二次函数和幂函数知识点
二次函数和幂函数知识点

教 学 内 容二次函数与幂函数1. 二次函数的定义与解析式(1)二次函数的定义形如: f(x)= ax 2+ bx +c_(a ≠ 0)的函数叫作二次函数. (2)二次函数解析式的三种形式①一般式: f(x)= ax 2+ bx + c_(a ≠ 0). ②顶点式: f(x)= a(x - m)2+ n(a ≠0) . ③零点式: f(x)= a(x - x 1 )(x - x 2)_(a ≠ 0).2. 二次函数的图像和性质f(x)= ax 2+ bx + cf(x)= ax 2+ bx + c解析式( a>0) (a<0)图像定义域 (-∞,+∞ )(-∞,+∞ )22值域4ac -b ,+∞ -∞, 4ac - b4a4a在 x ∈ -∞,-b上单调递减;在 x ∈ -∞,-b上单调递增;单调性2a2a在 x ∈ - b,+∞- b,+∞上单调递增在 x ∈ 上单调递减2a2a 奇偶性 当 b =0 时为偶函数,b ≠0 时为非奇非偶函数 顶点b4ac -b 2- 2a ,4a对称性图像关于直线 x =- b成轴对称图形2a3. 幂函数形如 y = x α(α∈ R )的函数称为幂函数,其中 x 是自变量, α是常数.4. 幂函数的图像及性质(1)幂函数的图像比较(2)幂函数 的性质比较y = x2y = x31y =x y = x 2定义域R R R [0,+∞)值域R [0,+∞ ) R [0,+∞ )非奇非偶函- 1y = x{ x|x ∈ R 且x ≠ 0}{ y|y ∈ R 且y ≠ 0}奇偶性奇函数偶函数奇函数数奇函数x ∈ [0,+∞ )x ∈ (0,+∞ )单调性增时,增;x ∈ (- 增增时,减;x ∈(-∞, 0]时,减∞, 0)时,减[ 难点正本 疑点清源 ]1. 二次函数的三种形式(1)已知三个点的坐标时,宜用一般式.( 2)已知二次函数的顶点坐标或与对称轴有关或与最大 (小 )值有关时,常使用顶点式.(3)已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2. 幂函数的图像(1)在 (0,1)上,幂函数中指数 越大,函数图像越靠近 x 轴,在 (1,+ ∞ )上幂函数中指数越大,函数图像越远离 x 轴.(2)函数 y =x ,y = x 2, y = x 3, y = x12, y = x - 1可作为研究和学习幂函数图像和性质的代表.1.已知函数 f(x)= x2+2(a- 1)x+ 2 在区间 (-∞, 3]上是减函数,则实数 a 的取值范围为 ____________.答案(-∞,- 2]解析f(x)的图像的对称轴为x= 1- a 且开口向上,∴1-a≥ 3,即 a≤ - 2.2. (课本改编题 )已知函数 y= x2- 2x+ 3 在闭区间 [0,m]上有最大值3,最小值 2,则 m 的取值范围为 ________.答案[1,2]解析y= x2- 2x+ 3 的对称轴为 x= 1.当m<1 时, y= f(x)在 [0,m]上为减函数.∴y max= f(0)= 3, y min=f(m)= m2- 2m+ 3= 2.∴m= 1,无解.当1≤m≤2 时, y min=f(1)= 12- 2× 1+ 3= 2,y max= f(0)= 3.当m>2 时, y max= f(m)= m2-2m+3= 3,∴ m= 0,m= 2,无解.∴ 1≤ m≤ 2.3.若幂函数 y= (m2-3m+ 3)xm2- m- 2 的图像不经过原点,则实数m 的值为 ________.答案 1 或 2m2- 3m+ 3= 1解析由,解得 m= 1 或 2.m2- m-2≤ 0经检验 m= 1 或 2 都适合.4. (人教 A 版教材例题改编 )如图中曲线是幂函数y= x n在第一象限的图1C1,C2, C3, C4的 n 值依次为像.已知 n 取±2,± 四个值,则相应于曲线2____________.答案2,1,-1,- 2 22解析可以根据函数图像是否过原点判断n 的符号,然后根据函数凸凹性确定n 的值.5.函数 f(x)= x2+ mx+ 1的图像关于直线x= 1 对称的充要条件是() A. m=- 2B. m=2C. m=- 1 D . m= 1答案A解析函数 f(x)= x2m m1,即 m=- 2.+ mx+ 1 的图像的对称轴为x=-2,且只有一条对称轴,所以- 2=题型一求二次函数的解析式例 1已知二次函数f(x)满足 f(2)=- 1, f(- 1)=- 1,且 f(x)的最大值是8,试确定此二次函数.思维启迪:确定二次函数采用待定系数法,有三种形式,可根据条件灵活运用.解方法一设 f( x)= ax2+ bx+ c (a≠ 0),4a+ 2b+ c=- 1,a=- 4,a-b+ c=- 1,解之,得b= 4,依题意有4ac- b2c=7,4a= 8,∴ 所求二次函数解析式为f(x)=- 4x2+4x+ 7.方法二设 f(x)= a(x- m)2+ n,a≠ 0.∵ f(2)= f( -1),2+-111∴ 抛物线对称轴为x=2=2.∴ m=2.又根据题意函数有最大值为n= 8,∴y= f(x)= a x-122+8.∵f(2)=- 1,∴ a 2-12+8=- 1,解之,得 a=- 4. 2∴f(x)=- 4 x-122+8=- 4x2+ 4x+ 7.方法三依题意知, f(x) +1= 0 的两根为x1= 2, x2=- 1,故可设f( x)+ 1= a(x- 2)(x+1) ,a≠ 0.即f(x)= ax2- ax- 2a- 1.4a - 2a- 1 -a2又函数有最大值y max= 8,即= 8,4a解之,得a=- 4 或 a=0(舍去 ).∴函数解析式为f( x)=- 4x2+ 4x+ 7.探究提高二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.已知二次函数f(x)同时满足条件:(1)f(1 +x)= f(1- x);(2)f( x)的最大值为 15;(3)f( x)= 0 的两根平方和等于 17.求 f(x)的解析式.解依条件,设f( x)= a(x- 1)2+ 15 (a<0) ,即f(x)= ax2- 2ax+ a+ 15.令f(x)= 0,即 ax2- 2ax+ a+ 15= 0,15∴x1+ x2= 2, x1x2= 1+a .222- 2x1 21+x2=(x1+x2x)x1530=4-2 1+a= 2-a=17,∴a=- 2,∴f(x)=- 2x2+ 4x+13.题型二二次函数的图像与性质例2 已知函数 f(x)= x2+2ax+ 3, x∈[- 4,6] .(1)当 a=- 2 时,求 f(x)的最值;(2)求实数 a 的取值范围,使 y= f(x)在区间 [ -4,6] 上是单调函数;(3)当 a= 1 时,求 f(|x|)的单调区间.思维启迪:对于 (1)和 (2) 可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.解(1) 当 a=- 2 时, f(x)= x2- 4x+3= (x- 2)2- 1,由于 x∈ [- 4,6] ,∴ f(x)在 [ - 4,2] 上单调递减,在 [2,6] 上单调递增,∴ f(x)的最小值是 f(2)=- 1,又 f(- 4)= 35, f(6)= 15,故 f(x)的最大值是 35.(2)由于函数 f( x)的图像开口向上,对称轴是x=- a,所以要使f(x)在[ - 4,6] 上是单调函数,应有-a≤- 4或- a≥ 6,即 a≤ - 6 或 a≥ 4.(3)当 a= 1 时, f(x) = x2+ 2x+ 3,∴ f(|x|)=x2+2|x|+ 3,此时定义域为x∈ [ -6,6] ,x2+ 2x+ 3, x∈ 0, 6]且 f(x)=,x2- 2x+3, x∈ [- 6,0]∴ f(|x|)的单调递增区间是(0,6] ,单调递减区间是[- 6,0] .