2.6 一次函数、二次函数与幂函数

合集下载

初等基本函数知识点总结

初等基本函数知识点总结

初等基本函数知识点总结函数是数学中最基本的概念之一,它在数学的各个分支中都有着重要的应用。

初等基本函数是指在初等数学范围内常见的基本函数,包括常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。

本文将对这些初等基本函数的概念、性质等进行总结和介绍。

一、常数函数常数函数的定义是f(x) = c (c为常数)。

这里的c就是常数函数的函数值,它是一个常数,和x的取值无关。

在坐标系中,常数函数的图象是一条水平的直线,它的斜率为0。

常数函数的性质有:1. 常数函数的图象是一条水平的直线。

2. 常数函数的定义域是全体实数集R,值域为{c}。

3. 常数函数的导数为0,即f'(x) = 0。

4. 常数函数是一个一一对应的函数。

5. 常数函数是奇函数,偶函数,周期函数,增函数,减函数等的特殊情况。

二、一次函数一次函数的定义是f(x) = kx + b (k和b为常数,k≠0)。

在坐标系中,一次函数的图象是一条通过点P(k,b)的直线,它的斜率为k,截距为b。

一次函数的性质有:1. 一次函数的图象是一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。

2. 一次函数的定义域是全体实数集R,值域是一切实数集R。

3. 一次函数的导数为k,即f'(x) = k。

4. 当k>0时,一次函数是增函数;当k<0时,一次函数是减函数;当k=0时,一次函数是常数函数。

5. 一次函数是一个奇函数,因为f(-x) = -kx + b = -f(x)。

三、二次函数二次函数的定义是f(x) = ax^2 + bx + c (a、b和c为常数,a≠0)。

二次函数的图象是一个开口向上或者向下的抛物线,它的开口方向由a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的性质有:1. 二次函数的图象是一个抛物线,它关于y轴对称,对称轴方程为x = -b/2a。

二次函数与幂函数指数函数的比较与性质

二次函数与幂函数指数函数的比较与性质

二次函数与幂函数指数函数的比较与性质二次函数与幂函数、指数函数是高中数学中常见的函数类型。

本文将比较二次函数与幂函数、指数函数的特点与性质,从多个角度分析它们之间的差异和联系。

一、函数表达式与图像形态比较二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。

它的图像是一条抛物线,圆顶方向和开口方向取决于a的正负。

幂函数的一般形式为f(x) = ax^m,其中a为实数,m为常数且m ≠ 0。

它的图像形态根据m的值而定,当m > 1时为上升函数,m < 1时为下降函数。

指数函数的一般形式为f(x) = a^x,其中a > 0且a ≠ 1。

它的图像是一条递增或递减的曲线,斜率随x的增大而不断增大或减小。

通过比较函数表达式和图像形态,可以看出二次函数的图像是一条抛物线,幂函数的图像可以是直线、上升或下降的曲线,指数函数的图像是递增或递减的曲线。

二、增长速度与渐近性质比较二次函数的增长速度由a的值决定,当a > 0时随着x的增大,函数值快速增大;当a < 0时,随着x的增大,函数值快速减小。

二次函数没有水平渐近线,但存在一条对称轴。

幂函数的增长速度由m的值决定,当m > 1时,随着x的增大,函数值快速增大;当0 < m < 1时,随着x的增大,函数值快速减小。

幂函数没有水平渐近线。

指数函数的增长速度由底数a的值决定,当a > 1时,随着x的增大,函数值快速增大;当0 < a < 1时,随着x的增大,函数值快速减小。

指数函数存在一条水平渐近线,即x轴。

综合比较三种函数的增长速度和渐近性质,可以得出二次函数的增长速度相对较慢,幂函数的增长速度介于二次函数和指数函数之间,而指数函数的增长速度最快。

三、最值与极值比较对于二次函数,如果a > 0,则函数的最小值为c - b^2 / (4a),无最大值;如果a < 0,则函数的最大值为c - b^2 / (4a),无最小值。

