两变量之间关系的分析
线性回归分析的基本原理

线性回归分析的基本原理线性回归分析是一种常用的统计分析方法,用于研究两个变量之间的线性关系。
它通过拟合一条直线来描述两个变量之间的关系,并利用这条直线进行预测和推断。
本文将介绍线性回归分析的基本原理,包括模型假设、参数估计、模型评估等内容。
一、模型假设线性回归分析的基本假设是:自变量和因变量之间存在线性关系,并且误差项服从正态分布。
具体来说,线性回归模型可以表示为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。
线性回归模型假设误差项ε服从均值为0、方差为σ^2的正态分布。
二、参数估计线性回归模型的参数估计通常使用最小二乘法。
最小二乘法的基本思想是通过最小化观测值与模型预测值之间的差异来估计模型的参数。
具体来说,最小二乘法的目标是最小化残差平方和:min Σ(Yi - (β0 + β1Xi))^2通过对残差平方和进行求导,可以得到参数的估计值:β1 = Σ(Xi - X̄)(Yi - Ȳ) / Σ(Xi - X̄)^2β0 = Ȳ - β1X̄其中,Xi和Yi分别表示观测值的自变量和因变量,X̄和Ȳ分别表示自变量和因变量的均值。
三、模型评估线性回归模型的拟合程度可以通过多个指标进行评估,包括决定系数(R^2)、标准误差(SE)和F统计量等。
决定系数是用来衡量模型解释变量变异性的比例,其取值范围为0到1。
决定系数越接近1,说明模型对观测值的解释能力越强。
标准误差是用来衡量模型预测值与观测值之间的平均误差。
标准误差越小,说明模型的预测精度越高。
F统计量是用来检验模型的显著性。
F统计量的计算公式为:F = (SSR / k) / (SSE / (n - k - 1))其中,SSR表示回归平方和,SSE表示残差平方和,k表示模型的自由度,n表示观测值的个数。
F统计量的值越大,说明模型的显著性越高。
四、模型应用线性回归分析可以用于预测和推断。
通过拟合一条直线,可以根据自变量的取值来预测因变量的值。
第3讲变量间的相关关系、回归分析及独立性检验

1.两个变量的线性相关
(1)在散点图中,点散布在从左下角 到 右上角 的区域.对于两个
变量的这种相关关系,我们将它称为正相关.如果在散点图
中,点散布在从左上角 到右下角 的区域,两个变量的这种相关 关系称为负相关.
(2)线性相关关系、回归直线
如果散点图中点的分布从整体上看大致在 一条直线附近 个变量之间具有线性相关关系,这条直线叫做回归直线. ,就称这两
思维点拨:利用相关系数r进行线性相关检验(也可利用散点图).如果线性相 关,再求回归直线方程并加以判断.
因为r>0.5,所以y与x有很强的线性相关关系. (2) =0.728 6x-0.857 1. ≤10⇒0.728 6x-0.857 1≤10,
(3)要使
所以x≤14.901 3.
所以机器的转速应控制在14.901 3转/秒以下.
它在a,b,c,d 取不同值时,K2可能不同,而k是取定一组数a, b,c,d后的一个确定的值.
1.下列关系中,是相关关系的为(
)
①学生的学习态度与学习成绩之间的关系;
②教师的执教水平与学生的学习成绩之间的关系;
③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系. A.①② B.①③ C.②③ D.②④
判断两个变量正相关还是负相关,有三种方法: 1.利用散点图;
2.利用相关系数r的符号;当r>0时,正相关;r<0时,负相关;
3.在已知两变量线性相关时,也可以利用回归方程 =a+bx是增函数,两变量是正相关, 当b<0时, =a+bx是减函数, 两变量是负相关. =a+bx.当b>0时,
【例 1】 山东鲁洁棉业公司的科研人员在 7块并排、形状大小相同的试
=1.23×10+0.08=12.3+0.08=12.38(万元),即估计使用10
卫生统计学两变量关联性分析

.