探究提高 (1) 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论; (2) 二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解.若函数 f(x) =2x2+ mx- 1 在区间 [ - 1,+∞ )上递增,则f(- 1)的取值范围是____________.答案(-∞,- 3]m解析∵抛物线开口向上,对称轴为x=-4,又f(- 1)= 1-m≤ -3,∴ f(- 1)∈ (-∞,- 3].题型三二次函数的综合应用例 3若二次函数f(x)= ax2+ bx+ c (a≠0) 满足 f( x+1)- f(x)= 2x,且 f(0) = 1.(1)求 f(x)的解析式;(2)若在区间 [ -1 ,1]上,不等式f(x)>2 x+ m 恒成立,求实数m 的取值范围.思维启迪:对于 (1) ,由 f(0)= 1 可得 c,利用 f(x+ 1)- f(x)= 2x 恒成立,可求出a, b,进而确定f(x)的解析式.对于 (2) ,可利用函数思想求得.解(1) 由 f(0)= 1,得 c= 1.∴ f(x)= ax2+ bx+ 1.又f(x+ 1)- f(x)=2x,∴a(x+ 1)2+ b(x+1) + 1- (ax2+ bx+ 1)= 2x,2a= 2,a= 1,即 2ax+ a+ b=2x,∴∴a+ b= 0,b=- 1.因此, f(x)= x2- x+ 1.(2)f( x)>2 x+ m 等价于 x2- x+ 1>2x+m,即 x2- 3x+ 1-m>0,要使此不等式在 [- 1,1] 上恒成立,只需使函数g(x)= x2- 3x+ 1- m 在[- 1,1] 上的最小值大于0 即可.∵g(x)= x2- 3x+1- m 在 [- 1,1]上单调递减,∴g(x)min= g(1)=- m- 1,由- m- 1>0 得, m<-1.因此满足条件的实数m 的取值范围是(-∞,- 1).探究提高二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图像贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图像是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立 )问题是高考命题的热点.已知函数f(x)= x2+ mx+n 的图像过点 (1,3),且 f(-1+ x)= f( -1- x)对任意实数都成立,函数y=g(x)与 y=f(x)的图像关于原点对称.(1)求 f(x)与 g(x)的解析式;(2)若 F(x)= g(x)-λf(x)在(-1,1] 上是增函数,求实数λ的取值范围.解(1) ∵ f(x)= x2+ mx+n,∴f(- 1+ x)= (- 1+ x) 2+m(- 1+ x)+ n=x2- 2x+ 1+ mx+ n- m=x2+ (m- 2)x+ n- m+ 1,f(- 1- x)= (- 1-x)2+ m(- 1- x)+ n=x2+ 2x+ 1- mx- m+ n=x2+ (2- m)x+ n- m+ 1.又f(- 1+ x)= f(- 1- x),∴m- 2= 2- m,即 m= 2.又f(x)的图像过点 (1,3) ,∴3=12+ m+ n,即 m+ n=2,∴n=0,∴ f(x)= x2+2x,又y=g(x) 与 y= f(x)的图像关于原点对称,∴ -g( x)= (- x)2+ 2× (-x),∴g(x)=- x2+ 2x.2(2)∵ F(x)= g(x)-λf(x)=- (1+λ)x + (2- 2λ)x,2- 2λ 1-λ当λ+ 1≠ 0 时, F(x)的对称轴为 x==,2 1+λλ+ 1又∵F(x)在 (- 1,1]上是增函数.1+λ<01+λ>0∴1-λ或1-λ.≤- 1≥ 11+λ1+λ∴ λ<- 1 或- 1<λ≤ 0.当λ+ 1= 0,即λ=- 1 时, F(x)= 4x 显然在 (- 1,1] 上是增函数.综上所述,λ的取值范围为 (-∞,0] .题型四幂函数的图像和性质例 4已知幂函数f(x) = xm2- 2m- 3(m∈N* )的图像关于y 轴对称,且在 (0,+∞ )上是减函数,求满足(a+ 1)-m m的 a的取值范围.3<(3- 2a)-3思维启迪:由幂函数的性质可得到幂指数m2- 2m-3<0 ,再结合 m 是整数,及幂函数是偶函数可得m 的值.解 ∵ 函数在 (0,+ ∞ )上递减,∴ m 2- 2m - 3<0,解得- 1<m<3.∵ m ∈ N * , ∴ m = 1,2.又函数的图像关于y 轴对称, ∴ m 2- 2m - 3 是偶数,而 22- 2× 2- 3=- 3 为奇数, 12- 2×1- 3=- 4 为偶数,∴ m = 1.而 f(x)= x -13在( -∞ , 0), (0,+ ∞ )上均为减函数,11∴ (a + 1)-3<(3- 2a)- 3等价于 a + 1>3- 2a>0 或 0>a +1>3 - 2a 或 a + 1<0<3- 2a.2 3解得 a<- 1 或 3<a<2.23故 a 的取值范围为 a|a<- 1或 3<a<2 .探究提高(1) 幂函数解析式一定要设为y = x α( α为常数的形式 );(2)可以借助幂函数的图像理解函数的对称性、单调性.方法与技巧1. 二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图像数形结合来解,一般从 ① 开口方向; ②对称轴位置; ③ 判别式; ④ 端点函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图像、性质求解.2. 与二次函数有关的不等式恒成立问题a>0(1)ax 2+ bx + c>0 ,a ≠ 0 恒成立的充要条件是.b 2- 4ac<0a<0(2)ax 2+ bx + c<0 ,a ≠ 0 恒成立的充要条件是.b 2- 4ac<0αα∈ R ),其中 α为常数,其本质特征是以幂的底 x 为自变量,指数 α为常数.3. 幂函数 y = x (失误与防范1. 对于函数 y = ax 2+ bx + c ,要认为它是二次函数,就必须满足a ≠ 0,当题目条件中未说明 a ≠ 0 时,就要讨论 a =0 和 a ≠0 两种情况 .2. 幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点 .A 组 专项基础训练(时间: 35 分钟,满分: 57 分)一、选择题 (每小题 5 分,共 20 分 )-x , x ≤ 0,()1. (2011 浙·江 )设函数 f(x)= x 2,若 f(α)= 4,则实数 α等于x>0,A .- 4 或-2B .-4或2C .-2或4D .-2或2答案 B解析当 α≤ 0 时, f(α)=- α= 4,得 α=- 4;2当 α>0 时, f(α)= α= 4,得 α= 2.∴ α=- 4 或 α=2.2. 已知函数 f(x)= x2-2x + 2 的定义域和值域均为 [1, b] ,则 b 等于()A . 3B .2或 3C . 2D .1或 2答案 C解析函数 f(x)= x 2- 2x + 2 在[1 ,b] 上递增,f 1 =1,b 2- 3b + 2=0, 由已知条件 f b =b , 即解得 b = 2.b>1.b>1,3. 设 abc>0,二次函数 f(x) =ax 2+bx + c 的图像可能是( )答案D解析由 A , C , D 知, f(0)= c<0.b∵ abc>0 , ∴ ab<0, ∴ 对称轴 x =- 2a >0 ,知 A,C 错误, D 符合要求.b由 B 知 f(0)= c>0,∴ ab>0,∴ x=-2a<0, B 错误.4.