模态分析理论基础
模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。
模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。
一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。
一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。
模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。
将特征值从小到大排列就是阶次。
实际的分析对象是无限维的,所以其模态具有无穷阶。
但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。
一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。
所以模态的阶数就是对应的固有频率的阶数。
振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一阶固有频率都对应一种振型。
振型与体系实际的振动形态不一定相同。
振型对应于频率而言,一个固有频率对应于一个振型。
按照频率从低到高的排列,来说第一振型,第二振型等等。
此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。
在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。
实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。
固有频率也称为自然频率( natural frequency)。
模态分析的基础理论

模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。
在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。
模态分析的基础理论包括概率论、统计学和模态分析技术等。
概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。
在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。
通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。
统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。
模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。
在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。
聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。
主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。
这可以帮助我们更好地理解系统模态之间的关系和重要性。
模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。
通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。
模态分析的基础理论对于理解和优化系统具有重要意义。
通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。
同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。
因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。
第3章 实验模态分析的基本理论

实验模态分析第三章:实验模态分析的基本理论振动系统的特性可以用模态来描述:固有频率、固有振型(主振型)、模态质量、模态刚度和模态阻尼等。
建立用模态参数表示的振动系统的运动方程并确定其模态参数的过程使称为模态分析。
—种理解可以认为,振动系统的物理模型、物理参数和以物理参数表示的运动方程都是已知的,引入模态参数、建立模态方程的目的是为了简化计算,解除方程耦合,缩减自由度。
另一种理解可以认为,通过对实际结构的振动测试,识别振动系统的模态参数,从而建立起系统的以模态参数表示的运动方程,供各种工程计算应用。
试验模态分析指的是后一种过程,即通过振动测试(称模态试验),识别模态参数,建立以模态参数表示的运动方程这样一个过程。
1 多自由度系统振动基础回顾&&&++=M x C x K x f t []{}[]{}[]{}{()} 2实模态理论一个n 自由度线性定常振动系统,其运动方程可以如下表示:现对两端作付氏变换得:[]{}[]{}[]{}{()}M x C xK x f t ++=&&&2([][][]){()}{()}M j C K X F ωωωω−++=式中和分别是x(t)和F(t)的付氏变换,并有()X ω()F ω()()j t X x t e dt ωω+∞−−∞=∫()()j t F f t e dtωω+∞−−∞=∫(){()}{()}Z X F ωωω=111212122212()()()()()()()()()()n n n n nn Z Z Z Z Z Z Z Z Z Z ωωωωωωωωωω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 1()[()]{()}{()}{()}X Z F H F ωωωωω−==2[][][]K M j C ωω=−+阻抗矩阵中各元素值无法在实际振动测试中获得,因为人们不可能在实际结构上固定其它坐标,令其不动,仪留下J坐标,待其作出响应;也不可能仅使某个坐标运动,在其余坐标上测量力。
_模态分析理论基础

IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
Iration Engineering, Northwestern Polytechnical University, China
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结 构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准 确确定的影响,特别是结构的形状和动态特性很复杂时,
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
•解的形式(s为复数)及拉氏 变换: x Xest (ms2 cs k ) x(s) f (s)
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
实验模态分析基本理论

机械式(Mechanical):频带窄(10-100Hz)、行程一般数毫米、 噪音大、位移和波形控制不精确;
3.频响函数的测量
(2) 冲击激励(Impact Excitation): 力锤(Hammer),适用于小阻尼线性结构。还有夯锤、 落锤、摆式冲击锤、小火箭等;
(3) 脉动等(Enviromental Excitation): 利用大地、地震、人工爆炸模拟地震风等条件引起的振动。
3.频响函数的测量
1.3 测量系统(Measurement System): 传感器+放大器(Transducer+Amplifier) ICP传感器(内装IC放大电路) (Integrated Circuit Piezoelectric)
第8章 实验模态分析初步
1.结构动特性的建模方法
理论建模:动力学仿真分析
耦合的力平衡方程 Mx(t) Cx(t) Kx(t) f (t)
通过有限元离散模型,采用模态分析理论、特征值求解技术和矩阵变换 技术获得结构的动力学特性:频率、阻尼和振型;建立结构完整模态模 型(一组解耦的方程组)、系统的传递特性(传递函数或频响函数), 进一步建立结构的频域响应计算模型和时域响应计算模型。
3.频响函数的测量
4 测点布置与激振点的选择 测点布置 1.能够较好地反映结构物的构型 2.能够充分显示结构的模态振型 例:一个梁单元无法求解简支梁的10个模态。计算上一般要求至少 20个单元,计算出的20阶模态,只有前10阶准确。
激励点 应避开节点节线。多点激励进行校核。
激励力的选择 在不破坏试件的情况下,尽可能大的激励力,有助于提高信噪比。 不同大小的激励力,可以定性考查结构非线性的程度
模态分析理论基础

