212

3

1'2'3'

1'

2'3'12

3

CH 2CH=CH-CH 3

CH

3

O OH

CH 2-CH=CH 2

CH 2CH=CH 2

Me

Me Me

Me

OH

Me Me

CH 2CH=CH 2

有机化学(汪小兰-第四版)教学大纲(最新整理)

《有机化学》教学大纲 课程代码及名称:[11C115010]有机化学 学分:3 总学时:50 开课专业:科学教育(专升本) 一、课程性质、目的和培养目标 有机化学在化工学院的教学计划中是一门基础课。它是化学学科一门关于有机化合物结构,用途以及有机反应原理的重要课程。 课程设置目的是使学生掌握有机化学最基本的理论,知识和技能:为进一步学习生物化学等有关课程准备必要的有机化学基础知识。在教学中应尽可能结合生物系的需要,介绍有关的物质和反应,并兼顾现代有机化学新成就:同时还要注意培养学生辩证唯物主义思想、理论联系实际、实事求是的科学态度和分析问题、解决问题的能力。 要求 1、掌握重要有机化学的命名方法,构造异构现象和顺、反异构现象。 2、掌握各类有机化合物的基本结构及其典型性质。熟悉取代反应、加成反应、聚合反应、缩合反应、氧化、还原反应。了解游离基反应、亲电加成反应、亲电取代反应、亲核加成反应的反应历程。 3、初步掌握旋光异构现象。了解外消旋化和内消旋化。外消旋化的拆分、构象、共轭效应和诱导效应。 4、掌握糖、油脂、类脂、重要杂环母体的结构、组成利性质。 5、萜类、甾类化合物利维生素只作——般了解。

6、每章每节都留有一定的习题作业。在可能的情况下安排一些习题课。 二、课程内容和建议学时分配 第一章绪论(1学时) 1-1 有机化学研究对象与任务 1-2 化学键与分子结构 1-3 共价键的键参数 键长、键角、键能、键的极性。 1-4 分子间的力 1-5 有机化合物的一般特点 1-6 有机反应的基本类型 1-7 研究有机化学的方法 1-8 有机化合物的分类 第二章烷烃(3学时) 2-1烷烃的同系列和同分异构 2-2烷烃的命名;普通命名法、系统命名法、基的概念。 2-3烷烃的结构;SP3杂化轨道、σ一键、键角、键长、键能 2-4烷烃的构象:乙烷、丁烷的构象。 2-5烷烃的性质:物理性质:熔点、沸点、比重、溶解度、化学性质:稳定性、氧化、热裂化、 2-6卤化反应(均裂、异裂、游离反应历程)。天然气和石油。

分子轨道理论的基本要点

分子轨道理论的基本要点→分子轨道的概念 分子轨道的概念分子轨道理论的基本要点 在介绍分子轨道理论的基本要点之前,首先了解一下分子轨道的概念。 通过原子结构理论的学习,我们知道原子中的电子是处于原子核及其它电子所形成的势场中运动的,每个电子都具有一定的空间运动状态和能量。原子中存在着若干种空间运动状态ψ、ψ、ψ……,这些空间运动状态俗称原子轨道,即原子中存在1s、2s、2p……等原子轨道。分子轨道理论设想,在多原子分子中,组成分子的每个电子并不属于某个特定的原子,而是在整个分子的范围内运动。分子中的电子处于所有原子核和其它电子的作用之下,分子中电子的空间运动状态也可以用波函数来描述,这些波函数俗称分子轨道,即分子中电子的空间运动状态叫分子轨道(Molecular orbit),简称MO。 正如原子中存在对应能量的若干原子轨道一样,在分子中也存在对应一定能量的若干分子轨道。像原子结构那样遵循“能量最低原理”将分子中所有电子依次填入各分子轨道中,则可得到分子的电子构型,并由此说明分子的性质,这就是分子轨道理论的基本思路。现将其要点介绍如下。分子轨道理论的基本要点→分子轨道理论的基本要点★★ 分子轨道的概念分子轨道理论的基本要点 1.分子轨道是由原子轨道线性组合而成(linear combination of atomic orbital,简称LCAO),n个原子轨道组合成n个分子轨道。在组合形成的分子轨道中,比组合前原子轨道能量低的称为成键分子轨道,用ψ表示;能量高于组合前原子轨道的称为反键分子轨道,用ψ表示。 例如两个氢原子的1s原子轨道ψA与ψB线性组合,可产生两个分子轨道: ψ=C1(ΨA+ΨB)ψ=C2(ψA-ψB)(式中C1、C2为常数)

有机化学课程教学大纲

《有机化学》课程教学大纲 课程名称:有机化学(Organic Chemistry) 课程代码:ZBB091003-04 适用专业:化学 课程性质:专业核心课程学时学分:96学时/ 6学分 先修要求:无机化学 大纲执笔人:黄国保大纲审核人:杨黄根 教材信息:李景宁主编《有机化学》北京高等教育出版社2011年4月(“十二五”普通高等教育本科国家级规划教材)。 一、课程概述 《有机化学》课程是化学与食品科学学院重要的专业基础课,是理论与生产实际密切结合的应用性很强的学科课程,对人才培养有着非常重要的作用。它以有机化合物为研究对象,以理论的应用为重点,研究有机化学类化合物具有共同特点的化学反应的基本原理,具有理论性、应用性和综合性的特点,是化学(教育)专业开设的一门专业必修课。 《有机化学》课程主要讲授有机化合物的基础知识,使学生在具有无机化学等课程知识的基础上,学习有机化合物相关的基本原理,基本理论。《有机化学》涉及的知识面较广,综合性强,是化学专业本科知识结构中必不可少的组成部分,担负着由基础到专业的特殊使命。不仅培养学生的专业观点、提高学生实际动手能力,而且有助于