设二次函数f(x)= ax2- 2ax+ c 在区间 [0,1] 上单调递减,且f(m)≤f(0),则实数m 的取值范围是()A. (-∞, 0]B. [2,+∞ )C. (-∞, 0]∪ [2,+∞ )D. [0,2]答案D解析二次函数 f( x)= ax2- 2ax+ c 在区间 [0,1] 上单调递减,则a≠ 0, f′ (x)= 2a(x- 1)<0 , x∈[0,1] ,所以 a>0,即函数图像的开口向上,对称轴是直线x= 1.所以 f(0)= f(2) ,则当 f(m)≤ f(0) 时,有 0≤ m≤ 2.二、填空题 (每小题 5 分,共 15 分)5.二次函数的图像过点 (0,1),对称轴为 x=2,最小值为- 1,则它的解析式为 ____________.答案12- 1 y= (x- 2)26.已知函数 f(x)= x2+2(a- 1)x+ 2 在区间 (-∞, 3]上是减函数,则实数 a 的取值范围为 ____________.答案(-∞,- 2]解析f(x)的图像的对称轴为x= 1- a 且开口向上,∴1-a≥ 3,即 a≤ - 2.7.当α∈ - 1,1,1, 3 时,幂函数 y= xα的图像不可能经过第 ________象限.2答案二、四α1α解析当α=- 1、1、 3 时, y= x 的图像经过第一、三象限;当α=2时, y= x 的图像经过第一象限.三、解答题 (共 22 分 )8. (10 分 )已知二次函数f( x)的二次项系数为 a,且 f( x)>- 2x 的解集为 { x|1<x<3} ,方程 f(x)+ 6a=0 有两相等实根,求 f(x)的解析式.解设 f(x)+ 2x= a(x- 1)(x-3) ( a<0) ,则f(x)= ax2- 4ax+ 3a- 2x,f(x)+6a= ax2- (4a+ 2)x+ 9a,=[ - (4a+ 2)]2- 36a2= 0,即 (5a+ 1)(a- 1)= 0,1解得 a=-5或 a= 1(舍去 ).1因此 f(x)的解析式为f( x)=-5(x-1)( x-3) .9. (12 分 )是否存在实数a,使函数 f(x)= x2- 2ax+ a 的定义域为 [- 1,1] 时,值域为 [- 2,2] ?若存在,求 a 的值;若不存在,说明理由.解f(x)= (x- a)2+ a- a2.当a<- 1 时, f(x)在 [ - 1,1] 上为增函数,f- 1 = 1+3a=- 2,∴? a=- 1(舍去 );f 1 = 1- a= 2f a = a- a2=- 2,当- 1≤ a≤ 0 时,? a=- 1;f 1 = 1- a= 2f a = a- a2=- 2,当 0<a≤ 1 时,? a 不存在;f- 1 = 1+ 3a=2当a>1 时, f(x)在[ -1,1] 上为减函数,f- 1 = 1+3a= 2,∴? a 不存在.f 1 = 1- a=- 2综上可得a=- 1.B 组专项能力提升(时间: 25 分钟,满分:43 分)一、选择题 (每小题 5 分,共 20 分 )α21.已知幂函数f(x)= x的图像经过点2,2,则 f(4) 的值等于()1A. 16 B. 161C. 2 D. 2答案D2α21解析将点2,2代入得: 2 = 2 ,所以α=-2,1故 f(4) =2.2.已知函数 f(x)= 2mx2- 2(4- m)x+1,g(x)=mx,若对于任一实数x,f( x)与 g(x) 的值至少有一个为正数,则实数 m 的取值范围是()A. (0,2)B. (0,8)C. (2,8) D . (-∞, 0)答案B4-m解析当 m≤ 0 时,显然不合题意;当m>0 时, f(0)= 1>0 ,① 若对称轴2m≥ 0,即 0<m≤ 4,结论显然成立; 4-m 2② 若对称轴2m <0,即 m>4 ,只要 = 4(4- m) - 8m = 4(m - 8)(m - 2)<0 即可,即 4<m<8,综上, 0<m<8,选 B.3. 已知二次函数 y = x 2- 2ax + 1 在区间 (2,3)内是单调函数,则实数 a 的取值范围是 ( )A . a ≤ 2 或 a ≥ 3B . 2≤a ≤ 3C . a ≤- 3 或 a ≥- 2D .- 3≤ a ≤- 2 答案 A 解析 由函数图像知, (2,3) 在对称轴 x =a 的左侧或右侧, ∴ a ≥ 3 或 a ≤ 2.二、填空题 (每小题 5 分,共 15 分 )4. 已知二次函数 y = f(x)的顶点坐标 为 -3,49 ,且方程 f(x)= 0 的两个实根之差等于 7,则此二次函数的解2析式是 ______________. 答案 f(x)=- 4x 2- 12x + 40 3 2 3 2解析 设二次函数的解析式为 f(x)= a x + 2 + 49 (a<0) ,方程 a(x + 2) + 49= 0 的两个根分别为 x 1,x 2, 49 则 |x 1- x 2|= 2 - a = 7,∴ a =- 4,故 f(x)=- 4x 2- 12x + 40.5. 若方程 x 2- 11x + 30+a = 0 的两根均大于 5,则实数 a 的取值范围是 ________.1答案 0<a ≤解析 令 f(x)= x 2-11x +30+ a ,结合图像有Δ≥ 0 图像与 x 轴有交点 ,f 5 >0 图像与 x 轴交点在 x = 5的右侧 ,11无需考虑对称轴,因为对称轴方程 x = 2 >5 .1∴ 0<a ≤ 4.16. 已知函数 f(x)= x 2,给出下列命题:①若 x>1,则 f(x)>1;②若 0<x 1<x 2,则 f(x 2)- f(x 1)>x 2- x 1;③若 0<x 1<x 2,则 x 2f(x 1)<x 1f(x 2);④若 0<x 1<x 2 ,则 f x 1 +f x 2 <fx 1+ x 2 .2 2则所有正确命题的序号是 ________.答案 ①④1解析 对于 ①, f(x)= x2 是增函数, f(1)= 1,当 x>1 时, f(x)>1, ① 正确;f x 2 - f x 1 >1 ,可举例 (1,1), (4,2) ,故 ② 错;对于 ②,x 2- x 1f x 1 - 0 f x 2- 0x 1 ,x 2 到原点连线的斜率越来越大,由图像可知,③错; 对于 ③, < ,说明图像上两点 1- 0 x 2- 0xf x 1+ f x 2 x 1+ x 2 ,根据图像可判断出 ④ 正确. 对于 ④, 2 <f2三、解答题7. (13 分 )已知函数 f(x)=- x 2+ 2ax + 1-a 在 x ∈ [0,1] 时有最大值 2,求 a 的值.解 f(x)=- (x - a)2+ a 2- a +1,当 a ≥1 时, y max = f(1) = a ;当 0<a<1 时, y max = f(a)=a 2- a +1;当 a ≤0 时, y max = f(0) = 1- a.a ≥ 1, 0<a<1, a ≤ 0根据已知条件: 或 或a = 2 2 - a +1= 2 1- a = 2,a解得 a = 2 或 a =- 1.。
二次函数与幂函数知识点总结

二次函数与幂函数知识点总结在数学课程中,二次函数和幂函数是一个经常被学习的知识点,在实际问题中也有着重要的应用。
因此,了解两者的特点及其之间的关系有助于学生更好的学习和掌握这两方面的知识,着重加强自己的数学基础知识。
本文针对二次函数和幂函数的概念、特点、关系及应用进行简单的介绍,以期对大家的理解有所帮助。
二次函数是指一类具有如下形式的函数:y = ax2 + bx + c,a≠0。
其中,a是二次项系数,b、c是常数项系数。
二次函数反映的是一定范围内物体经过某一特定点位于一定距离处的路径,它体现出了物体上升或下降的趋势。
二次函数的形状取决于a的正负,当a>0时,函数在原点处取得最大值,因此函数曲线为一个凹曲线;当a< 0时,函数在原点处取得最小值,曲线为凸曲线。
