振动理论-考题

合集下载

振动学基础练习题及答案

振动学基础练习题及答案

振动学基础练习题及答案一、选择1、物体做简谐运动时,下列叙述中正确的是 [ C ](A )在平衡位置加速度最大; (B )在平衡位置速度最小; (C )在运动路径两端加速度最大; (D )在运动路径两端加速度最小。

2、作简谐运动的单摆,在最大角位移向平衡位置运动过程中 [ B ](A )动能减少,势能增加; (B) 动能增加,势能减少;(C )动能增加,势能增加; (D) 动能减少,势能减少。

3、弹簧振子沿直线作简谐振动,当振子连续两次经过相同位置时,以下说法正确的是(A )加速度不同,动能相同; [ C ] (B )动能相同,动量相同; (C )回复力相同,弹性势能相同; (D )位移、速度和加速度都相同。

4、一弹簧振子,当0t =时,物体处在/2x A =(A 为振幅)处且向负方向运动,则它的初相为[ A ](A )π3; (B )π6; (C )-π3; (D )-π6。

5、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为 [ C ](A) π ; (B) π/2 ; (C) 0 ; (D) θ 。

6、一质点作简谐振动,周期为T 。

当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 [ C ](A) T /12 ; (B) T /8 ; (C) T /6 ; (D) T /47、一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 21。

8、一弹簧振子,物体的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。

当物体通过平衡位置且向规定的正方向运动时开始计时。

《振动力学》习题集(含问题详解)

《振动力学》习题集(含问题详解)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

机械振动期末考试题及答案

机械振动期末考试题及答案

机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。

答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。

答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。

大学机械振动考试题目及答案

大学机械振动考试题目及答案

大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。

A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。

A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。

A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。

A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。

A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。

答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。

答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。

答案:线性9. 振动系统的动态响应可以通过______分析法求解。

答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。

答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。

答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。

在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。

12. 解释什么是阻尼振动,并说明其特点。

答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。

其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。

13. 描述什么是受迫振动,并给出其稳态响应的条件。

答案:受迫振动是指系统在周期性外力作用下的振动。

当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。

机械振动测试题及答案

机械振动测试题及答案

第九章机械振动单元测试班级姓名学号一'选择题:(每题3分,共36分)1.关于振幅,以下说法中正确的是()①物体振动的振幅越人,振动越强烈②•个确定的振动系统,振幅越人振动系统的能量越人③ 振幅越大,物体振动的位移越大④振幅越大,物体振动的加速度越人D C•②③.③④A.①② B.①③2.振动的单摆小球通过平衡位置时,关于小球受到的回复力及合外力的说法正确的是()A.回复力为零:合外力不为零,方向指向悬点B.回复力不为零,方向沿轨迹的切线C.合外力不为零,方向沿轨迹的切线D.回复力为零,合外力也为零()3.下列说法中不正确的是A.某物体做自由振动时,其振动频率与振幅无关B.某物体做受迫振动时,其振动频率与固有频率无关C.某物体发生共振时的频率就是其自由振动的频率D .某物体发生共振时的振动就是无阻尼振动4.发生下述哪•种情况时,单摆周期会增大()B.缩短摆长A.增大摆球质量.将单摆由山下移至山顶DC.减小单摆振幅5.摆长和等的两单摆悬挂在同•个固定点,将它们从最低点分别向两边拉开,偏角各为3°和5° . 同时将它们释放后,它们相遇在()A.最低点左侧B.最低点右侧C.最低点D.无法确定()6.关于共振的防止和利用,应做到①利用共振时,应使驱动力的频率接近或等于振动物体的固有频率②利用共振时,应使驱动力的频率大于或小于振动物体的固有频率③防上共振危害时,应尽量使驱动力频率接近或等于振动物体的固有频率④防止共振危害时,应使驱动力频率远离振动物体的固有频率A B. <D<3) C.②③ D. (§Xg)图1点,这时弹簧恰所示,物体静止于水平面上的07.如图1,与水平而间的动摩擦W mL为原长,物体的质量为。