培养学生综合运用知识,全面分析问题和解决问题的实际能力,在开发学生智能及综合能力培养等方面具有重要作用和不可替代的地位。 二、课程目标及其与毕业要求的关系 (一)课程目标 通过对《有机化学》课程的学习,使学生获得从事化学教育、化工技术职业岗位必需的有机化学基本理论、基本知识,注重培养学生的基本技能,应用所学的知识分析和解决教学、化工生产中的实际问题,为学习专业课和毕业后从事化学教育、医药以及化工产品的生产、化验、管理等方面的工作打下坚实的基础。具体目标如下:(1)【基本知识和技能】 通过理论知识教学,掌握各类有机化合物的性质、立体异构、有机合成等有机化学基础理论和基本知识,在教学内容选择上本着基础知识以“必需、够用”为度,在教学方法上注重学生自主学习能力的培养,加强应用能力和创新意识培养为原则,构建合理的教学体系。淡化过深的反应机理,强化与实际的联系。 (2)【学科思想方法】 通过实验课程的教学,使学生把理论和实践结合起来。实验教学以基本技能为主,培养学生的创新思维、创新能力为目标的实践课程体系。以严谨的课堂训练为主,培养学生的基本技能。加强相关实验理论安全意识、环境保护意识的培养。 (3)【学科教学育人】

分子轨道理论汇总

第三节分子轨道理论(MOT) 一、概述 要点: A、配体原子轨道通过线性组合,构筑与中心原子轨道对称性匹配的配体群轨道。 B、中心原子轨道与配体群轨道组成分子轨道。 C、电子按照能量由低到高的顺序,依次排在分子轨道中。 形成LCAO-MO的三原则: 二、ABn型分子构筑分子轨道的方法

1、步骤 1)列出中心原子A及配位原子B中参与形成分子轨道的原子轨道; 2)将B原子轨道按等价轨道集合分类(由对称操作可彼此交换的轨道称为等价轨道); 3)将每一等价轨道集合作为表示的基,给出表示;再将其分解为不可约表示; 4)用每一组等价轨道集合构筑出对应于上一步所求出的不可约表示的配体群轨道;

5)将对称性相同的配体群轨道与中心原子轨道组合得分子轨道。 三、金属与配体间σ分子轨道(d轨道能级分裂) 1)A原子用ns、np、(n-1)d 9个轨道,每个B原子用3个p(p x、p y、p z)轨道,共27个轨道形成分子轨道。 * 坐标系选择及配体编号

x y z 1 2 3 5 4 6 p x p y p z A 、中心原子取右手坐标系,配体取左手坐标系; B 、每个B 原子上三个p 轨道各用一个向量表示,方向指向波函数正值方向; C 、规定p z 向量指向中心原子,则p x 、p y 向量应存在于垂直于p z 向量的平

面内; D、规定第一个B原子的p x向量与y 轴平行(* 方向相同),则该B原子的p y向量应与z轴平行(* 方向相同); E、其余(6-1)个B原子的p x和p y 向量的方向由O h群对称性决定。 2)O h群将B原子的18个轨道分为如下等价轨道的集合: I、6个p z轨道(可用于形成σ分子轨道) II、12个p x或p y轨道(可用于形成π分子轨道)

《有机化学》课程教学大纲

《有机化学》课程教学大纲 课程代码:050432023 课程英文名称: organic chemistry 课程总学时:40 讲课:40 实验:0 上机:0 大纲编写(修订)时间:2017.06 一、大纲使用说明 (一)课程的地位及教学目标 1.课程的地位 本课程是无机非金属材料与工程专业的专业基础课,选修。 2.教学目标 掌握有机化合物的基本反应、分析鉴定、基本结构与性能关系,以及主要的有机化学反应机理。使学生在学习无机化学的基础上,比较系统地获得有机化学的基本理论、基本知识、基本实验技能及学习有机化学的基本思想和方法,使学生能根据今后卓越工程师发展计划,进一步学习和钻研与本专业发展密切相关的有机化学方面知识。 (二)知识、能力及技能方面的基本要求 1.知识方面的基本要求 掌握脂环烃的基本物理化学性质、分析鉴定、基本结构与性能关系,以及主要的有机化学反应机理。掌握芳香烃的基本物理化学性质、分析鉴定、基本结构与性能关系,以及主要的有机化学反应机理。掌握卤代烃的基本物理化学性质、分析鉴定、基本结构与性能关系,以及主要的有机化学反应机理。 掌握醇,醚、酮、羧酸和羧酸衍生物的基本物理化学性质、分析鉴定、基本结构与性能关系,以及主要的有机化学反应机理。掌握含氮化合物、杂环化合物基本物理化学性质、分析鉴定、基本结构与性能关系,以及主要的有机化学反应机理。 2.能力方面的基本要求 初步具备分析和解决合成过程中出现问题的能力,具备利用本课程基本理论知识进行科学研究的初步能力。 (三)实施说明 教师在讲授时,应联系实验及生产实践,以加强学生对理论的理解和掌握,提高学生的生产实践观。 (四)对先修课的要求 本门课应在学生修完高等数学、大学物理、物理化学、无机化学后开设。 (五)对习题课、实验环节的要求 1.对习题的要求 适量、适当的习题可以检验学生对所学内容的掌握程度,使教师及时掌握教学效果,对下一步的教学组织,改进教学方法具有直接作用。同时,还可督促学生掌握所学内容。建议根据学生学习的具体情况布置作业。学习中应包含2-3次习题课。 (六)课程考核方式 1.考核方式:开卷或论文。 2.考核目标:考核学生对本课程相关基础知识、基本原理和基本技能掌握情况,适当考核学生分析解决实际问题的能力及计算能力等。

分子轨道理论

分子轨道理论 简介 一种化学键理论,是原子轨道理论对分子的自然推广。其基本观点是:物理上存在单个电子的自 身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。因此,分子轨道理论是一种以单电子近 似为基础的化学键理论。描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分 子结构,并联系到分子性质的系统解释。有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。 理论 1. 原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分 子空间范围内运动。在分子中电子的空间运动状态可用相应的分子轨道波函数书(称为分子轨道)来描述。分子轨道和原子轨道的主要区别在于: ⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。 分子轨道理论⑵原子轨道的名称用s、p、d…符号表示,而分 子轨道的名称则相应地用c、n、A…符号表示。 2. 分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals , LCAO而得到。有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),女口c、n轨道(轴对称轨