点,有图可知节点并不唯一,而且修改前后节点的位置未变。
对应尽可能避开结构振动的节点,以免给测量带来误差。
4.4试验模态分析试验模态分析的目的是为了验证理论模态分析的正确性的基础上进行深入研究奠定基础。
4.4.1试验模态分析的理论基础阻1所以在进行模态实验为在理论模态分析在物理坐标下,描述N自由度离散振动系统的运动微分方程为阻】耕+【c】扛}+医】M=沙}(4.2)式中:【M]——质量矩阵(对称且正定),M∈R~,【C】——阻尼矩阵,C∈R“”,晖】——刚度矩阵(对称且正定或半正定),K∈R“”,{x),{卦,{封——N维位移、速度和加速度响应向量,{厂(r))——_N维激振力向量。
设系统的初始状态为零,对式(4.2)两边进行拉普拉斯变换可得([Mls2“C]s+【K]){X0))=【Z(s)]{工0))={F0))式中的矩阵【Z(s)]-([M]s2+[c]s+[K】)反映了系统的动态特性,称为系统动态矩阵或广义阻抗矩阵,其逆阵[日(5)】=[Z(s)】~=(【M]s2+【C]s+[K])。
1称为广义导纳矩阵,也就是传递函数矩阵。
由式(2.2)可知{x(J))_【日0)】(F(J)}在上式中.令S=joJ,即可得到系统在频域内输出和输入的关系式{并(国)}=【日(脚)】(F(国))(4.3)(4.4)(4.5)(4.6)(4.7)式中[H(co)】为频率响应函数矩阵。
[H(∞)】矩阵中第f行_,列的元素%(叻2篇(48)表示仅在』坐标激振(其余坐标激振力为零)时,i坐标的响应与激振力之比。
在式(4.4)中令S=_,∞,可得阻抗矩阵[z(∞)】=([K]一曲2【吖])+jco[C](4.9)它和导纳矩阵有类似式(4.5)的关系[日(珊)]=[z(国)】~={(【置卜。
2[^卅)+jco[C】}1(4.10)对于一般机械、结构,假设矩阵[c]也对称,这样矩阵【z(∞)】对称,频率响应函数矩阵[日@)]也对称,故有q(脚)=HⅣ(03)(4.11)上式反映了机械、结构频率响应有互易性,可作为频率响应测试精度的一项重要检验手段。
模态分析的基础理论

运动微分方程
单自由度系统无阻尼自由振动是简谐振动
2π
m
T 2π
n
k
fn
1 T
n
2π
1 2π
k m
能量关系
mx dx kx dx 0 dt dt
意义:惯性力的功率Fm与弹性力的功率Fs之和为零
d dt
1 2
mx2
1 2
kx 2
0
ET
1 mx2 2
单自由度系统
自由振动 简谐振动 非周期强迫振动
自由振动
振动系统在初始激励下或外加激励消失后的 运动状态。
自由振动时系统不受外界激励的影响,其运 动时的能量来自于初始时刻弹性元件和惯性 元件中存储的能量。
振动规律完全取决于初始时刻存储的能量和 系统本身的性质。
运动微分方程
•使该矢量以等角速度在复平面内旋转(复数旋转矢量)
虚轴
ei x cos i sin
P A
t
z Acost i sint Aeit
实轴
y Asint Im z Im Aeit
运动学
速度、加速度的复数表示
位移 x Aeit
速度 x d Aeit iAAeeiitt / 2
2.0
0.5 和 0.7 临 界 阻 尼 比 无
c/cc=0
抛物线
阻尼曲线更接近理想加
1.5
速度计曲线
c/cc=0.5
1.0
c/cc=0.7
0.5
0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
模态分析基本理论