另一方面,幂函数的形式为:y=x^n,n为正整数。
它体现的是一种物体在相同路径上,所经过的距离随次数的增加而不断增加,曲线越向右,陡度越大。
如果n>1,则函数为凹曲线;如果n<1,则函数为凸曲线。
二次函数与幂函数之间还存在一定的联系,即可以将二次函数改写为幂函数的形式:y = ax2 + bx + c = a(x^2 + 2bx^(1/2) + c/a)。
在实际应用中,二次函数和幂函数都有其独特的应用,二次函数可以用来描述抛物线的运动轨迹。
另外,当a=-1时,二次函数可以用来计算球的落点位置、反弹高度等,在高尔夫球中得到广泛应用。
此外,幂函数也在实际中得到广泛应用,比如在经济学和财经学中,金融工具的收益率可以用幂函数来描述;另外,还可以用来概括基于时间的变化,比如种植植物的高度、排水的时间等。
从上面可以看出,二次函数和幂函数在实际应用中具有重要的意义。
通过认真研究,我们可以更好的理解这两类函数,从而更好地掌握两者之间的内在联系,以便在实践中更好地应用。
本文分析了二次函数和幂函数的概念、特点、关系及应用,并对实际应用中的重要性进行了阐述。
高三数学知识点总结9:二次函数和幂函数

(十一)二次函数一.二次函数解析式(1)一般式:).0()(2≠++=a c bx ax x f(2)顶点式:若二次函数的顶点坐标为),,(k h 则其解析式).0()()(2≠+-=a k h x a x f(3)交点式:若二次函数的图象与x 轴的交点为),0,(),0,(21x x 则),)(()(21x x x x a x f --= .0≠a二.二次函数的对称轴(1)对于二次函数)(x f y =的定义域内有21,x x 满足),()(21x f x f =则二次函数的对称轴为.221x x x += (2)对于一般函数)(x f y =对定义域内所有,x 都有)()(x a f x a f -=+成立,那么函数 )(x f y =图像的对称轴方程为:a x =.三.二次函数)0(2≠++=a c bx ax y 在],[n m 上的最值(1)0>a ① 最小值讨论三种情况 1.)(2min m f y m a b =≤-,;2.)2(2min a b f y n a b m -=<-<,;3.)(2min n f y n ab =≥-,. ② 最大值讨论两种情况 1.)(,22max n f y n m a b =+≤-;2.)(22max m f y n m a b =+>-,. (2)0<a ① 最大值讨论三种情况 1.)(2max m f y m a b =≤-,;2.)2(2max a b f y n a b m -=<-<,;3.)(,2max n f y n ab =≥-. ② 最小值讨论两种情况 1.)(,22min n f y n m a b =+≤-;2.)(22min m f y n m a b =+>-,. 四.三个二次的关系一元二次方程的根=一元二次函数的零点=一元二次不等式解集的端点.五.一元二次方程)0(02≠=++a c bx ax 的实根分布(1)数的角度:① 两实根异号等价于0<a c ;② 有两个正根等价于.0,0,0>>-≥∆a c a b ;③ 有两个负根等价于.0,0,0><-≥∆ac a b (2)形的角度:画出满足要求的图像,用“内有无,内无有”(开口内有端点则不需要考虑对称轴和,∆开口内无端点则需要考虑对称轴和.∆)。
幂函数与二次函数讲义

幂函数与二次函数讲义一、知识梳理1.幂函数(1)幂函数的定义一般地,形如y=x α的函数称为幂函数,其中x是自变量,α是常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质函数特征性质y=x y=x2y=x3y=12x y=x-1定义域R R R[0,+∞){x|x∈R,且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R,且y≠0}奇偶性奇偶奇非奇非偶奇2.二次函数(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图象定义域值域单调性对称性函数的图象关于x=-b2a对称(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点. (3)当α>0时,y =x α在[0,+∞)上为增函数; 当α<0时,y =x α在(0,+∞)上为减函数. 2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.二、基础检验题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( ) (2)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( ) (4)函数y =212x 是幂函数.( )(5)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( ) 题组二:教材改编2.已知幂函数f (x )=k ·x α的图象过点)22,21(,则k +α等于( ) A.12 B .1 C.32D .2 3.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3题组三:易错自纠 4.幂函数f (x )=21023a a x-+(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( )A .3B .4C .5D .65.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )6.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为_____.三、典型例题1.幂函数y=f(x)经过点(3,3),则f(x)是()A.偶函数,且在(0,+∞)上是增函数B.偶函数,且在(0,+∞)上是减函数C.奇函数,且在(0,+∞)上是减函数D.非奇非偶函数,且在(0,+∞)上是增函数2.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图所示,则a,b,c,d的大小关系是()A.d>c>b>a B.a>b>c>dC.d>c>a>b D.a>b>d>c3.若12(21)m >122(1)m m+-,则实数m的取值范围是思维升华:(1)幂函数的形式是y=xα(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.题型二:二次函数的解析式典例(1)已知二次函数f(x)=x2-bx+c满足f(0)=3,对∀x∈R,都有f(1+x)=f(1-x)成立,则f(x)的解析式为________________.(2)已知二次函数f(x)与x轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f(x)=________.思维升华:求二次函数解析式的方法跟踪训练(1)已知二次函数f(x)=ax2+bx+1(a,b∈R,a≠0),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.(2)若函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.