4
图1 15名正常成年人体重和双肾体积的散点图
.
5
由于x、y两个变量都是随机变量,它们间的关系不可能 像函数关系那样,能以一个变量的数值精确地确定出另 一个变量的数值,我们称这类变量之间的关系为非确定 性关系。
两个随机变量x、y之间大致呈直线趋势的关系称为直线 相关,又称简单相关,直线相关的性质可由散点图直观 说明。
数与列联系数。列联系数的最大值为 (k 1) / k 1 ,如四 格表资料的列联系数最大值为 (2 1) / 2 0.5 0.707,为
了获得0-1尺度的列联系数,可将获得的列联系数除以
列联系数最大值 (k 1) / k, k min(R,C)。相对而言, Cramer
V 系数已为0-1尺度,因此该系数更适用。
.
24
假设检验是回答两变量间的相关关系是否具有统计学意 义,p值越小并不表示相关性越强,回答相关的强弱需要 计算总体相关系数的ρ置信区间。由于一般情况下(ρ≠0 时) ρ的分布并不对称,故先对r按(1)式作z变换:
z
1 2
ln
1 1
r r
(1)
由于变换后的z近似地服从于均数为
1 2
ln
1 1
散点图的作用能使我们直观地看出两变量间有无关系。 正相关、负相关、非直线相关和零相关。
.
6
0< r <1
.
7
-1< r <0
.
8
r =1
.
9
r =-1
.
10
r=0
.
11
r=0
.
12
二、相关系数的意义及计算
直线相关系数又称Pearson积矩相关系数,是用以定 量描述两个变量间直线关系密切程度和(1) 建立假设
判断两个变量之间是否存在相关关系的方法

判断两个变量之间是否存在相关关系的方法为了判断两个变量之间是否存在相关关系,我们需要使用相关分析方法。
在实践中,我们通常使用皮尔逊相关系数来评估两个变量之间的线性相关性。
接下来将从以下几个方面讨论如何进行相关分析:1. 相关分析的基础2. 皮尔逊相关系数3. 相关系数的解释相关分析是一种经验性方法,用于评估两个变量之间的关系。
如果两个变量之间存在相关关系,我们可以使用一个变量来预测另一个变量的值。
相关关系可以是正相关(两个变量变化方向相同),也可以是负相关(两个变量变化方向相反)。
相关分析可以通过如下两种方式进行:1. 可以通过绘制散点图来判断两个变量之间是否存在相关关系。
如果图中的点沿着一条线分布,那么两个变量之间就存在线性相关关系。
2. 通过计算皮尔逊相关系数来评估两个变量之间的相关性。
r = (nΣxy - ΣxΣy) /sqrt([nΣx^2 –(Σx)^2][nΣy^2 –(Σy)^2])其中,x和y分别是两个变量的值,n是样本大小。
r的值介于-1和+1之间。
当r为正值时,两个变量之间存在正相关关系;当r为负值时,两个变量之间存在负相关关系。
当r=0时,两个变量之间不存在任何相关关系。
皮尔逊相关系数的计算方法基于统计理论,假设数据是正态分布的。
因此在实践中,我们应该先检查数据的分布情况,以确定是否可以使用该方法进行相关分析。
当我们计算出皮尔逊相关系数后,需要对该系数进行解释。
通常,我们根据相关系数的绝对值大小来评估两个变量之间的相关性:- r=±1:完全的线性相关- r=±0.8:非常强的线性相关- r=±0.6:强的线性相关- r=±0.4:中等的线性相关- r=±0.2:弱的线性相关- r=0:不存在线性相关关系需要注意的是,在解释相关系数时,我们通常只关注其数值大小,而不是其正负号。
例如,r=0.9和r=-0.9都表示存在非常强的线性相关关系。
医学统计学 -第11章 两变量关联性分析

为负:负相关 |r|=1:完全相关
❖ r的正负号表示线性相关的方向 ❖ r绝对值的大小表示线性相关的密切程度,越接近±1, 其线性密切程度越高;越接近0,线性密切程度越低