有机化学课程教学大纲

《有机化学》课程教学大纲 课程编号:课程性质:必修课 课程名称(中文):有机化学课程适用专业:应用化学、化工、环境等 (英文):Organic Chemistry 课程适用层次:专升本 学时:104(其中面授64,实验32)学分:6.5 一、课程的作用、地位和任务 1、课程作用:有机化学是研究有机化合物的组成、结构、性质及其相互转化规律的学科,是应用化学、化工、及材料类各专业及相关专业(环境、生物科学等)的重要基础课,是一门理论性和实践性并重的课程。有机化学主要讲授有机化学基本知识、基本反应、分析鉴定、制备合成、基本结构与性能关系,以及主要的有机化学反应机理,介绍学科发展前沿。 2、教学方法:课堂讲授、难题讨论、多媒体演示和实验答疑 3、课程学习目标和基本要求:通过本课程的学习,使学生系统地学习有机化学学科发展的前沿动态和重要有机化学知识;掌握有机化学基础知识;关注相关的应用信息;对有机化学在国民经济、社会生活中的重要地位和作用有较好认识。具体包括以下几方面: (1)掌握一般有机化合物的命名、各类化合物的制备及主要的物理性质和化学性质,熟悉主要有机试剂及具体应用。 (2)熟悉各类有机化合物的定性鉴定、分离方法和了解某些定量测定方法;初步学会解析图谱,能根据图谱数据推出一般有机化合物的结构。 (3)掌握一般有机化合物分子结构和性能的关系;掌握有机活泼中间体正碳离子,负碳离子,自由基的生成和反应;能用结构理论、热力学、动力学来解释一

般有机化合物的稳定性和反应;基本掌握自由基取代、亲电加成、亲核加成、消除和芳香族亲电取代、亲核取代等反应机理。 (4)在熟悉各类有机化合物性质及制备的基础上,能将这些知识灵活应用于有机合成。 (5)对于与有机化学密切相关的石油化工、能源、材料、环境等学科有一定的了解,并对这些学科与国民经济、社会生活的联系有一定的认识。 4、课程类型:专业基础课 5、先修课程:大学基础化学、无机化学 二、课程内容和要求 (一)理论教学 第一章绪论 1、知识点 1.1有机化合物和有机化学 有机化合物的定义 1.2 有机化合物的特征 1.3 分子结构和结构式 短线式、缩简式、键线式 1.4 共价键 Lewis 结构式、价键理论、轨道杂化(sp、sp2、sp3 杂化) 键长、键能、键角、键的极性、诱导效应 共价键的断裂和有机反应的类型 均裂(产生自由基)、异裂(形成正、负离子)、自由基反应、离子型反应1.5 分子间的相互作用力 偶极-偶极相互作用、范德华力、氢键 1.6 酸碱的概念 Br? nsted 酸、Br? nsted 碱、共轭酸碱

结构化学-第五章习题及答案

习 题 1. 用VSEPR 理论简要说明下列分子和离子中价电子空间分布情况以及分子和离子的几何构型。 (1) AsH 3; (2)ClF 3; (3) SO 3; (4) SO 32-; (5) CH 3+; (6) CH 3- 2. 用VSEPR 理论推测下列分子或离子的形状。 (1) AlF 63-; (2) TaI 4-; (3) CaBr 4; (4) NO 3-; (5) NCO -; (6) ClNO 3. 指出下列每种分子的中心原子价轨道的杂化类型和分子构型。 (1) CS 2; (2) NO 2+; (3) SO 3; (4) BF 3; (5) CBr 4; (6) SiH 4; (7) MnO 4-; (8) SeF 6; (9) AlF 63-; (10) PF 4+; (11) IF 6+; (12) (CH 3)2SnF 2 4. 根据图示的各轨道的位向关系,遵循杂化原则求出dsp 2 等性杂化轨道的表达式。 5. 写出下列分子的休克尔行列式: CH CH 2 123 4 56781 2 34 6. 某富烯的久期行列式如下,试画出分子骨架,并给碳原子编号。 0100001100101100001100 001101001 x x x x x x 7. 用HMO 法计算烯丙基自由基的正离子和负离子的π能级和π分子轨道,讨论它们的稳定

性,并与烯丙基自由基相比较。 8. 用HMO法讨论环丙烯基自由基C3H3·的离域π分子轨道并画出图形,观察轨道节面数目和分布特点;计算各碳原子的π电荷密度,键级和自由价,画出分子图。 9. 判断下列分子中的离域π键类型: (1) CO2(2) BF3(3) C6H6(4) CH2=CH-CH=O (5) NO3-(6) C6H5COO-(7) O3(8) C6H5NO2 (9) CH2=CH-O-CH=CH2(10) CH2=C=CH2 10. 比较CO2, CO和丙酮中C—O键的相对长度,并说明理由。 11. 试分析下列分子中的成键情况,比较氯的活泼性并说明理由: CH3CH2Cl, CH2=CHCl, CH2=CH-CH2Cl, C6H5Cl, C6H5CH2Cl, (C6H5)2CHCl, (C6H5)3CCl 12. 苯胺的紫外可见光谱和苯差别很大,但其盐酸盐的光谱却和苯很接近,试解释此现象。 13. 试分析下列分子中的成键情况,比较其碱性的强弱,说明理由。 NH3, N(CH3)2, C6H5NH2, CH3CONH2 14. 用前线分子轨道理论乙烯环加成变为环丁烷的反应条件及轨道叠加情况。 15. 分别用前线分子轨道理论和分子轨道对称性守恒原理讨论己三烯衍生物的电环化反应 在加热或者光照的条件下的环合方式,以及产物的立体构型。 参考文献: 1. 周公度,段连运. 结构化学基础(第三版). 北京:北京大学出版社,2002 2. 张季爽,申成. 基础结构化学(第二版). 北京:科学出版社,2006 3. 李炳瑞.结构化学(多媒体版).北京:高等教育出版社,2004 4. 林梦海,林银中. 结构化学. 北京:科学出版社,2004 5. 邓存,刘怡春. 结构化学基础(第二版). 北京:高等教育出版社,1995 6.王荣顺. 结构化学(第二版). 北京:高等教育出版社,2003 7. 夏少武. 简明结构化学教程(第二版). 北京:化学工业出版社,2001 8. 麦松威,周公度,李伟基. 高等无机结构化学. 北京:北京大学出版社,2001 9. 潘道皑. 物质结构(第二版). 北京:高等教育出版社,1989 10. 谢有畅,邵美成. 结构化学. 北京:高等教育出版社,1979 11. 周公度,段连运. 结构化学基础习题解析(第三版). 北京:北京大学出版社,2002 12. 倪行,高剑南. 物质结构学习指导. 北京:科学出版社,1999 13. 夏树伟,夏少武. 简明结构化学学习指导. 北京:化学工业出版社,2004 14. 徐光宪,王祥云. 物质结构(第二版). 北京:科学出版社,1987 15. 周公度. 结构和物性:化学原理的应用(第二版). 北京:高等教育出版社,2000