题型三:二次函数的图象和性质命题点1:二次函数的图象典例:对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是()命题点2:二次函数的单调性典例 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 命题点3:二次函数的最值典例 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 命题点4:二次函数中的恒成立问题典例 (1)已知函数f (x )=x 2-x +1,在区间[-1,1]上,不等式f (x )>2x +m 恒成立,则实数m 的取值范围是____. (2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________. 思维升华:解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值范围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路都是将问题归结为求函数的最值或值域. 跟踪训练 (1)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )(2)已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.四、反馈练习1.幂函数y =24m mx-(m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .3 2.若幂函数f (x )=(m 2-4m +4)·268m m x-+在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .23.若命题“ax 2-2ax +3>0恒成立”是假命题,则实数a 的取值范围是( ) A .a <0或a ≥3 B .a ≤0或a ≥3 C .a <0或a >3D .0<a <34.已知二次函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系为( ) A .f (x 1)=f (x 2) B .f (x 1)>f (x 2) C .f (x 1)<f (x 2)D .与a 值有关5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)D .(-∞,-6)6.已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是____________. 7.若函数y =x 2-3x -4的定义域为[0,m ],值域为]4,425[--,则m 的取值范围是__________. 8.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________. 9.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈]212[--,时,n ≤f (x )≤m 恒成立,则m -n 的最小值为________.10.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.11.已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围为( ) A .[-2,2] B .[1,2] C .[2,3]D .[1,2]12.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 13.若函数f (x )=x 2-a |x -1|在[0,+∞)上单调递增,则实数a 的取值范围是________.14.已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示,请根据图象: (1)写出函数f (x )(x ∈R )的增区间; (2)写出函数f (x )(x ∈R )的解析式;(3)若函数g (x )=f (x )-2ax +2(x ∈[1,2]),求函数g (x )的最小值.。
二次函数和幂函数知识点

二次函数和幂函数知识点二次函数是形如y=ax²+bx+c的函数,其中a、b、c是常数且a≠0。
它的图像是一个抛物线,称为二次曲线。
而幂函数是形如y=axⁿ的函数,其中a是常数,n是实数且n≠0。
它的图像可以是一条直线、开口向上或向下的抛物线、以及其他形状,取决于指数n的值。
首先,我们来看二次函数。
二次函数的图像可以分为三种情况:开口向上的抛物线、开口向下的抛物线和一条直线。
当a>0时,二次函数的图像是开口向上的抛物线,对称轴是x=-b/2a,最低点坐标为:(-b/2a, -△/(4a)),其中△=b²-4ac是二次函数的判别式。
图像在对称轴上方递增,在对称轴下方递减。
当a<0时,二次函数的图像是开口向下的抛物线,对称轴、最高点坐标和递增递减性质与开口向上的情况相反。
当a=0时,二次函数变为一条直线y=bx+c。
这个直线与x轴平行,斜率为b。
接下来,我们来看幂函数。
幂函数的图像可以根据指数n的值分为几种情况。
当n>0时,幂函数的图像在原点右侧递增且没有上下界,图像随着x的增大而增大。
当n<0时,幂函数的图像在原点左侧递增且也没有上下界,图像随着x的增大而减小。
当n=1时,幂函数就变成了y=ax,它的图像是一条过原点的直线。
斜率a的正负决定了直线的倾斜方向。
当n=0时,幂函数就变成了y=a,它的图像是一条水平直线,与x轴平行。
根据常数a的值,直线的位置可以在y轴的任意位置。
当n是偶数且n≠0时,幂函数的图像在最高点或最低点有一个上下界,其余部分无上下界。
当n为偶数时,函数的值随着x的增大和减小而逐渐增大,形状类似于开口向上的抛物线。
当n为负偶数时,函数的值随着x的增大和减小而逐渐减小,形状类似于开口向下的抛物线。
当n是奇数时,幂函数图像没有上下界,且随着x的增大和减小而在原点两侧单调。
根据实数n的正负,函数的图像可能在原点两侧分别开口向上或向下。
总结起来,二次函数和幂函数都是常见的数学函数类型。
考点06 高中数学-二次函数与幂函数-考点总结及习题

考点06二次函数与幂函数【命题趋势】此知识点也是高考中的常考知识点,注意:(1)了解幂函数的概念.(2)结合函数12321,,,y x y x y x y y x x=====的图象,了解它们的变化情况.【重要考向】一、求二次函数和幂函数的解析式二、幂函数的图像与性质的应用三、二次函数的图像与性质的应用二次函数与幂函数的解析式1.幂函数(1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较函数y =xy =x 2y =x 3y =12xy =x-1图象性质定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点(1,1)2.二次函数的概念形如2()(0)f x ax bx c a =++≠的函数叫做二次函数.3.表示形式(1)一般式:f (x )=ax 2+bx +c (a ≠0).(2)顶点式:f (x )=a (x −h )2+k (a ≠0),其中(h ,k )为抛物线的顶点坐标.(3)两根式:f (x )=a (x −x 1)(x −x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴交点的横坐标.【巧学妙记】1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.【答案】f (x )=x 2-2x +3解析由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.2.已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________.【答案】x 2+2x解析设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .3.