现将物体向右拉•段距离后自由释放,使之沿•数为U )水平而振动,下列结论正确的是(O点时所受的合外力为零.物体通过A・物体将做阻尼振动BO点C.物体最终只能停止在mg UD.物体停止运动后所受的摩擦力为开.8.如图2所示,曲轴上悬挂•弹簧振转动摇把,曲轴可以带动弹费振子上下振动,然后匀速转动摇把,转2 Hz 始时不转动摇把,让振了上下自由振动测得振动频率为)速为240 r/rnin,当振子振动稳定后,它的振动周期为(114s2sDsB. sC.. A. ____________ 42、的驱,B的固有频率为4f,若它们均在频率为39. AfB两个弹簧振JS A的固有频率为f动力作用下做受迫振动,则()的振幅较人,振动频率为f・振/B的振幅较人,振动频率为3B f.振了A的振幅较大,振动频率为3Cf・振了B 的振幅较人,振动频率为D所示装置中,先后用两个不同9-1910.在课本插图匀N,以速度v 次用纸板的砂摆做实验,第Im,以速度v匀速拉动速拉动;第2次用纸板Nx符合关系、T结果形成如图3所示的砂了分布的曲线.已知\=2v,则两个摆的周期T2211 )(Ti =T4TD・ TT・ AT=TB・=2TC・=21 2221_ 41. •物体在某行星农Ifti受到的万有引力是它在地球衣[fri受到的万有引力的。

振动理论练习题

振动理论练习题

第1章练习题题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。

(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。

题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。

题1.2图题1.3图题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。

试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。

题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。

题1.4图题1.5图题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。

题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。

AB杆为刚性,本身质量不计。

题1.6图题1.7图题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。

题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。

求此系统的相对阻尼系数ζ。

题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。

(1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。

试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。

题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。

机械振动试题

机械振动试题

机械振动试题一、选择题1. 下列关于机械振动的说法中,正确的是:A. 机械振动只存在于弹簧系统中B. 机械振动只存在于质点系统中C. 机械振动既存在于弹簧系统中,也存在于质点系统中D. 机械振动只存在于液体中2. 以下哪个现象不属于机械振动的特征:A. 周期性B. 振动幅度相等C. 能量交换D. 机械振动的振幅随时间变化3. 关于自由振动和受迫振动的说法,正确的是:A. 自由振动需要外力驱动B. 受迫振动不需要外力驱动C. 自由振动和受迫振动都需要外力驱动D. 自由振动和受迫振动都不需要外力驱动4. 振动系统的自然频率与以下哪个因素无关:A. 系统的刚度B. 系统的阻尼C. 系统的质量D. 系统所受的外力5. 下面哪种振动现象是产生共振的原因:A. 外力频率与振动系统自然频率相同B. 外力频率与振动系统自然频率不同C. 外力频率与振动系统自然频率较大差异D. 外力频率与振动系统自然频率较小差异二、简答题1. 什么是机械振动?机械振动是物体围绕平衡位置做周期性的往复运动。

它有着特定的振动频率和振幅,是一种具有周期性和能量交换的运动形式。

2. 机械振动有哪些特征?机械振动具有周期性、振幅相等、能量交换和振幅随时间变化等特征。

周期性表示机械振动运动形式的重复性;振幅相等表示振动系统在每个周期内的振动幅度相等;能量交换表示振动系统的能量在正、反向振动过程中的转化与交换;振幅随时间变化表示振动幅度随着时间的推移而发生变化。

3. 什么是自由振动和受迫振动?自由振动是指机械振动系统受到初位移或初速度激发后,在无外力驱动的情况下进行的振动。

受迫振动是指机械振动系统受到外力周期性激励后产生的振动。

4. 什么是共振现象?共振现象是指当外力的频率与振动系统的自然频率相同时,产生的振幅迅速增大的现象。

在共振状态下,系统振幅可能会无限增大,从而引起系统的损坏甚至破坏。

5. 如何减小机械振动的共振现象?减小机械振动的共振现象可以通过以下几种方法来实现:- 调整外力的频率,使其与振动系统的自然频率有所偏离,避免共振;- 增加阻尼,通过增加振动系统的阻尼来消耗振动能量,减小共振现象;- 改变振动系统的刚度和质量,使其自然频率与外力频率有所偏离,从而减少共振。

(完整版)大学物理振动习题含答案

(完整版)大学物理振动习题含答案

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《振动力学》——习题
单自由度系统的自由振动
2-1 如图2-1 所示,重物
W悬挂在刚度为k的弹簧上并处于静止平衡位置,另一重物2W
1
从高度为h处自由下落到
W上且无弹跳。