二次函数与幂函数的关系

二次函数与幂函数的关系

二次函数与幂函数的关系二次函数和幂函数是数学中常见的两种函数,它们之间存在一定关系。

这篇文章将介绍二次函数和幂函数的定义、图像、特点以及它们之间的关系。

首先,我们来回顾一下二次函数和幂函数的定义。

二次函数是指函数的最高次项为二次的多项式函数。

它的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c是实数且a不等于0。

在这个函数中,x是自变量,f(x)是因变量。

幂函数是指函数的自变量和因变量之间的关系式为 y = x^a,其中a 是实数。

幂函数的图像通常是一个曲线,并且根据a的不同取值,可以得到不同的曲线形状。

接下来,我们来分析二次函数和幂函数的图像。

对于二次函数,它的图像通常是一个抛物线。

根据二次函数的系数a 的正负和大小,可以得到不同类型的抛物线。

当 a 大于0时,抛物线开口向上;当 a 小于0时,抛物线开口向下。

我们可以根据开口方向和顶点的位置来确定抛物线的图像。

例如,当 a 大于0且顶点位于y轴上方时,抛物线开口向上且顶点为最低点;当 a 小于0且顶点位于y轴下方时,抛物线开口向下且顶点为最高点。

而幂函数的图像则由指数 a 的大小来决定。

当 a 大于1时,函数的图像呈现出上升的斜线;当 a 等于1时,函数的图像是一条直线;当 0 小于 a 小于 1 时,函数的图像呈现出下降的斜线。

与二次函数不同的是,幂函数的图像没有顶点或拐点。

然而,二次函数和幂函数并不是完全独立的。

实际上,我们可以将二次函数视为一种特殊的幂函数。

具体来说,二次函数 f(x) = ax^2 + bx + c 可以写成 f(x) = a(x - h)^2 + k 的形式,其中 h 和 k 是实数,代表了二次函数图像的平移。

这种表达方式可以让我们更好地理解二次函数和幂函数之间的关系。

当平移的值 h 和 k 分别等于0时,即 h = 0 且 k = 0 时,二次函数变为f(x) = ax^2,这就是一个幂函数。

理科数学学霸笔记06 二次函数与幂函数

理科数学学霸笔记06 二次函数与幂函数

选择规律如下:
(1)已知三个点的坐标,选用一般式;
(2)已知顶点坐标、对称轴、最大(小)值,选用顶点式;
(3)已知与x轴两交点的坐标,选用零点式。

2.求幂函数解析式的方法
幂函数的解析式是一个幂的形式,且需满足:
(1)指数为常数;
(2)底数为自变量;
(3)系数为 1.
3.幂函数y=xα的图象与性质,由于α值的不同而比较复杂,一般从两个方面考查:
①α的正负:当α>0时,图象过原点,在第一象限的
图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.
②幂函数的指数与图象特征的关系
(1)幂函数的形式是y=xα(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.
(2)判断幂函数y=xα(α∈R)的奇偶性时,当α是分数时,一般将其先化为根式,再判断.
(3)若幂函数y=xα在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.
4.二次函数的图象及性质的应用
(1)图象识别问题。

第二章 第六节 一次函数、二次函数与幂函数

第二章  第六节 一次函数、二次函数与幂函数
α
解析:设幂函数的解析式为y=x 2.∴y=x-2.
,则3=
3 α ,∴α=- 3
答案:B
返回
1 -1,1, ,3,则使函数y= 3.(教材习题改编)设α∈ 2
xα的定义域为R且为奇函数的所有α值为 ( ) A.1,3 B.-1,1 C.-1,3 D.-1,1,3 1 -1 解析:在函数y=x ,y=x,y=x ,y=x3中,只有函 2
答案:C
返回
4.(2011· 北京西城模拟)已知函数f(x)=4x2-mx+5在区 间[-2,+∞)上是增函数,则m的范围是________.
解析:f(x)=4x2-mx+5在[-2,+∞)上是增函数, m ∴ ≤-2,m≤-16. 8
答案:(-∞,-16]
返回
5.(2011· 泰安调研)已知函数f(x)=-x2+2ax+1-a在 x∈[0,1]时有最大值2,则a的值为________.
答案:C
返回
7.(2012· 无锡联考)设函数f(x)=mx2-mx-1,若f(x)<0 的解集为R,则实数m的取值范围是__________.
解析:若m=0;显然-1<0恒成立,若m≠0,
m<0, 则 Δ<0.
∴-4<m<0.
故所求范围为-4<m≤0.
答案:(-4,0]
返回
[冲关锦囊]
[答案] D
返回
若将本例中“abc>0”改为“abc<0”二次函数f(x)=ax2+bx+c的图像 不可能是哪一个? 解:由abc<0知
b 当a>0,有c<0,b>0,对称轴x=-2a<0,图像可能为C. b 当a<0时,可有c<0,b<0,对称轴x=-2a<0,此时图像可能为A. b 当a<0时,c>0,b>0时对称轴x=-2a>0,此时图像可能为B. ∴题目改为abc<0时,函数图像不可能是D.