分子轨道理论

分子轨道理论 通过原子的壳层结构和玻尔的氢原子理论可以很好的从微观角度认识化学规律,并能用电子因素和空间因素阐明化学物质的结构、性能和应用。原子的成键理论就是基于此而建立的,有助于了解物质的基本物理和化学性质。下面对分子轨道理论做一简要介绍。 由两个原子轨道形成的分子轨道,能级低于原子轨道的称为成键轨道;而能级高于原子轨道的称为反成键轨道。当两个符号相同的s轨道相互靠拢,正重叠可形成σ成键轨道;负 重叠时,则形成σ反键轨道。两个符号相同的p轨道肩并肩排列时,相互靠拢正重叠可形成π成键轨道;负重叠时,则形成π反键轨道。在形成分子的过程中,其他原子靠近某原 子时,该原子能级发生重新排列组合,以有利于形成稳定的分子,这一过程叫轨道杂化。如sp杂化是由一个s轨道与一个p轨道组合而成的两个sp杂化轨道。 不同原子有不同的电子结构,它们利用不同的原子轨道进行组合。例如,分子 原子的1s轨道能级低至-64.87eV,无法与氢原子的1s轨道(-13.6eV)成键,因此1σ基本还是原子的1s内层电子,的2s轨道与H的1s轨道能量相近,对称性匹配,可有效形 成σ键。两个原子间还可形成。 有机化合物的分子大部分是由其所含原子的s和p轨道的价电子结合而成。下图简单表示 图(H的成键和反成键轨道)为两个氢原子以s价电子结合,并以σ键组成氢分子,分子 轨道应有σ成键轨道和σ反键轨道。在基态时两个电子占据σ成键轨道,吸收能量后跃迁至激发态σ反键轨道。图(b),表示碳—碳的成键轨道和反键轨道。 下图为乙烯分子的成键轨道示意图。在该分子中每个C原子用sp轨道和其它三个原子相连,C原子和H原子结合成两个sp—s的σ键,C原子间由sp—sp结合成另一个

《有机化学》(I)课程教学大纲讲解

第二学年(2011级) 《有机化学》(I)课程教学大纲 课程编号: 070105、070107 课程性质:必修总学时: 96学时总学分: 6 开课学期:第三、四学期适用专业:化学先修课程:无机化学后续课程:高等有 机选论大纲执笔人: HHH 参加人: CCZZ 大纲审核人: SS 修订时间: 2011年9月编写依据:化学专业人才培养方案( 2009)年版(11修订) 授课年级:11级化学 (一)课程简介 本课程主要介绍各类有机化合物的命名、结构特征、物理性质、化学性质、用途、来源 和制备方法;各类官能团的特性,取代反应、加成反应、消除反应、重排反应、协同反应、氧化还原反应等各种类型有机反应的反应原理、反应条件及其影响因素、应用范围;有机结 构理论,重要的反应机理,尤其是各类化合物的结构与反应性关系;有机分子的立体化学概念,天然产物,有机合成;有机化合物的分离鉴定,有机化合物的结构测定等。要求学生掌 握有机化合物的系统命名原则、各类有机化合物的性质、结构与反应性的关系、立体化学知识、有机化合物的分离鉴定方法、运用化学方法及波谱技术测定有机化合物的结构,初步掌 握有机合成技术,掌握有机结构理论及重要有机反应机理。 现代有机化学的发展日新月异,除了在本学科纵深研究以外,有机化学还与各学科广泛 渗透交叉,如有机化学与生物学交叉产生生物化学、分子生物学等。 21世纪随着生命科学 和材料科学的高速发展,有机化学也将发挥更大的作用。由于波谱学及现代测试手段的飞跃 发展,越来越深刻地揭示有机化学的微观历程,从而大大地促进了有机立体化学及有机合成 化学的发展。人们能更多、更主动地合成出许多复杂的天然有机化合物。与生命现象相关的 有机化学命题,为更深层次揭示自然界生命奥秘提供了理论与方法。 通过本课程的学习,使学生对大纲范围内的有机化学内容有比较系统和全面的了解,使 学生掌握有机化学的基本知识和基础理论;培养学生具有初步的分析问题和解决问题的能力,为学好后续课程打下坚实基础。 (二)本课程教学在专业人才培养中的地位和作用 《有机化学》是高等院校化学专业学生必修的一门重要基础理论课。是在学习无机化学 的基础上,再来系统地学习各类有机化合物的结构、性质,相互转变关系及其内在联系。通