若函数()f x 是幂函数,且满足()()432f f =,则12f ⎛⎫= ⎪⎝⎭A .13B .3C .13-D .−3【答案】A【解析】由题意可设()(f x x αα=为常数),因为满足()()432f f =,所以432αα=,所以2log 3α=,所以()2log 3f x x =,所以2log 311223f -⎛⎫== ⎪⎝⎭.故选A .幂函数的图像与性质①α的正负:当α>0时,图象过原点,在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.②幂函数的指数与图象特征的关系当α≠0,1时,幂函数y =x α在第一象限的图象特征如下:αα>10<α<1α<0图象特殊点过(0,0),(1,1)过(0,0),(1,1)过(1,1)凹凸性下凸上凸下凸单调性递增递增递减举例y =x 212y x =1y x -=、12y x-=【巧学妙记】4.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是()A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c 【答案】B【解析】由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B.5.已知幂函数f (x )=(n 2+2n -2)23n nx -(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为()A .-3B .1C .2D .1或2【答案】B【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B.6.若(a+1)13-<(3-2a)13-,则实数a的取值范围是____________.【答案】(-∞,-1)【解析】不等式(a+1)13-<(3-2a)13-等价于a+1>3-2a>0或3-2a<a+1<0或a+1<0<3-2a,解得a<-1或23<a<32.二次函数图像与性质的应用函数解析式2()(0)f x ax bx c a=++>2()(0)f x ax bx c a=++<图象(抛物线)定义域R值域24[,)4ac ba-+∞24(,]4ac ba--∞对称性函数图象关于直线2bxa=-对称顶点坐标24(,)24b ac ba a--奇偶性当b=0时是偶函数,当b≠0时是非奇非偶函数单调性在(,]2ba-∞-上是减函数;在[,)2ba-+∞上是增函数.在(,]2ba-∞-上是增函数;在[,)2ba-+∞上是减函数.最值当2bxa=-时,2min4()4ac bf xa-=当2bxa=-时,2max4()4ac bf xa-=【巧学妙记】7.一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是()【答案】C【解析】若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a<0,而二次函数的对称轴在y 轴的右侧,故应排除B ,选C.8.函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是()A .[-3,0)B .(-∞,-3]C .[-2,0]D .[-3,0]【答案】D【解析】当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].9.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.【答案】(-∞,-1)【解析】设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m -54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.1.已知[1,1]a ∈-时不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)2.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭C.(),3-∞ D.3,7⎛⎫+∞⎪⎝⎭3.已知函数2()2()f x x ax a R =-+∈在区间[1,+∞)上单调递增,则a 的取值范围为()A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]4.函数()22f x x ax =++在()3,+∞上单调递增,则实数a 的取值范围是()A.6a =- B.6a ≥- C.6a >- D.6a ≤-5.已知幂函数a y k x =⋅的图象过点(4,2),则k a +等于()A.32B.3C.12D.26.若幂函数f (x )的图象过点21,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2 B.()(),02,-∞+∞ C.()2,0- D.()(),20,-∞-+∞ 7.若四个幂函数a y x =,b y x =,c y x =,d y x =在同一坐标系中的部分图象如图,则a 、b 、c 、d 的大小关系正确的是()A.1a b >>B.1a b >>C.0b c>> D.0d c>>8.已知幂函数()y f x =的图象过点13(,)33,则3log (81)f 的值为()A.12B.12-C.2D.2-9.(多选题)已知点2(1)A ,在函数()3f x ax =的图象上,则过点A 的曲线():C y f x =的切线方程是()A.640x y --=B.470x y -+=C.470x y -+=D.3210x y -+=二、填空题10.已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.11.已知直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是___________.12.已知函数23()(1)m f x m m x +=+-是幂函数,且该函数是偶函数,则m 的值是____13.幂函数()24222m y m m x --=--在(0,+∞)上为增函数,则实数m =_______.14.已知幂函数223()()m m f x x m Z +-=∈是奇函数,且()51f <,则m 的值为___________.一、单选题1.(2013·浙江高考真题(文))已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则()A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =02.(2007·湖南高考真题(文))函数244 1(){431x x f x x x x -≤=-+>,,的图象和函数2()log g x x =的图象的交点个数是A .1B .2C .3D .43.(2008·江西高考真题(文))已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是A .[4,4]-B .(4,4)-C .(,4)-∞D .(,4)-∞-4.(2011·上海高考真题(文))下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为()A .2y x-=B .1y x-=C .2y x=D .13y x=二、填空题5.(2017·北京高考真题(文))已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.6.