试求2W下降的最大距离和两物体碰撞后
1
的运动规律。

图2-1 图2-2
2-2 一均质等直杆,长为l,重量为w,用两根长h的相同的铅垂线悬挂成水平位置,如图2-2所示。

试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。

2-3 一半圆薄壁筒,平均半径为R, 置于粗糙平面上做微幅摆动,如图2-3所示。

试求其摆动的固有频率。

图2-3 图2-4
2-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:
(1)振动过程中杆被约束保持水平位置;
(2)杆可以在铅垂平面内微幅转动;
(3)比较上述两种情况中哪种的固有频率较高,并说明理由。

2-5 试求图2-5所示系统中均质刚性杆AB在A点的等效质量。

已知杆的质量为m,A 端弹簧的刚度为k。

并问铰链支座C放在何处时使系统的固有频率最高?
图2-5 图2-6
2-6 在图2-6所示的系统中,四个弹簧均未受力。

已知m =50kg ,19800N m k =,
234900N m
k k ==,419600N m k =。

试问:
(1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离?
2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的
转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。

试求此系统的固有频 率。

图2-7
2-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼
系数及阻尼固有频率。

图2-8 图2-9
2-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。

试求系统的无阻尼固有频率n ω及阻尼ζ。

单自由度系统的强迫振动
3-1 如图3-1所示弹簧质量系统中,两个弹簧的连接处有一激振力0()sin P t P t ω=。


求质量块的振幅。

图3-1 图3-2
3-2 图3-2所示系统中,刚性杆AB 的质量忽略不计,B 端作用有激振力0()sin P t P t ω=,
写出系统运动微分方程,并求下列情况中质量m 作上下振动的振幅值:(1)系统 发生共振;(2)ω等于固有频率n ω的一半。

3-3 建立图3-3所示系统的运动微分方程,并求出系统的固有频率n ω,阻尼比ζ以及
稳态响应振幅。

图3-3
3-4 一机器质量为450kg ,支撑在弹簧隔振器上,弹簧静变形为0.5cm ,机器有一偏心
重,产生偏心激振力20 2.254P g ω=,其中ω是激振频率,g 是重力加速度。

试求: (1)在机器转速为1200r/min 时传入地基的力;(2)机器的振幅。

3-5 证明:粘滞阻尼利在一个振动周期内消耗的能量可表示为
2
2
2
2
2(1)(2)
P E k
πςλλςλ∆=
-+
3-6 单自由度无阻尼系统受图3-6所示的外力作用,已知(0)(0)0x x
== 。

试求系统的 响应。

图3-6 图3-7
3-7 试求在零初始条件下的单自由度无阻尼系统对图3-7所示激振力的响应。

3-8 图3-8为一车辆的力学模型,已知车辆的质量m 、悬挂弹簧的刚度k 以及车辆的水
平行驶速度v 。

道路前方有一隆起的曲形地面:
2cos s y a x l π⎛
⎫= ⎪
⎝⎭
1-
(1)试求车辆通过曲形地面时的振动;
(2)试求车辆通过曲形地面以后的振动。

图3-8
3-9 图3-9是一轻型飞机起落架着陆冲撞的简单力学模型。

试求弹簧从接触地面至反跳
脱离接触的时间。

3-10 图3-10所示的箱子从高h 处自由下落,箱体内有足够的间隙允许质量m 运动,
并且箱体质量远大于m 。

若箱子触地后不再跳起,试求:(1)箱子下落过程中质 量块相对于箱体的运动;(2)箱子落地后传到质量块上的最大作用力。

图3-9 图3-10
多单自由度系统的振动
4-1 图4-1所示系统中,各个质量只能沿铅垂方向运动,假设123m m m m ===,
123456k k k k k k k
======。

试求系统的固有频率及振型矩阵。

图4-1 图4-2
4-2 试计算图4-2所示系统对初始条件[]00000T
x =和[]
000
T
x
v v = 的响应。

4-3 试确定题4-2的系统对作用于质量m 1和质量m 4上的阶跃力14p p p ==的响应。

4-4 如图4-4所示,已知机器质量为1=90kg m ,吸振器质量为2=2.25kg m ,若机器上有
一偏心质量m 0.5kg '=,偏心距e =1cm ,机器转速n =1800r/m 。

试问:
(1)吸振器的弹簧刚度k 2多大,才能使机器振幅为零?
(2)此时吸振器的振幅B 2为多大?
(3)若使吸振器的振幅B 2不超过2mm ,应如何改变吸振器的参数?
图4-4。

相关文档
最新文档