分子轨道理论

分子轨道理论 量子力学处理氢分子共价键的方法,推广到比较复杂分子的另一种理论是分子轨道理论,其主要内容如下: 分子中电子的运动状态,即分子轨道,用波函数ψ表示。分子轨道理论中目前最广泛应用的是原子轨道线性组合法。这种方法假定分子轨道也有不同能层,每一轨道也只能容纳两个自旋相反的电子,电子也是首先占据能量最低的轨道,按能量的增高,依次排上去。按照分子轨道理论,原子轨道的数目与形成的分子轨道数目是相等的,例如两个原子轨道组成两个分子轨道,其中一个分子轨道是由两个原子轨道的波函数相加组成,另一个分子轨道是由两个原子轨道的波函数相减组成: ψ1=φ1+φ2ψ2=φ1-φ2 ψ 1与ψ 2 分别表示两个分子轨道的波函数,φ 1 与φ 2 分别表示两个原子轨 道的波函数。 在分子轨道ψ 1 中,两个原子轨道的波函数的符号相同,亦即波相相同,它们之间的作用犹如波峰与波峰相遇相互加强一样,见图1-17: 在分子轨道ψ 2 中,两个原子轨道的波函数符号不同,亦即波相不同,它们之间的作用犹如波峰与波谷相遇相互减弱一样,波峰与波谷相遇处出现节点(见图1-18)。

两个分子轨道波函数的平方,即为分子轨道电子云密度分布,如图1-19所示。 ,在核间的电子云密度很大,这种轨道从图1-19可以看出,分子轨道ψ 1 ,在核间的电子云密度很小,这种轨道称为反键轨称为成键轨道。分子轨道ψ 1 道。成键轨道和反键轨道的电子云密度分布亦可用等密度线表示,如图1-20所示。 图1-20为截面图,沿键轴旋转一周,即得立体图。图中数字是ψ2数值,由外往里,数字逐渐增大,电子云密度亦逐渐增大。反键轨道在中间有一节面,节面两侧波函数符号相反,在节面上电子云密度为零。 成键轨道与反键轨道对于键轴均呈圆柱形对称,因此它们所形成的键是σ键,成键轨道用σ表示,反键轨道用σ*表示。例如氢分子是由

《有机化学》课程教学大纲

《有机化学》课程教学大纲 一、课程基本信息 课程名称:有机化学 英文名称:Organic Chemistry 适用专业:化学与化工各专业 课程类型:专业必修课 课程性质:专业基础课 课程学时:108学时(54?2) 课程学分:6学分(3?2) 先修课程:无机化学、分析化学 授课方式:讲授与多媒体辅助等 大纲制定人:田来进 大纲审定:有机教研室 制定时间:2013-06-26 二、使用说明 1、课程性质、目的及任务 《有机化学》课程是化学与化工学院化学、应用化学、材料化学、化学工程与工艺、制药工程等专业的一门专业基础课。本课程应使学生在先修课程《无机化学》、《分析化学》的基础上,系统地获得有机化学的基本理论、基本知识、基本技能及学习有机化学的基本思想和方法,了解有机化学与其它学科的相互渗透,以及最新的成果和发展趋势。在创造性思维、了解自然科学规律、发现问题和解决问题的能力方面获得初步的训练。为学习后续课程、进一步掌握新的科学技术成就和发展能力(继续学习的能力,表述和应用知识的能力,发展和创造知识的能力等),为培养高起点、厚基础、宽口径、高素质和能适应未来发展需要的专业人才(面向21世纪、能胜任在科研机构、高等和中等院校及企事业单位,从事化学、应用化学、环境化学、化工工艺以及相关专业的科研和开发、教学及管理工作)打好必要的有机化学基础。并满足硕士有机化学课程入学考试的要求。 2、课程学时、学分、主要教学环节 (1)每周4学时,共计36周(两学期),108学时 (2)学分:6分 (3)主要教学环节 A.课堂讲授、辅导、作业、习题课。结合运用分子模型,组织研讨课、习题课或辅导课。突出教学内容的“精讲”和“启发式”,培养学生分析问题和解决问题的能力,并能锻炼学生表达能力。 B.课后作业:每周约2小时。 3、课程与其它课程的联系 无机化学和分析化学为本课程的先修课程,本课程应在学生学习化学键和原子、分子结构、化学反应速度和化学平衡、以及酸碱理论等基本理论的基础上进行讲授; 四大谱的原理和计算、对称守恒原理,本课程仅作一般介绍,主要由谱学、物质结构等后续课程完成。

《有机化学》课程教学大纲(徐寿昌)

《有机化学》课程教学大纲 学时:60 学分:4.0 适用专业:食品科学与工程 第一部分大纲说明 一、本课程的目的和任务 有机化学是食品专业一门重要的专业基础课。通过本课程的学习,将使学生在中学化学的基础上,对有机化学的基本概念、基本原理和基本技能有进一步的了解和掌握。了解有机化学烷、烯、炔、脂环烃、醇、酚、醚、醛、酮、醌、卤代烃、芳香烃、羧酸及其衍生物、硝基化合物和胺、杂环化合物、碳水化合物、蛋白质、核酸等物质的结构、来源和制备、物理及化学性质及种类有机化合物的重要代表,以及立体化学、波谱分析等基本内容;掌握各类有机化合物的结构与性质,为以后学习食品专业中的生物化学、食品分析、食品工艺、食品化学等专业课打下一定的化学基础。二、本课程的重点和基本要求 1.本课程的重点、难点: 重点:各类有机化合物的结构和化学性质。 难点:共价键的形成理论及应用,有机化合物的反映机理。 2.对学生的要求: 通过本门课的教学,要求学生掌握各大类有机化合物的基本结构和化学性质;了解各大类有机化合物的来源与制备、物理性质及重要代表物;初步学习阅读课外参考书,逐步提高独立思考和解决问题的能力。 通过实验,进一步熟练实验技能,为专业实验课打下坚实的基础。 三、学时分配表:(总60学时,理论学时)