一次函数、二次函数与幂函数

一次函数、二次函数与幂函数
性质
二次函数的图像是一个抛物线,其开口方向由系数$a$决定, 当$a>0$时,开口向上;当$a<0$
顶点
二次函数的图像有一个顶
点,其坐标为$(-
frac{b}{2a},
f(-
frac{b}{2a}))$。
对称轴
二次函数的图像关于直线 $x = -frac{b}{2a}$对称。
工程设计
在工程设计中,幂函数可以用于描 述材料强度、电阻等物理量随尺寸 变化的关系。
数据分析
在数据分析中,幂函数可以用于拟 合某些特定的数据集,例如网络流 量、销售数据等。
04 三种函数的比较
定义域与值域
一次函数
定义域为全体实数,值域也为全 体实数。
二次函数
定义域为全体实数,值域取决于 开口方向和顶点位置。
凹凸性
当n>0时,幂函数的图像是凹的;当n<0时,幂函数的图 像是凸的。
渐近线
当x趋向于正无穷或负无穷时,幂函数的图像会趋近于y轴 。
顶点
当n为偶数时,幂函数的图像有一个对称轴;当n为奇数 时,幂函数的图像有一个对称中心。
应用实例
科学计算
幂函数在科学计算中有着广泛的 应用,例如计算复利、人口增长
等。
幂函数
定义域为除零外的全体实数,值 域也为全体实数。
单调性
一次函数
单调递增或递减,取决于斜率。
二次函数
开口向上时,在对称轴左侧单调递减,右侧单调递增;开口向下时, 在对称轴左侧单调递增,右侧单调递减。
幂函数
当指数大于0时,单调递增;当指数小于0时,单调递减。
最值问题
一次函数:无最值。
幂函数:当指数为偶 数时,存在最小值; 当指数为奇数时,无 最值。

一次函数、二次函数、幂函数模型的应用举例 课件

一次函数、二次函数、幂函数模型的应用举例   课件

480-40(x-1)=520-40x(桶)
分析表格,
找出规律,
由于x>0,且520-40x>0,即0<x<13,于是可得 设出变量,
y=(520-40x)x-200 =-40x2+520x-200, 0<x<13. 二次函数求
建立关系 式
易知,当x=6.5时,y有最大值. 最值
所以,只需将销售单价定为11.5元,就可获得最大的 利润.
函数模型的应用举例
一次函数、二次函数、 幂函数模型的应用举例
到目前为止,我们已经学习了哪些常用函数?
一次函数 y ax b(a 0) 现实中经常遇到一
二次函数 y ax2 bx c (a≠0) 次函数、二次函数、
指数函数 y ax (a 0,且a 1)
对数函数 y loga x(a 0,且a 1)
的读数为2 004 km,试建立行驶这段路程时汽车里
程表读数s km与时间t h的函数解析式,并作出相应
的图象.
五个矩形
解:(1)阴影部分的面积为
的面积和
50 1 80 1 90 1 751 651 360
阴影部分的面积表示汽车在这5小时内行驶的路程 为360km.
(2)根据图示,可以得到如下函数解析式
50t 2 004,
0 t 1,
s
8900((tt
1) 2 2) 2
054, 134,
1 t 2, 2 t 3,
分段
75(t 3) 2 224, 3 t 4,
函数
65(t 4) 2 299, 4 t 5.
这个函数的图象如图所示.
sபைடு நூலகம்
2 400 2 300