例11.2 计算例11.1中基础代谢Y与体重X之间样本 相关系数。
由例11-1得
三、相关系数的统计推断
(一)假设检验方法: 查表法
按自由度υ=n-2查r界值表,如果样本相关系数r大于界值,
则具有统计学意义,线性相关关系存在
t检验法
tr
r0 sr
υ=n-2
sr
1 r2 n2
例11-3 继例11-2中算得r=0.964后,试检验相 关是否具有统计学意义
H0 : 0 ,H1 : 0 , =0.05
(x x)2 1144.5771 (y y)2 4645447.0121 (x x)(y y) 70303.2329
r
(x x)(y y)
(x x)2 (y y)2
70303.2329
1144.5771 4645447.0121
0.964
即基础代谢与体重之间的相关系数为0.964,呈正相关, 说明基础代谢随体重的增加而升高
查表法
本例 n=14,r=0.964,按υ=14-2=12,查r界值表,得 r0.05,12=0.532
因此P<0.05,即相关系数有统计学意义,可以认 为基础代谢与体重之间存在线性正相关,且相关系 数为0.964
t检验法
本例 n=14,r=0.964,代入公式
t 0.964 12.559 1 0.9642 14 2
正相关(positive correlation) 散点呈直线变化趋势 Y随X的增加而有增加的趋势 当散点全部在一条直线上时, 为完全正相关
怎样分析变量间的关系(内容清晰)

变量间的相关关系一、变量间关系的度量1.变量间的关系:函数关系:(1)是一一对应的确定关系(2)设有两个变量相关关系:(1)变量间关系不能用函数关系精确表达(2)变量间存在着一定的客观规律二、相关的种类1.完全相关、不完全相关、不相关2.正相关与负相关甲类研制# 1甲类研制# 23.线性相关与非线性相关4.单相关与复相关三、用图形来显示变量间的关系做散点图四、测度变量间的关系强度----计算相关系数1. 相关系数的概念是在线性相关的情况下,用来说明相关关系密切程度的统计分析指标。
2. 相关系数的计算:3. 根据相关系数判断相关的程度 ()[]()[]∑∑∑∑∑∑∑---=2222y y n x x n yx xy n γ甲类研制# 3相关系数的取值是在+1和-1之间,即11+≤≤-r 。
若10+≤≤r ,表示X 与Y 之间存在正的相关关系,若01≤≤-r ,表示X 与Y 之间存在负的相关关系;若r-+1,,表示X 、Y 之间为完全正相关关系,若r=-1,表示X 与Y 之间为完全负相关关系,当r=0时,表示Y 的取值与X 无关,即二者之间不存在线性相关关系,但不能说明两者之间没有任何关系。
它们可能会存在非线性相关关系。
五、总体中也存在这样的关系吗?----假设检验1. 为什么要对相关系数进行显著性检验?因为两个变量之间存在相关关系是根据样本计算出来得出的结论,这一结论是否正确还吸引仅仅系检验,相关系数是一个随机变量,由于是随机的,所以具有一定的偶然性,两个不相关的变量,其相关系数也可能较高,要从样本相关系数判断总体中是否也有这样的关系,则甲类研制# 4 需要对相关系数进行显著性检验后才能下结论。
2.显著性检验的步骤:第一步,提出假设第二步,计算检验的统计量212r n r t --=第三步,进行决策。
六、建立变量间的数学关系式1.回归模型:εββ++=x y 102.回归方程:x y E 10)(ββ+=。
统计学:两变量关联性分析

l xy
yi
x y
i 1
n
2
,
l xx
x
i 1
2 i
l yy
y
i 1
2 i
n yi i 1 n
r也称person系数,其值为-1≤r≤1。 r>0 , 表示正相关 r<0 , 表示负相关 这里的r是总体相关系数ρ 的估计值
计算器计算过程