四、选用教材及主要参考书 选用教材:《有机化学》,徐寿昌编。 主要参考书:《有机化学》,天津大学、华东石油学院有机化学教研室编。 《有机化学》,吉林师大等五所院校编。 《基础有机化学》,邢其毅编。 《有机化学》,汪小兰编。 实验课参考书:《有机化学实验》,兰州大学、复旦大学编。 五、教学方法和手段的建议 大学有机化学课程内容理论性强,化合物种类多,化学反应繁杂,因此学生掌握起来有一定难度。在教学过程中,可运用启发式教学方法,调动学生的学习积极性,让学生主动参与教学过程,培养学生的学习兴趣。采用多媒体教学。 对本课程的重点,教师可通过对各类有机化合物结构的分析,首先总结其应有特性,然后逐一讲解化学性质,让学生主动参与教学过程,加深对授课内容的理解。 对本课程的难点,可采取多次重复的讲授方法,在绪论中,首先集中介绍共价键的形成理论,及在C—C、C=C、C≡C中的具体表现,然后在每章中再重复讲解,这样可加深学生的印象。对有机化学的反应机理,可从化合物所具结构(官能团)入手介绍分析,并进行各类化合物的横向比较,使学生对烷烃的自由基取代、烯烃的亲电加成、卤代烃的亲核取代和醛和酮的亲核加成等几大类主要的反应机理有初步了解和掌握。 六、与有关课程的衔接和分工 有机化学可在学完无机化学课程后学,也可与无机化学并列学习。它以中学化学课程和部分无机化学内容为基础,进一步探讨有机化合物的结构与性质。 在以后的学习中,有机化学与生物化学、食品分析、食品化学等专业课程相衔接,与食品工艺、营养与卫生、食品添加剂、仪器分析等课程联系也比较紧密,是多门专业课的基础,尤其是高分子有机化学更是与食品密切相关。因此打好有机化学课程的基础,有利于以后多门专业课的学习。 第二部分课程内容大纲 第一章绪论

量子化学第五章分子轨道理论

第五章分子轨道理论 5.1 Hatree-Fock 方程 Hatree-Fock 近似,也就是分子轨道近似,是量子化学中心之一,分子中的电子占据轨道,这是化学家头脑中很容易想到的。 首先,我们推导一下Hatree-Fock 方程。 由于绝大多数分子都是闭壳层的,因此我们都可以用单slater 行列式作为其波函数,即 12N C f f f ψ= 设我们有正交集i j ij f f δ= 则一、二阶约化密度矩阵为: '*'11111''1111 12'' 21212''112122(,)()() (,)(,)1(,;,)2 (,)(,) i i i x x f x f x x x x x x x x x x x x x ρρρρρρ∧ ∧ ∧∧ ∧∧==∑ 改写一下(Dirac ): *'*'11122*'*'2122 ''1212()()()()1 2 ()() ()()1[()()()()] 2N N i i i i i i N N j j j j j j N i j i j i j j i i j f x f x f x f x f x f x f x f x f x f x f x f x f f f f ρ∧ ≠= =-∑ ∑ ∑ ∑ ∑ 12(1)(1,2)1(1)[(1,2)(1,2)] 2(1,2)(1,2)1[] 2r r N i i i j i j i j j i i i j i i i i i i i i N i i i j i j i j j i i ij E T h T g f h f f f g f f f f g f f f f g f f f f g f f E f h f f f g f f f f g f f ρρ∧∧ ∧ ∧ ≠=+=+--=+-∑ ∑∑ ∑因为i=j 时,=0不影响上式因此 现在就是要利用变分法,看在限制i j ij f f δ=下,什么样i f 的会使E 最小,所以要利用Lagrange 乘子法:

有机化学课程简介

《有机化学(1)》教学大纲 适用四年制本科化学专业 (参考时数:56学时) 一、课程代码:7301349 二、课程的性质、目的 有机化学作为化学学科的重要分支,一直是占据基础学科中心地位之一的重要基础课程,是化学系四年制本科生的学科核心课程。有机化学是研究有机化合物的组成、结构、性质、用途、合成方法以及它们之间相互转变和内在联系的科学。相对于其它基础课程而言,有机化学是一门发展十分迅猛的学科,根据目前数据统计,有机化合物数目在1800万种以上,现仍在以指数形式的速率迅速增长,这些层出不穷的有机化合物不仅带动了有机学科本身的发展,也成了其它化学学科的研究对象,这使有机化学在化学各学科中占有一种十分特殊的地位;若从发展的眼光来看,这种需要还将进一步加强,有机化学的另一个特点是它与其它学科之间的交叉渗透十分广泛。例如:发展很快的生物有机是有机化学与生物化学之间的边缘科学,有机金属化合物的化学则是有机化学与无机化学之间的边缘科学,所以有机化学的教学任务是为学生学习有关专业基础课和专业课、以及今后从事教学、科研、生产和科技开发等工作建立比较牢固的有机化学基础,以及对于将来从事新颖的边缘学科的研究者也有十分重要的作用。 三、课程基本要求 通过有机化学课程的学习,使学生掌握各类有机化合物的基本性质、制备方法及分析鉴定的手段(基本理论、基本知识和基本技能),为解决各类有机化学问题打下基础,因此要求: 1.掌握重要类型有机化合物的命名、物理性质、典型反应和制备方法。 2.初步掌握典型有机化合物结构与性能的关系以及几类典型反应的历程。 3.掌握各种异构现象,了解构象和反应中的立体化学。 4.了解测定结构的物理方法,初步掌握识谱能力。 5.对几类重要的天然产物的基本知识作一般了解。 四、课程内容 第1章绪论(Introduction) 知识点:有机化合物定义和特性,有机化学发展简史、发展与展望及其任务和作用,经典的结构学说、离子键和共价键、原子轨道、价键法、分子轨道法,碳碳单键、碳碳双键、碳碳叁键的特点,有机化合物结构式,有机化合物分类。 内容与要求:了解有机化合物的定义和特性、有机化学发展简史、有机化学的发展与展望、有机化学的任务和作用。熟悉经典的结构学说、离子键和共价键、原子轨道、价键法、分子轨道法。掌握碳碳单键、碳碳双键、碳碳叁键的特点。掌握有机化合物结构式的各种表示方法。熟悉有机化合物分类。 第2章烷烃(Alkanes) 1. 概述(Introduction to alkanes) 知识点:烃,烃的分类,烷烃,来源,用途。 内容与要求:熟悉烃、烷烃的定义、烃的分类,了解烷烃的来源和用途。 2. 烷烃的同系列和异构(Homologous series and isomerism of alkanes) 知识点:同系列,构造,构造异构体,碳原子、氢原子的类型。 内容与要求:熟悉烷烃的同系列、同系物、构造、构造异构体的定义,掌握构造异构体的写法。熟悉伯、仲、叔、季碳原子和伯、仲、叔氢原子。 3. 烷烃的命名(Nomenclature of alkanes) 知识点:普通命名,系统命名(IUPAC法,CCS法),烷基的命名。 内容与要求:了解烷烃的普通命名,掌握烷基的命名、烷烃的系统命名(IUPAC法,CCS法)。 4. 烷烃的构象(Conformation of alkanes) 知识点:构象,构象异构体,构象异构体的表示方法,转动能垒,扭转角。