2020年高考数学专题复习二次函数与幂函数

2020年高考数学专题复习二次函数与幂函数

二次函数与幂函数1.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质判断正误(正确的打“√”,错误的打“×”)(1)函数y =2x 12是幂函数.( )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (3)当n <0时,幂函数y =x n是定义域上的减函数.( )(4)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b24a.( )(5)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( )(6)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√(教材习题改编)如图是①y =x a;②y =x b;③y =x c在第一象限的图象,则a ,b ,c的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .a <c <b解析:选D.根据幂函数的性质,可知选D.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,120 B .⎝⎛⎭⎪⎫-∞,-120 C .⎝ ⎛⎭⎪⎫120,+∞D .⎝ ⎛⎭⎪⎫-120,0解析:选C.由题意知⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.(教材习题改编)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为________;在区间________上递减.答案:y =x -12 (0,+∞)(教材习题改编)函数g (x )=x 2-2x (x ∈[0,3])的值域是________.解析:由g (x )=x 2-2x =(x -1)2-1,x ∈[0,3],得g (x )在[0,1]上是减函数,在[1,3]上是增函数.所以g (x )min =g (1)=-1,而g (0)=0,g (3)=3. 所以g (x )的值域为[-1,3]. 答案:[-1,3]幂函数的图象及性质(1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )(2)若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 【解析】 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,故选C.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫-1,23幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y =x α(α∈R )的奇偶性时,当α是分数时,一般将其先化为根式,再判断.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.1.已知幂函数f (x )=x m 2-2m -3 (m ∈Z )的图象关于y 轴对称,并且f (x )在第一象限是单调递减函数,则m =________.解析:因为幂函数f (x )=xm 2-2m -3(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m -3为偶数,所以m 2-2m 为奇数,又m 2-2m <0,故m =1.答案:12.当0<x <1时,f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________.解析:如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )求二次函数的解析式已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 法一:(利用一般式)设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7.法二:(利用顶点式)设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12. 所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a24a =8.解得a =-4或a =0(舍去),所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.解析:由f (x )是偶函数知f (x )的图象关于y 轴对称,所以-a =-⎝⎛⎭⎪⎫-2a b ,即b =-2,所以f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],所以2a 2=4,故f (x )=-2x 2+4.答案:-2x 2+42.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式.解:因为f (2+x )=f (2-x )对任意x ∈R 恒成立, 所以f (x )的对称轴为x =2.又因为f (x )的图象被x 轴截得的线段长为2, 所以f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3), 所以3a =3,a =1, 所以所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.二次函数的图象与性质(高频考点)高考对二次函数图象与性质进行考查,多与其他知识结合,且常以选择题形式出现,属中高档题.主要命题角度有:(1)二次函数图象的识别问题; (2)二次函数的单调性问题; (3)二次函数的最值问题.角度一 二次函数图象的识别问题已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )【解析】 A 项,因为a <0,-b2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错. B 项,因为a <0,-b2a>0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错. C 项,因为a >0,-b2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D. 【答案】 D角度二 二次函数的单调性问题函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件.