1.0 0.9
1.0 0.9 1.1 0.9
时间
14
13
18 17
15
15
13
14
16
17
14 16 15
16
14
15 17
© ë £ ¨Ã ä £ ±¼ ª Ê ý Ñ Ä
16 15 14 13 12
0.5
0.7
0.9
ý Ñ Ä ª à ¸ Å ¨¶ È £ ¨º Á É ý £ ©
1.1
1.3
¼ 11-1 ý Í À 11-1Ö Ð Ê ý ¾ Ý É ¢ µ ã Í ¼
若出现相同值按平均秩赋值,当(pi,qi)的相同秩次不多时按下面操作。
2.求每对观察值秩次之差di= pi-qi (i=1~n)
3.计算等级相关系数rs
当 当 n 50时,统计量 rs 1 n 50时,统计量 6
2
di
2
n(n 1)
vn
查附表15
Z rs n 1
i 1 i i i 1
n
n
2 i
y
i 1
n
2 i
x y
i 1 i i 1
n
n
i
.82
双变量相关性分析方法

双变量相关性分析方法
双变量相关性分析方法是一种通过检验两个变量之间的相关性,来研究它们之间是否存在某种关联关系的统计方法。
它可以帮助我们了解两个变量之间的关系密切程度,从而对变量进行评估和预测。
双变量相关性分析的常用方法有:
1. 相关系数:相关系数是衡量变量之间关系强弱的指标,它是一个介于-1到+1之间的数字,当相关系数等于0时表明两个变量之间没有任何相关性,当相关系数大于0时表明两个变量之间存在正相关,当相关系数小于0时表明两个变量之间存在负相关。
2. 回归分析:回归分析是一种用来预测一个变量随另一变量变化情况的方法,它可以用来研究变量之间的关系及影响程度。
3. 卡方检验:卡方检验是一种用来检验两个变量之间关系的方法,它可以用来比较不同变量之间的关联情况,从而得出两个变量之间的相关度。
4. t检验:t检验是一种用来检验某一组数据是否服从正态分布的方法,它可以用来比较两组数据之间的差异情况,从而得出它们之间的相关性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 简单线性相关
(一)线性相关的概念 (二)相关系数的意义及计算 (三)相关系数的统计推断
6
(一)线性相关的概念
例10.1 某临床医生共测定了21名肝癌患者血清中胆固醇(mmol/L)和三酰 甘油(mmol/L)的含量。问肝癌患者血清中胆固醇与三酰甘油是否具有相 关关系?
如表何10描.1 述21例两肝连癌患续者血表清10.胆1 2固1例醇肝与癌三患者酰血甘清油胆相固醇关与性三研酰究甘油相关性研究
9
(一)线性相关的概念
正相关 positive correlation
Y
负相关 negative correlation
Y
零相关 zero correlation
Y
零相关 zero correlation
Y
(a) X
(c) X
(e) X
(g) X
完全正相关
Y
perfect positive correlation
描述两变量间关系的密切程度和方向?
相关
3
相关的由来
Francis Galton:
• “维多利亚女王时代最博 学的人 ”
• 1888 年 , 高 尔 顿 发 表 论 文《相关及其主要来自人 体的度量》,充分论述了 “相关”的统计学意义, 并提出了相关系数的计算 公式。
4
内容
第一节 简单线性相关 第二节 秩相关 第三节 相关与回归的区别与联系
Xi X Yi Y
i 1
i 1
lXX
n i 1
两变量之间关系的分析 —相关
王 睿 副教授 卫生统计学教研室
医学研究实例
例10.1 某临床医生共测定了21名肝癌患者血清中胆固(mmol/L)和三酰 甘油(mmol/L)的含量。问肝癌患者血清中胆固醇与三酰甘油是否具有相 关关系?