有机化学理论课 第十八章 分子轨道理论简介

第十八章分子轨道理论简介 一、教学目的和要求 (1)了解分子轨道理论的原理。 (1)了解周环反应的一般规律。 (2)了解分子轨道对称守恒原理在有机合成中的作用。 二、教学重点与难点 分子轨道理论的原理,周环反应的理论。 三、教学方法和教学学时 1、教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合。 2、教学学时:2学时 四、教学内容 第一节电环化反应 第二节环加成反应 第三节σ迁移反应 第四节周环反应的理论 一、电环化反应机理 二、环加成反应机理 三、σ键迁移反应机理 五、课后作业、思考题 习题:1、2、4、6、11。 §18-1 周环反应的理论 一、周环反应 前面各章讨论的有机化学反应从机理上看主要有两种,一种是离子型反应,另一种是自由基型反应,它们都生成稳定的或不稳定的中间体。还有另一种机理,在反应中不形成离子或自由基中间体,而是由电子重新组织经过四或六中心环的过渡态而进行的。这类反应表明化学键的断裂和生成是同时发生的,它们都对过渡态作出贡献。这种一步完成的多中心反应称为周环反应。 周环反应:反应中无中间体生成,而是通过形成过渡态一步完成的多中心反应。 反应物——→产物

周环反应的特征: (1) 多中心的一步反应,反应进行时键的断裂和生成是同时进行的(协同反 应)。 例如: (2) 反应进行的动力是加热或光照。不受溶剂极性影响,不被酸碱所催化,不受任何引发剂的引发。 (3) 反应有突出的立体选择性,生成空间定向产物。 例如: 二、周环反应的理论 (一) 轨道和成键 周环反应的过程,广泛的应用轨道来描述,这些轨道往往是用图形来表示。有机化学中涉及最多的原子轨道为1p 轨道和2s 轨道。 原子轨道线形组合成分子轨道。当两个等价原子轨道组合时,总是形成两个新的分子轨道,一个是能量比原子轨道低的成键轨道,另一个是能量比原子轨道高的反键轨道。 (二)分子轨道对称守恒原理 原子轨道组合成分子轨道时,遵守轨道对称守恒原理。即当两个原子轨道的对称性相同(位相相同)的则给出成键轨道,两个原子轨道的对称性不同(位相不同)的则给出反键轨道。 CHO + CHO R h υ R = -COOCH 3 成键轨道 原子轨道 X 1 2

结构化学 第五章练习题..

第五章 多原子分子的化学键 1. (东北师大98)离域π键有几种类型? (三种) 正常离域π键,多电子离域π键,缺电子离域π键 2. 用HMO 法计算环丙烯基π体系能量。 1 1 1 10 1 1 x x x =展开x 3-3x+2=0 (x-1)2(x+2)=0 解得 x 1=-2,x 2=x 3=1 E 1=α+2β E 2= E 3=α-β E D π=2E 1+E 2=3α+3β 3. NO 2+为直线型, NO 3-为平面三角型,指出它们中心原子杂化类型,成键情况和所属分子点群。 ..4.3O-N-O : 2 D h O N N SP π+ ??∞??.杂化 2643h N SP D O O π?????? ???????????? : 4. (东北师大99)推出y 轴的等性sp 2杂化轨道波函数 解: 等性杂化:c 112=c 212=c 312=1/3, Ψ1中只有p y 成分:c 112+c 12 2=1 1s py ψ 123k k s k px k py c c c ψφφφ=+ +11c =12c

2s py px 3s py px ψψ 5. (东北师大2000)乙烯中∠HCH=11 6.6。 ,其中含-C-H 键指向x 轴的正向,试求形成该键的杂化轨道波函数和杂化指数。 解: x 两个C -H 键夹角为116.6。 cos 0.3091kl αθαα==-=- p 成分/s 成分=(1- α)/α=2.236 所以在C-H 方向上的杂化轨道为:sp 2.236 1111222122233313233=c =c =c s px s px py s px py c c c c c ψφφψφφφψφφφ+++++ 22 213123y 232 22223 33 23 33 2333222221222322220.309 , p , =1 +=1 0.191 c c c c c c c c c c c c c αψψψψ====++==等价,轨道对有相同的贡献

有机化学课程简介及教学大纲(20201101125429)