当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <03-a 2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.角度三 二次函数的最值问题已知函数f (x )=x 2-2ax +1,x ∈[-1,2]. (1)若a =1,求f (x )的最大值与最小值;(2)f (x )的最小值记为g (a ),求g (a )的解析式以及g (a )的最大值. 【解】 (1)当a =1时,f (x )=x 2-2x +1=(x -1)2,x ∈[-1,2], 则当x =1时,f (x )的最小值为0,x =-1时,f (x )的最大值为4. (2)f (x )=(x -a )2+1-a 2,x ∈[-1,2], 当a <-1时,f (x )的最小值为f (-1)=2+2a , 当-1≤a ≤2时,f (x )的最小值为f (a )=1-a 2, 当a >2时,f (x )的最小值为f (2)=5-4a , 则g (a )=⎩⎪⎨⎪⎧2+2a ,a <-1,1-a 2,-1≤a ≤2,5-4a ,a >2,可知,g (a )在(-∞,0)上单调递增,在(0,+∞)上单调递减,g (a )的最大值为g (0)=1.(1)确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向; 二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.(2)二次函数最值的求法二次函数的区间最值问题一般有三种情况:①对称轴和区间都是给定的;②对称轴动,区间固定;③对称轴定,区间变动.解决这类问题的思路是抓住“三点一轴”进行数形结合,三点指的是区间两个端点和中点,一轴指的是对称轴.具体方法是利用函数的单调性及分类讨论的思想求解.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.1.(2017·高考浙江卷)若函数f (x )=x 2+ ax +b 在区间[0, 1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a有关,与b 无关;③当-a2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.2.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则实数a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,y max =a ;当0<a <1时,y max =a 2-a +1; 当a ≤0时,y max =1-a .根据已知条件得,⎩⎪⎨⎪⎧a ≥1a =2或⎩⎪⎨⎪⎧0<a <1a 2-a +1=2或⎩⎪⎨⎪⎧a ≤01-a =2, 解得a =2或a =-1. 答案:-1或23.若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.解析:因为a >0,所以二次函数f (x )=ax 2+20x +14的图象开口向上.在闭区间[t -1,t +1]上总存在两实数x 1,x 2, 使得|f (x 1)-f (x 2)|≥8成立, 只需t =-10a时f (t +1)-f (t )≥8,即a (t +1)2+20(t +1)+14-(at 2+20t +14)≥8, 即2at +a +20≥8,将t =-10a代入得a ≥8.所以a 的最小值为8. 故答案为8. 答案:8三个“二次”间的转化(2019·金华市东阳二中高三调研)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ). (1)当a =-6时,函数f (x )的定义域和值域都是⎣⎢⎡⎦⎥⎤1,b 2,求b 的值;(2)当a =-1时在区间[-1,1]上,y =f (x )的图象恒在y =2x +2b -1的图象上方,试确定实数b 的范围.【解】 (1)当a =-6时,函数f (x )=x 2-6x +b ,函数对称轴为x =3,故函数f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.①当2<b ≤6时,f (x )在区间⎣⎢⎡⎦⎥⎤1,b 2上单调递减;故有⎩⎪⎨⎪⎧f (1)=b2f ⎝ ⎛⎭⎪⎫b 2=1,无解;②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)≥f ⎝ ⎛⎭⎪⎫b 2,故⎩⎪⎨⎪⎧f (1)=b 2f (3)=1,解得b =10; ③当b >10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)<f (b2),故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫b 2=b 2f (3)=1,无解.所以b 的值为10. (2)当a =-1时,f (x )=x 2-x +b ,由题意可知x 2-x +b >2x +2b -1对x ∈[-1,1]恒成立, 化简得b <x 2-3x +1,令g (x )=x 2-3x +1,x ∈[-1,1],图象开口向上,对称轴为x =32,在区间[-1,1]上单调递减,则g (x )min =-1,故b <-1.(1)二次函数、二次方程与二次不等式统称三个“二次”,它们常结合在一起,而二次函数又是三个“二次”的核心,通过二次函数的图象贯穿为一体.因此,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[提醒] 当二次项系数a 是否为0不明确时,要分类讨论.1.(2019·宁波市余姚中学期中检测)设a <0,(3x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( )A .13B .12C .33D .22解析:选A.因为(3x 2+a )(2x +b )≥0在(a ,b )上恒成立, 所以3x 2+a ≥0,2x +b ≥0或3x 2+a ≤0,2x +b ≤0,①若2x +b ≥0在(a ,b )上恒成立,则2a +b ≥0,即b ≥-2a >0,此时当x =0时,3x 2+a =a ≥0不成立,②若2x +b ≤0在(a ,b )上恒成立,则2b +b ≤0,即b ≤0,若3x 2+a ≤0在(a ,b )上恒成立,则3a 2+a ≤0,即-13≤a ≤0,故b -a 的最大值为13.2.已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,则实数m 的取值范围是________.解析:f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. 