(2012·山东高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m x =-在[0,)+∞上是增函数,则a =______.三、解答题7.(2014·辽宁高考真题(文))设函数()211f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈⋂时,证明:221()[()]4x f x x f x +≤.一、单选题1.(2021·北京高三二模)下列函数中,在区间(0,)+∞上单调递增的是()A .12xy ⎛⎫= ⎪⎝⎭B .1y x -=C .2(1)y x =-D .ln y x=2.(2021·新疆高三其他模拟(文))若实数m ,n 满足m n >,且0mn ≠,则下列选项正确的是()A .330m n ->B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()lg 0m n ->D .11m n<3.(2021·全国高三月考(文))已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =()A .221x x -+B .221x x ++C .2221x x -+D .2221x x +-4.(2021·江西新余市·高三二模(文))已知a ,b 是区间[0,4]上的任意实数,则函数2()1f x ax bx =-+在[2,)+∞上单调递增的概率为()A .18B .38C .58D .785.(2021·全国高一课时练习)已知函数()()2ln 23f x x x =--+,则()f x 的增区间为()A .(–∞,–1)B .(–3,–1)C .[–1,+∞)D .[–1,1)6.(2021·安徽合肥市·合肥一中高三其他模拟(文))若120x x <<,则下列函数①()f x x =;②2()f x x =;③3()f x x =;④()f x x =;⑤1()f x x=满足条件()()()121221()022f x f x x x f x x ++>>的有()A .1个B .2个C .3个D .4个7.(2021·江西高三二模(文))设ln 2a =,0.1b =,0.1c =,则下列关系中正确的是()A .b a c>>B .c b a>>C .c a b>>D .b c a>>8.(2021·江西高三其他模拟(文))已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是()A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题9.(2021·全国高一课时练习)有如下命题,其中真命题的标号为()A .若幂函数()y f x =的图象过点12,2⎛⎫ ⎪⎝⎭,则()132f >B .函数()(110x f x aa -=+>且)1a ≠的图象恒过定点()1,2C .函数()21f x x =-在()0,∞+上单调递减D .若函数()224f x x x =-+在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2三、填空题10.(2021·全国高一课时练习)已知偶函数()24a af x x -=在()0∞+,上是减函数,则整数a 的值是________.11.(2021·黑龙江哈尔滨市·哈尔滨三中高二月考(文))已知2()31f x ax x =-+,若对任意的[1,1]a ∈-,总有()0f x ≥,则x 的范围是______.12.(2021·千阳县中学高三其他模拟(文))给出以下几个不等式:①0.30.70.40.1<;②45log 3log 4<;③131sin sin 223<;④16181816<.其中不等式中成立序号为______.四、解答题13.(2020·上海高一专题练习)幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.参考答案跟踪训练1.【答案】:C 【分析】根据题意,转化为关于a 的函数()2(2)44f a x a x x =-+-+,得出()0f a >对于任意[1,1]a ∈-恒成立,即可求解.【详解】由题意,因为[1,1]a ∈-时不等式2(4)420x a x a +-+->恒成立,可转化为关于a 的函数()2(2)44f a x a x x =-+-+,则()0f a >对于任意[1,1]a ∈-恒成立,则满足()()2215601320f x x f x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得1x <或3x >,即x 的取值范围为(,1)(3,)-∞+∞ .故选:C.【点睛】本题主要考查了不等式的恒成立问题,其中解答中根据条件转化为关于a 的函数,结合其图象特征,列出不等式组是解答的关键,着重考查转化思想,以及运算与求解能力.2.【答案】:A 【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.3.【答案】:D 【分析】直接根据二次函数性质,由对称轴和区间的位置关系即可得解.【详解】依题意对称轴12ax =≤,解得2a ≤,故选:D .【点睛】本题主要考查了二次函数的单调性,属于基础题.4.【答案】:B 【分析】根据函数()22f x x ax =++在()3,+∞上单调递增,则根据函数的图象知:对称轴必在x=3的左边,列出不等式求解即可.【详解】∵函数()22f x x ax =++在()3,+∞上单调递增,x=2a -∴32a-≤,即6a ≥-故选B【点睛】本题考查了二次函数的性质,二次函数的对称轴的求法与应用,属于基础题.5.【答案】:A 【分析】根据题意,由幂函数的定义可得1k =,将点(4,2)的坐标代入解析式,计算可得α的值,相加即可得答案.【详解】解:根据题意,函数y k x α=⋅为幂函数,则1k =,若其图象过点(4,2),则有24α=,解可得12α=,则32k α+=;故选:A .【点睛】本题考查幂函数的定义以及解析式的求法,注意幂函数解析式的形式,属于基础题.6.【答案】:A 【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点1,22⎛⎫ ⎪ ⎪⎝⎭,则2122α⎛= ⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x x xx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.7.【答案】:B 【分析】根据幂函数的图象与性质,即可求解,得到答案.【详解】由幂函数的图象与性质,在第一象限内,在1x =的右侧部分的图象,图象由下至上,幂指数依次增大,可得100a b c d >>>>>>.故选:B.【点睛】本题主要考查了幂函数的图象与性质的应用,其中熟记幂函数在第一象限的图象与性质是解答的关键,属于基础题.8.【答案】:C 【分析】设幂函数的解析式为()()f x x R αα=∈,根据幂函数的图象过点13()33,求得()12f x x =,结合对数的运算性质,即可求解.【详解】由题意,设幂函数的解析式为()()f x x R αα=∈,根据幂函数的图象过点13()33,可得31(33α=,解得12α=,即()12f x x =,所以12333log (81)log 81log 92f ===.故选:C .9.【答案】AD 【分析】先根据点2(1)A ,在函数()3f x ax =的图象上,可求出a ,再设出切点()00,P x y ,求出在点P处的切线方程,然后根据点A 在切线上,即可解出.【详解】因为点2(1)A ,在函数()3f x ax =的图象上,所以2a =.