+ +
(C1 (C2
+ +
C2 C3
)x&1(t) - C2x&2 (t) )x&2 (t) - C2x&1(t)
+ +
(K1 (K2
+ K2 )x1(t) - K2x2 (t) + K3 )x2 (t) - K2x1(t)
= =
f1 (t) f2 (t)
第三节 多自由度振动系统举例
一 系统方程
写出矩阵形式:
\
eλ1 t
\
e∧t
\
=
O
0
eλN t
eλ*1 t
0
O
e
λ*N
t
第四节 多自由度系统相关模态概念
一 无阻尼系统
阻尼矩阵[C]为零矩阵的系统
系统阻尼因子σ r = 0 ,全为纯虚数极点 λ1 = jω,L , λ*N = − jωN
系统方程:
P2 + Pα Pβ+1
[M]
+
[K
]{x}
=
{0}
比例阻尼系统频响函数
\
或 [H( jω)] = [ψ]
[ ] ∑ { } { } H(jω)
=
N
j2ωr Qr
ψ
r
ψ
T
r
r =1
(σ
2
r
+
ω
2
r
-
ω
2
)
-
2σ
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准
确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
•传递函数和频率响应函数
H(s)m2s(11jg)k
H()m21(1jg)k
(1+jg)k — 复刚度
–用实部和虚部表示
H ()1 k (1 1 2 )22 g2j(1 2)g 2g2
与粘性阻尼系统相比频响函数形式相同 g和2 相互置换即可得各自表达式
位移、速度和加速度传递函数
Hd (s)
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
x(s) f (s)
Hv(s)
v(s) f (s)
Ha(s)
a(s) f (s)
• 位移、速度和加速度频率响应函数
()
x() f ()
Hv()
v() f ()
• 三者之间的关系
Ha()
a() f ()
H a () jH v () ( j) 2 H d () 2 H d ()
• 动刚度(位移阻抗) Z(s)m2 sc sk • 动柔度(位移导纳) H(s)m2s1csk
H 1(1)2(m 1 (km 2 )k 2 (m 2 )2m c) m cm 1 m 2/m (1m 2)
• 曲线及特性
– 0时
H 1(1 ) 2(m 1 1m 2)21 m e0
m e0(m 1m 2) 零阶等效质量
» 系统产生刚体运动 » 零频为刚体模态 – 反共振点
A 2 k/m2
– 一个共振点
模态分析定义为:将线性时不变系统振动微分方程组中 的物理坐标变换为模态坐标,使方程组解耦,成为一组以 模态坐标及模态参数描述的独立方程,坐标变换的变换矩 阵为振型矩阵,其每列即为各阶振型。
解析模态分析可用有限元计算实现,而试验模态分析则是对结构进行 可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数 矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结 构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。
第一章模态分析理论基础
姜节胜 西北工业大学 振动工程研究所
0
模态分析理论基础是20世纪30年代机械阻抗 与导纳的概念上发展起来。吸取了振动理论、 信号分析、数据处理、数理统计、自动控制理 论的有关营养,形成一套独特的理论。
模态分析的最终目标是识别出系统的模态 参数,为结构系统的振动分析、振动故障诊断 和预报、结构动力特性的优化设计提供依据。
b. 为了应用模态叠加法求结构响应,确定动强度, 和疲劳寿命
分析告诉我们任何线性结构在已知外激励作用下他的响应是可以 通过每个模态的响应迭加而成的。所以模态分析另一主要的应用是建 立结构动态响应的预测模型,为结构的动强度设计及疲劳寿命的估计 服务。
c. 载荷(外激励)识别
由激励和模态参数预测响应的问题称为动力学正问题,反之由响应 和模态参数求激励称为反问题。原则上只要全部的各阶模态参数都求 得, 由响应就可以求出外激励(称为载荷识别)。
•起始点(频率为零)非原点,约 在(1/k,-g/k)处,圆心坐标(0,1/2kg) •初相角为arctan(-g) •圆的直径为虚部最大值1/(kg) •半径为实部最大值1/(2kg) •直径处对应半功率带宽两个频 率点
共振频率点
ds max
d 1
• 粘滞阻尼系统
– Nyquist图
2
2
[H R()2] (H I()2 )4k1 4k1
– 简谐激励 • 激励力 • 响应
f(t)Fje(t) x(t)Xje(t)
•