因为g (x )=x 2-3x +1-m 在[-1,1]上单调递减, 所以g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1 .因此满足条件的实数m 的取值范围是(-∞,-1). 答案:(-∞,-1)幂函数y =x α(α∈R )的图象的特征当α>0时,图象过原点和点(1,1),在第一象限图象从左往右是逐渐上升; 当α<0时,图象过点(1,1),但不过原点,在第一象限图象从左往右是逐渐下降.求解二次函数最值的关键点求二次函数的最值,应抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.二次函数中的恒成立问题与二次函数有关的不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0;(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0;(3)a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .易错防范(1)对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.(3)数形结合思想是研究二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(4)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.[基础达标]1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A .12B .1C .32D .2解析:选C.因为函数f (x )=k ·x α是幂函数,所以k =1,又函数f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32. 2.若幂函数f (x )=x mn (m ,n ∈N *,m ,n 互质)的图象如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1解析:选C.由图知幂函数f (x )为偶函数,且m n<1,排除B ,D ;当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ;选C.3.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则以下结论中正确的是( )A .f (0)<f (-2)<f (5)B .f (-2)<f (5)<f (0)C .f (-2)<f (0)<f (5)D .f (0)<f (5)<f (-2)解析:选A.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则f (x )=x 2+bx +c 的图象的对称轴为x =1且函数f (x )的图象的开口方向向上,则函数f (x )在(1,+∞)上为增函数,所以f (2)<f (4)<f (5),又f (0)=f (2),f (-2)=f (4),所以f (0)<f (-2)<f (5).4.(2019·瑞安四校联考)定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈[0,1]时,f (x )=x 2-x ,则当x ∈[-2,-1]时,f (x )的最小值为( )A .-116B .-18C .-14D .0解析:选A.当x ∈[-2,-1]时,x +2∈[0,1],则f (x +2)=(x +2)2-(x +2)=x2+3x +2,又f (x +2)=f [(x +1)+1]=2f (x +1)=4f (x ),所以当x ∈[-2,-1]时,f (x )=14(x 2+3x +2)=14⎝ ⎛⎭⎪⎫x +322-116,所以当x =-32时,f (x )取得最小值,且最小值为-116,故选A.5.若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则a 的取值集合为( ) A .[-3,3] B .[-1,3] C .{-3,3}D .{-1,-3,3}解析:选C.因为函数f (x )=x 2-2x +1=(x -1)2,对称轴x =1,因为在区间[a ,a +2]上的最小值为4,所以当1≤a 时,y min =f (a )=(a -1)2=4,a =-1(舍去)或a =3,当a +2≤1时,即a ≤-1,y min =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3,当a <1<a +2,即-1<a <1时,y min =f (1)=0≠4,故a 的取值集合为{-3,3}.6.(2019·温州高三月考)已知f (x )=ax 2+bx +c (a >0),g (x )=f (f (x )),若g (x )的值域为[2,+∞),f (x )的值域为[k ,+∞),则实数k 的最大值为( )A .0B .1C .2D .4解析:选C.设t =f (x ),由题意可得g (x )=f (t )=at 2+bt +c ,t ≥k ,函数y =at 2+bt +c ,t ≥k 的图象为y =f (x )的图象的部分,即有g (x )的值域为f (x )的值域的子集,即[2,+∞)⊆[k ,+∞), 可得k ≤2,即有k 的最大值为2. 故选C.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则实数a 的取值范围是________.解析:因为f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),所以⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,所以3<a <5.答案:(3,5)8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________.解析:由于函数f (x )的值域为[1,+∞),所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4,当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1,即a 2-2a -3=0,解得a =3或a =-1.答案:-1或39.(2019·杭州四中第一次月考)已知函数f (x )=x 2+ax +1,若存在x 0使|f (x 0)|≤14,|f (x 0+1)|≤14同时成立,则实数a 的取值范围为________.