表10.1 21例肝癌患者血清胆固醇与三酰甘油相关性研究
两个变患量者序号 血清胆固醇(mmol/L) 三酰甘油(mmol/L)
• 两个变量之间,一个增大,另一个也相应地增 大(或是减小),这种现象称为共变,也就是 这两个变量之间有“相关关系”。
• 两个随机变量之间这种呈线性趋势的关系称为 线性相关(linear correlation),又称简单相 关 ( simple correlation ) , 简 称 相 关 (correlation)。
协方差
n
( Xi X )(Yi Y )
X和Y的样本协方差 i1
n1
14
(二)相关系数的意义及计算
Y
X和Y的样本协方差:
Y
n
( Xi X )(Yi Y )
i 1
n1
X
X
附图2 双变量协方差示意图(2)
15
(二)相关系数的意义及计算
Y
X和Y的样本协方差:
Y
n
( Xi X )(Yi Y )
i 1
n1
X
X
附图3 双变量协方差示意图(3)
16
(二)相关系数的意义及计算
Y
X和Y的样本协方差:
Y
n
( Xi X )(Yi Y )
i 1
n1
X
X
附图4 双变量协方差示意图(4)
17
(二)相关系数的意义及计算
Y
X和Y的样本协方差:
Y
n
( Xi X )(Yi Y )
i 1
n1
X
X
附图5 双变量协方差示意图(5)
1
4.89
1.48
2
3.41
1.01
3
5.70
1.30
4
6.84
1.78
…
…
…
19
6.11
1.45
20
3.63
1.15
21
3.89
0.78
2
医学研究实例
• 谷草转氨酶与谷丙转氨酶; • 收缩压与舒张压; • 血糖与糖化血红蛋白; • 高密度脂蛋白与胆固醇; • ……
回归:描述两变量间依存变化的数量关系
Y
•这种关系的密切程度怎样? •正向变化(正相关)? •反向变化(负相关)?
X
附图1 相关系数示意图(1)
11
(二)相关系数的意义及计算
• 线性相关系数(linear correlation coefficient):
又 称 Pearson 积 矩 相 关 系 数 ( Pearson product moment coefficient),用以定量描述两个变量间线性关系 的密切程度与相关方向的统计指标。
18
(二)相关系数的意义及计算
Y
X和Y的样本协方差:
Y
n
( Xi X )(Yi Y )
i 1
n1
X
X
附图6 双变量协方差示意图(6)
19
(二)相关系数的意义及计算
r 相 关lX系Y 数 lXX lYY
n XX和i YX的协Yi 方 Y差
n(iX1 的方差2 )n(Y的方差2 )
6.84 1.78
1.78
势 表 示 两…变 量 间 的 相 … …
关关系。19
20
6.11
19
3.63
20
21
21
3.89
……
…
6.11 1.45
1.45
3.63 1.15
1.15
3.89
0.78
0.78
7
(一)线性相关的概念
图10.2 肝癌患者血清胆固醇与三酰甘油关系散点图
8
(一)线性相关的概念
完全负相关
Y
perfect negative correlation
零相关
Y zero correlation
曲线相关 curvilinear correlation
Y
(b) X
10
(d) X
(f) X
图10.1 不同r值的相关系数示意图
(h) X
(二)相关系数的意义及计算
相关分析的研究内容:
•两个变量之间是否有线性关系?
− 符号: 样本 r 总体
− 资料要求:两变量满足双变量正态分布(bivariate normal distribution)。
12
(二)相关系数的意义及计算
相关系数 X和Y的协方差 (X的方差)(Y的方差)
方差(variance)
协:
协,众之同和也。
协+方差(co + variance)
—《说文》
协方差(covariance)
co:
together, jointly, equally; 如co-operate, coact
13
(二)相关系数的意义及计算
方差
当样本值为(x1,y1),…,(xn,yn)时,
n
(Xi X )2
X的样本方差 i1 n1
n
(Yi Y )2
Y的样本方差 i1 n1
变量之间的关系? 患者序号 血清胆固醇(mmo患l/者L)序号 三血酰清甘胆油固(醇mmol/L三)酰甘油
(mmol/L)
(mmol/L)
1
4.89
1.48
1
4.89
1.48
散点图: 2 3
3.41
2
5.70
3
3.41 1.01
1.01
5.70 1.30
1.30
用 点 的 密4集 程 度 、 趋6.84 4