位移频响函数
Hd
Xej() F
• 周期激励
非正弦周期力,如方波、锯齿波,周 期为T
f(t) f(
n)ejnt,
n2n/T
n1
响应的傅氏展开
_
x(t) x(
n)ejnt,
n2n/T
n1
频响函数(定义为各频率点上的值)均包含幅值与相位
实部:衰减因子,反映系统阻尼 虚部:有阻尼系统的固有频率
阻尼比 范围(0-1)
内为欠阻尼
无阻尼固有频率
结构阻尼(滞后阻尼)系统
• 阻尼力:与位移成正比,相位比位移超前90度
fd jx • 结构阻尼系数
gk
g — 为结构阻尼比或结构损耗因子
• 运动方程及拉氏变换
..
mxk xjxf
[m 2 ( s 1 j) g k ]x (s)f(s)
0 H (7 ) max
半功率的概念是针对功率(而非幅值) 而言,在半功率点处,虚部正好为其最 大值的一半,但幅值却为最大幅值的有 效值。
Nyquist图-频响函数矢端轨迹图
•结构阻尼系统 Nyquist圆(导纳圆)
2
2
[H R()2] (H I()2)21 k g 21 k g
》特点
– 输入自功率谱密度
Gff Rff()ejd
0
– 输入输出互相关函数 R x(f) E x ( t)f( t )
– 互功率谱密度函数
Gxf Rxf()ejd
0
– 频响函数
H ()G x(f)/G ff()
• 多自由度系统的频响函数分析
– 两类系统
• 约束系统 • 自由系统
– 约束系统
• 质量阻抗、阻尼阻抗、刚度阻抗(位移、速度、加速度) • 质量导纳、阻尼导纳、刚度导纳(位移、速度、加速度)
左至右 阻抗除 j , 导纳乘j
•单自由度频响函数的特性曲线
Bode图(幅频图和相频图)
•幅频图:频响函数的幅值与频率的关
系
H ( )H R ( )2H I( )2 k
1
12 222
反共振是局部现象(仅仅 m1 振幅为零,因为此时频响函数的其他
项均不为零)。
机架线
• 一般多自由度约束系统
机架线
– N自由度约束系统有N个共振频率,(N-1)个反共振频率 – 对原点函数共振反共振交替出现 – 对跨点频响函数无此规律 – 一般两个距离远的跨点出现反共振的机会比较近的跨点少
– 自由系统
•相频图:相位与频率的 关系
HarcH H tR Ia(( n))arc(1 t 2 a n 2)
阻尼愈大,在固有频率 附近相位曲线的陡度
越小
0时曲线始点约为1/k,为弹簧的导纳线;
低频时外力主要由弹簧力来平衡;
0,1 时,产生共振,幅值为 1/2k
此时惯性力与弹簧力平衡,激励力与阻尼力平衡
0 时幅值下降,最后趋向于渐近线1/2m
试验模态分析的典型应用
a. 获得结构的固有频率,可避免共振现象的发生
当外界激励力的频率等于振动系统的固有频率时,系统发生共振 现象。此时系统最大限度地从外界吸收能量,导致结构过大有害振动。 结构设计人员要设法使结构不工作在固有频率环境中。
相反,共振现象并非总是有害的:振动筛、粉末碾磨机、打夯机 和灭虫声发射装置等等就是共振现象的利用。结构设计人员此时要设 法使这种器械工作在固有频率环境中,可以获得最大能量利用率。
– 原点频响函数
» 第i点的响应与第i点的激励之间的频响函数 – 跨点频响函数
Hij(),ij
» 第i点的响应与第j点的激励之间的频响函数 Hij(),ij
• 原点频响函数特性
– 原点频响函数
H 1(1)(k 1 k2 k 1 2 m k 2 2 ) k ( 1 2 m 2 2 m 1 ) k 1 2
» 特点
»桃子形轨,迹阻圆尼越比大越小
» (是变的,所以不是圆 )
在固有频率附近,曲线 接近圆,仍可利用圆
的特性
速度与加速度频响函数特性曲线
• 关系回顾
H a () jH v () 2 H d ()
• 幅频图
实频图与虚频图
•Nyquist图
• 不同激励下频响函数的表达式
– 要点 • 频响函数反映系统输入输出之间的关系 • 表示系统的固有特性 • 线性范围内它与激励的型式与大小无关 • 在不同类型激励力的作用下其表达形式常不相同
d. 振动与噪声控制
既然结构振动是各阶振型响应的迭加,只要设法控制相关频率附近 的优势模态(改设计和加阻尼材料等或使用智能材料)就可以达到控 制结构振动的目的。
对汽车车厢内或室内辐射噪声的控制,道理也一样。车厢座舱或室 内辐射噪声与其结构的振动特性(模态)关系密切,由于辐射噪声是 由结构振动“辐射”出来的。控制了结构的振动,也就是实现了辐射 噪声的控制。
1
(1
)
2
1
g
2
半功率带宽反映阻尼大小 阻尼越大,半功率带宽
越大,反之亦然
• 虚频图 • HI()k[1(2g )2g2](结构阻尼) • HI()k[1 ( 2)2 2( 2() 2]粘性阻尼)
• 以结构阻尼为例:
– 系统共振时虚部达到最大值
– 系统共振时实部为零
– 半功率点处的值