解析:由f (x )=⎝ ⎛⎭⎪⎫x +a 22+4-a 24,考察g (x )=x 2+h ,当h =0时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12+1≤14同时成立;当h =-12时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,|g (-12+1)|≤14同时成立.所以-12≤h ≤0,即-12≤4-a24≤0,解得-6≤a ≤-2或2≤a ≤ 6. 答案:[-6,-2]∪[2,6]10.设函数f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________.解析:依据题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立.当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32. 答案:⎝⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 11.已知幂函数f (x )=(m 2-5m +7)x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 解:(1)由题意m 2-5m +7=1,解得m =2或m =3, 若m =2,与f (x )是偶函数矛盾,舍去, 所以m =3,所以f (x )=x 2.(2)g (x )=f (x )-ax -3=x 2-ax -3,g (x )的对称轴是x =a2,若g (x )在[1,3]上不是单调函数, 则1<a2<3,解得2<a <6.12.(2019·台州市教学质量调研)已知函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称.(1)求f (x )的解析式;(2)若m <3,求函数f (x )在区间[m ,3]上的值域.解:(1)因为函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称,所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0,所以f (x )=x 2-2x .(2)当1≤m <3时,f (x )min =f (m )=m 2-2m ,f (x )max =f (3)=9-6=3,所以f (x )的值域为[m 2-2m ,3];当-1≤m <1时,f (x )min =f (1)=1-2=-1,f (x )max =f (-1)=1+2=3,所以f (x )的值域为[-1,3].当m <-1时,f (x )min =f (1)=1-2=-1,f (x )max =f (m )=m 2-2m ,所以f (x )的值域为[-1,m 2-2m ]. [能力提升]1.(2019·台州质检) 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的结论是( )A .②④B .①④C .②③D .①③解析:选B.因为二次函数的图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y >0,即a-b +c >0,③错误;由对称轴为x =-1知,b =2a ,又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.故选B.2.(2019·温州市十校联考)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若任取∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( ) A .⎣⎢⎡⎦⎥⎤-16,16 B .⎣⎢⎡⎦⎥⎤-66,66 C .⎣⎢⎡⎦⎥⎤-13,13 D .⎣⎢⎡⎦⎥⎤-33,33 解析:选B.因为当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x ≤a 2时,f (x )=12(a 2-x +2a 2-x -3a 2)=-x ;当a 2<x <2a 2时,f (x )=12(x -a 2+2a 2-x -3a 2)=-a 2;当x ≥2a 2时,f (x )=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f (x )=12(|x -a 2|+|x -2a 2|-3a 2)在x ≥0时的解析式等价于f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. 3.已知函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值为M (a ,b ∈R ,c >0为常数)且存在实数a ,b ,使得M 取最小值2,则a +b +c =________.解析:函数y =x 2+ax +b 是二次函数,所以函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值M 在端点处或x =-a2处取得.若在x =0处取得,则b =±2, 若在x =-a 2处取得,则|b -a 24|=2,若在x =c 处取得,则|c 2+ac +b |=2. 若b =2,则|b -a 24|≤2,|c 2+ac +b |≤2,解得a =0,c =0,符合要求,若b =-2,则顶点处的函数值的绝对值大于2,不成立. 可得a +b +c =2.故答案为2. 答案:24.(2019·宁波市余姚中学高三期中)已知f (x )=34x 2-3x +4,若f (x )的定义域和值域都是[a ,b ],则a +b =________.解析:因为f (x )=34x 2-3x +4=34(x -2)2+1,所以x =2是函数的对称轴,根据对称轴进行分类讨论:①当b <2时,函数在区间[a ,b ]上递减,又因为值域也是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=bf (b )=a , 即⎩⎪⎨⎪⎧34a 2-3a +4=b 34b 2-3b +4=a ,两式相减得34(a +b )(a -b )-3(a -b )=b -a ,又因为a ≠b ,所以a +b =83,由34a 2-3a +4=83-a ,得3a 2-8a +163=0,所以a =43,所以b =43,故舍去. ②当a <2≤b 时,得f (2)=1=a ,又因为f (1)=74<2,所以f (b )=b ,得34b 2-3b +4=b ,所以b =43(舍),或b =4,所以a +b =5.③当a ≥2时,函数在区间[a ,b ]上递增,又因为值域是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=af (b )=b ,即a ,b 是方程34x 2-3x +4=x 的两根,即a ,b 是方程3x 2-16x +16=0的两根,所以⎩⎪⎨⎪⎧a =43b =4,但a ≥2,故应舍去.