有机化学”课程简介及教学大纲 课程代码:222(1-2)10012 课程名称:有机化学 课程类别:学科基础课 总学时/学分:80/5 开课学期:第一、二学期 适用对象:药学类各专业 先修课程:普通化学、物理学 内容简介:《有机化学》是药学院各专业本科学生必修的基础课之一,在教学计划中占有重要的地位。本课程主要内容包括:烷烃和环烷烃,立体化学基础、卤代烷,醇和醚,烯烃,炔烃和二烯烃,芳香烃,羰基化合物,酚、醌,羰酸和取代羧酸,羧酸衍生物,有机含氮化合物,杂环化合物,周环反应,氨基酸、多肽、蛋白质和酶的化学,糖类,核酸和辅酶化学等。 一、课程性质、目的和任务 《有机化学》是研究各类有机化合物的结构、性质、相互转化及其规律的一门学科。生命的运动从分子水平上来说就是有机化合物的运动,因此有机化学与生命现象,有着密切关系。 本课程要求学生掌握有机化合物(不含类脂化合物)的结构、命名、性质、官能团化合物之间的相互转换及其规律和立体化学特征,熟悉典型的有机化学反应历程及有机化学研究的一般方法。了解各类代表性有机化合物及其应用。 有机化学是药学专业重要基础课之一,有机化学的迅猛发展,使其在化学各学科中占有十分特殊的地位。有机化学与其它学科的渗透、交叉十分广泛,对生命科学,材料科学、环境科学等研究起着十分重要作用。尤其是药学领域,必须加强有机化学基础的学习。 有机化学的主要任务是通过本课程的教学,使学生系统地掌握有机化学的基本知识、基本理论、基本方法及基本实验技能,使同学们在有机化学学习中受到科学思维的良好训练,提高分析和解决问题的能力,为进一步的学习打下坚实基础。 二、课程教学内容及要求 第一章绪论[6 ][基本内容] 有机化合物和有机化学的概念,有机化学的研究内容及发展历史,有机化学在药学专业中的地位及其重要性。有机化合物的结构、特征、分类,结构测定的一般方法。共价键的性质,碳原子的SP 3 杂化,有机酸碱理论。 [基本要求] 掌握:碳原子的sp 3杂化。 熟悉:有机化合物的定义、特性、结构及共价键的性质。熟悉有机酸碱理论。了解:有机化合物结构的一般测定方法。 重点:碳原子的sp 3杂化,有机化合物结构的一般测定方法。

结构化学第五章习题及答案

结构化学第五章习题 及答案 https://www.360docs.net/doc/231908936.html,work Information Technology Company.2020YEAR

习 题 1. 用VSEPR 理论简要说明下列分子和离子中价电子空间分布情况以及分子和离子的几何构型。 (1) AsH 3; (2)ClF 3; (3) SO 3; (4) SO 32-; (5) CH 3+; (6) CH 3- 2. 用VSEPR 理论推测下列分子或离子的形状。 (1) AlF 63-; (2) TaI 4-; (3) CaBr 4; (4) NO 3-; (5) NCO -; (6) ClNO 3. 指出下列每种分子的中心原子价轨道的杂化类型和分子构型。 (1) CS 2; (2) NO 2+; (3) SO 3; (4) BF 3; (5) CBr 4; (6) SiH 4; (7) MnO 4-; (8) SeF 6; (9) AlF 63-; (10) PF 4+; (11) IF 6+; (12) (CH 3)2SnF 2 4. 根据图示的各轨道的位向关系,遵循杂化原则求出dsp 2等性杂化轨道的表达 式。 5. 写出下列分子的休克尔行列式: CH CH 2 123 4 56781 2 34 6. 某富烯的久期行列式如下,试画出分子骨架,并给碳原子编号。 0100001100101100001100 001101001 x x x x x x

7. 用HMO法计算烯丙基自由基的正离子和负离子的π能级和π分子轨道,讨论它们的稳定性,并与烯丙基自由基相比较。 8. 用HMO法讨论环丙烯基自由基C3H3·的离域π分子轨道并画出图形,观察轨道节面数目和分布特点;计算各碳原子的π电荷密度,键级和自由价,画出分子图。 9. 判断下列分子中的离域π键类型: (1) CO2 (2) BF3 (3) C6H6 (4) CH2=CH-CH=O (5) NO3- (6) C6H5COO- (7) O3 (8) C6H5NO2 (9) CH2=CH-O-CH=CH2 (10) CH2=C=CH2 10. 比较CO2, CO和丙酮中C—O键的相对长度,并说明理由。 11. 试分析下列分子中的成键情况,比较氯的活泼性并说明理由: CH3CH2Cl, CH2=CHCl, CH2=CH-CH2Cl, C6H5Cl, C6H5CH2Cl, (C6H5)2CHCl, (C6H5)3CCl 12. 苯胺的紫外可见光谱和苯差别很大,但其盐酸盐的光谱却和苯很接近,试解释此现象。 13. 试分析下列分子中的成键情况,比较其碱性的强弱,说明理由。 NH3, N(CH3)2, C6H5NH2, CH3CONH2 14. 用前线分子轨道理论乙烯环加成变为环丁烷的反应条件及轨道叠加情况。 15. 分别用前线分子轨道理论和分子轨道对称性守恒原理讨论己三烯衍生物的电环化反应在 加热或者光照的条件下的环合方式,以及产物的立体构型。 参考文献: 1. 周公度,段连运. 结构化学基础(第三版). 北京:北京大学出版社,2002 2. 张季爽,申成. 基础结构化学(第二版). 北京:科学出版社,2006 3. 李炳瑞.结构化学(多媒体版).北京:高等教育出版社,2004 4. 林梦海,林银中. 结构化学. 北京:科学出版社,2004 5. 邓存,刘怡春. 结构化学基础(第二版). 北京:高等教育出版社,1995 6.王荣顺. 结构化学(第二版). 北京:高等教育出版社,2003 7. 夏少武. 简明结构化学教程(第二版). 北京:化学工业出版社,2001 8. 麦松威,周公度,李伟基. 高等无机结构化学. 北京:北京大学出版社,2001 9. 潘道皑. 物质结构(第二版). 北京:高等教育出版社,1989 10. 谢有畅,邵美成. 结构化学. 北京:高等教育出版社,1979 11. 周公度,段连运. 结构化学基础习题解析(第三版). 北京:北京大学出版社,2002 12. 倪行,高剑南. 物质结构学习指导. 北京:科学出版社,1999 13. 夏树伟,夏少武. 简明结构化学学习指导. 北京:化学工业出版社,2004

相关文档
最新文档