综上得a +b =5.答案:55.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x-x 的最小值为0,-1x-x 的最大值为-2.所以-2≤b ≤0.故b的取值范围是[-2,0].6.(2019·宁波市余姚中学期中检测)已知函数f (x )=-x 2+2bx +c ,设函数g (x )=|f (x )|在区间[-1,1]上的最大值为M .(1)若b =2,试求出M ;(2)若M ≥k 对任意的b 、c 恒成立,试求k 的最大值.解:(1)当b =2时,f (x )=-x 2+4x +c 在区间[-1,1]上是增函数, 则M 是g (-1)和g (1)中较大的一个, 又g (-1)=|-5+c |,g (1)=|3+c |,则M =⎩⎪⎨⎪⎧|-5+c |,c ≤1|3+c |,c >1.(2)g (x )=|f (x )|=|-(x -b )2+b 2+c |,(ⅰ)当|b |>1时,y =g (x )在区间[-1,1]上是单调函数, 则M =max{g (-1),g (1)},而g (-1)=|-1-2b +c |,g (1)=|-1+2b +c |,则2M ≥g (-1)+g (1)≥|f (-1)-f (1)|=4|b |>4,可知M >2.(ⅱ)当|b |≤1时,函数y =g (x )的对称轴x =b 位于区间[-1,1]之内, 此时M =max{g (-1),g (1),g (b )}, 又g (b )=|b 2+c |,①当-1≤b ≤0时,有f (1)≤f (-1)≤f (b ),则M =max{g (b ),g (1)}≥12(g (b )+g (1))≥12|f (b )-f (1)|=12(b -1)2≥12;②当0<b ≤1时,有f (-1)≤f (1)≤f (b ).则M =max{g (b ),g (-1)}≥12(g (b )+g (-1))≥12|f (b )-f (-1)|=12(b +1)2>12.综上可知,对任意的b 、c 都有M ≥12.而当b =0,c =12时,g (x )=⎪⎪⎪⎪⎪⎪-x 2+12在区间[-1,1]上的最大值M =12,故M ≥k 对任意的b 、c 恒成立的k 的最大值为12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.6 一次函数、二次函数与幂函数
(时间:45分钟 满分:100分)
一、选择题(每小题7分,共35分)
1.若函数y =(x +1)(x -a )为偶函数,则a 等于
( )
A .-2
B .-1
C .1
D .2 2.“a <0”是“方程ax 2+1=0有一个负数根”的
( )
A .必要不充分条件
B .充分必要条件
C .充分不必要条件
D .既不充分也不必要条件
3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )
4.幂函数y =f (x )的图象过点⎝⎛⎭
⎫4,1
2,那么f (8)的值为 ( ) A .2 6
B .64
C.
2
4
D.164
5.已知幂函数f (x )=(t 3-t +1)·2
7325
t t x
+-(t ∈N)是偶函数,则实数t 的值为( ) A .0 B .-1或1 C .1
D .0或1
二、填空题(每小题6分,共24分)
6.方程x 2-mx +1=0的两根为α,β,且α>0,1<β<2,则实数m 的取值范围是 . 7.对于函数y =x 2
,y =12
x 有下列说法:①两个函数都是幂函数;②两个函数在第一象限内 都单调递增;③它们的图象关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图象都是抛物线型. 其中正确的有__________. 8.已知函数f (x )=
ax +b
x -b
,其图象关于点(-3,2)对称,则f (2)的值是________. 9.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________.
三、解答题(共41分)
10.(13分)如果幂函数f(x)=
2
13
22
p p
x-++(p∈Z)是偶函数,且在(0,+∞)上是增函数.求
p的值,并写出相应的函数f(x)的解析式.
11.(14分)是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?
若存在,求a的值;若不存在,说明理由.
12.(14分)已知函数f(x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.
答案
1.C 2.B 3.C 4.C 5.B 6.⎝⎛⎭⎫2,52 7.①②⑤⑥ 8.15 9.3
8或-3 10.解 ∵f (x )在(0,+∞)上是增函数,
∴-12p 2+p +3
2>0,即p 2-2p -3<0.
∴-1<p <3,又∵f (x )是偶函数且p ∈Z. ∴p =1,故f (x )=x 2. 11.解 f (x )=(x -a )2+a -a 2.
当a <-1时,f (x )在[-1,1]上为增函数,
∴⎩
⎪⎨⎪⎧
f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去); 当-1≤a ≤0时,⎩⎪⎨⎪⎧
f (a )=a -a 2
=-2,
f (1)=1-a =2⇒a =-1;
当0<a ≤1时,⎩
⎪⎨⎪⎧
f (a )=a -a 2=-2,
f (-1)=1+3a =2⇒a 不存在;
当a >1时,f (x )在[-1,1]上为减函数,
∴⎩
⎪⎨⎪

f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在. 综上可得a =-1.
12.解 (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R ,x 2-bx +b <0
⇒(-b )2-4b >0⇒b <0或b >4. (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤25
5
时,则必需 ⎩⎨⎧
m 2
≤0-25
5≤m ≤25
5
⇒-
25
5
≤m ≤0. ②当Δ>0,即m <-
255或m >25
5
时,设方程F (x )=0的根为x 1,x 2(x 1<x 2). 若m
2
≥1,则x 1≤0,即⎩⎪⎨⎪⎧
m 2≥1F (0)=1-m 2≤0
⇒m ≥2;
若m
2≤0,则x2≤0,即
⎩⎪

⎪⎧m
2≤0
F(0)=1-m2≥0
⇒-1≤m<-25 5;
综上所述:-1≤m≤0或m≥2.。

相关文档
最新文档