设切点()00,P x y ,则由()32f x x =得,()26f x x '=,即206k x =,所以在点P 处的切线方程为:()3200026y x x x x -=-,即230064y x x x =-.而点2(1)A ,在切线上,∴2300264x x =-,即()()()()222000002111210x x x x x ---=-+=,解得01x =或012x =-,∴切线方程为:640x y --=和3210x y -+=.故选:AD .【点睛】本题主要考查过某点的曲线的切线方程的求法,意在考查学生的数学运算能力,属于基础题.二、填空题10.【答案】:[)4,+∞【分析】求出二次函数的对称轴方程,根据二次函数的单调区间,确定对称轴与区间的关系,即可求解.【详解】()223f x x ax =-++对称轴方程为x a =,()f x 在区间(),4-∞上是增函数,所以4a ≥.故答案为:[)4,+∞.【点睛】本题考查函数的单调性求参数,熟练掌握初等简单函数的性质是解题的关键,属于基础题.11.【答案】:514a <<【分析】直线1y =与曲线2y x x a =-+有四个交点等价于方程21x x a =-+有四个解,即满足y a =和21y x x =-++有四个交点,画出函数图象即可求出.【详解】直线1y =与曲线2y x x a =-+有四个交点等价于方程21x x a =-+有四个解,则21a x x =-++,满足y a =和21y x x =-++有四个交点,画出函数图象如下,观察图象可知,要使y a =和21y x x =-++有四个交点,需满足514a <<故答案为:514a <<.【点睛】本题考查利用函数图象求参数,属于基础题.12.【答案】:1【分析】由幂函数的定义可得211m m +-=,解出方程,最后根据该函数是偶函数确定m 的值.【详解】∵函数23()(1)m f x m m x +=+-是幂函数,∴211m m +-=,解得2m =-或1m =,又∵该函数是偶函数,当2m =-时,函数()f x x =是奇函数,当1m =时,函数4()f x x =是偶函数,即m 的值是1,故答案为1.【点睛】本题主要考查幂函数的定义与简单性质,函数奇偶性的判断,属于基本知识的考查.13.【答案】:-1【分析】利用幂函数定义和单调性可得2221m m --=且420m -->,联立求解即可.【详解】由幂函数定义得2221m m --=,解得:3m =或1m =-因为在()24222m y m m x--=--()0+∞,上为增函数,所以420m -->,即12m <-,所以1m =-故答案为:1-【点睛】本题考查了幂函数定义和单调性,属于基础题.14.【答案】:0【分析】由(5)1f <和m Z ∈,可确定1m =-或0m =,由()f x 是奇函数,可舍掉1m =-,即可得到本题答案.【详解】因为22323(5)5123012m m f m m m +-=<⇒+-<⇒-<<,又因为m Z ∈,所以1m =-或0m =,当1m =-时,2232m m +-=-,不符合题意,舍去;当0m =时,2233m m +-=-,符合题意.故答案为:0真题再现1.A 【分析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项.【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选:A.【点睛】本题考查二次函数的对称轴,单调性,属于基础题.2.C 【详解】试题分析:解:在同一坐标系中画出函数的图象和函数g (x )=log 2x 的图象,如下图所示:由函数图象得,两个函数图象共有3个交点,故选C.考点:1.函数的图象与图象变化;2.零点个数.3.C 【详解】当2160m ∆=-<时,显然成立当4,(0)(0)0m f g ===时,显然不成立;当24,()2(2),()4m f x x g x x =-=+=-显然成立;当4m <-时12120,0x x x x +,则()0f x =两根为负,结论成立故4m <,故选C.4.A 【详解】试题分析:由偶函数定义知,仅A,C 为偶函数,C.2y x =在区间(0,)+∞上单调递增函数,故选A .考点:本题主要考查奇函数的概念、函数单调性、幂函数的性质.点评:函数奇偶性判定问题,应首先考虑函数的定义域是否关于原点对称.5.1[,1]2【详解】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22x y +的取值范围为1[,1]2.【名师点睛】本题考查了转化与化归的能力,除了像本题的方法,即转化为二次函数求取值范围,也可以转化为几何关系求取值范围,即0,0x y ≥≥,1x y +=表示线段,那么22x y+的几何意义就是线段上的点到原点距离的平方,这样会更加简单.6.14【详解】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意7.(1)4|03M x x ⎧⎫=≤≤⎨⎬⎩⎭;(2)详见解析.【详解】试题分析:(1)由所给的不等式可得当1x ≥时,由()331f x x =-≤,或当1x <时,由()11f x x =-≤,分别求得它们的解集,再取并集,即得所求.(2)由4g x ≤(),求得N ,可得3{|0}4M N x x ⋂=≤≤.当x ∈M∩N 时,f (x )=1-x ,不等式的左边化为211()42x --,显然它小于或等于14,要证的不等式得证.(1)33,[1,)(){1,(,1)x x f x x x -∈+∞=-∈-∞当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤;当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<;所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4M N x x ⋂=≤≤.当x M N ∈⋂时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +=+2111()(1)()424xf x x x x ==-=--≤.考点:1.其他不等式的解法;2.交集及其运算.模拟检测1.D【分析】根据基本初等函数的性质依次判断选项即可.【详解】对于A 选项:指数函数12x y ⎛⎫= ⎪⎝⎭,底数112<,所以函数12xy ⎛⎫= ⎪⎝⎭在(,)-∞+∞上单调递减;对于B 选项:幂函数1y x -=,10-<,所以幂函数1y x -=在(0,)+∞上单调递减;对于C 选项:二次函数2(1)y x =-,对称轴为1x =,所以二次函数2(1)y x =-在(0,1)上单调递减,在(1)+∞,上单调递增;对于D 选项:对数函数ln y x =,底数1e >,所以对数函数ln y x =在(0,)+∞上单调递增.故选:D.【点睛】本题主要考查基本初等函数的单调性,基本初等函数的函数性质是整个高中数学知识的奠基,和很多专题知识都有交融,是整个数学学习的基础.2.A【分析】利用幂函数、指数函数单调性和对数的运算可求解.【详解】解:∵函数3y x =,在R x ∈时单调递增,且m n >,∴330m n ->,故A 正确;∵函数1()2xy =,在R x ∈时单调递减,且m n >,∴11(()22m n <,故B 错误;当11,2m n ==时,()1lg lg 02m n -=<,故C 错误;当,11m n ==-时,1111m n=>=-,故D 错误;故选:A.3.B【分析】设()()20f x ax bx c a =++≠,根据已知条件可得出关于a 、b 、c 的方程组,解出这三个未知数的值,即可得出函数()f x 的解析式.【详解】设()()20f x ax bx c a =++≠,则()2f x ax b '=+,由()()21f x x f x '=+-可得()2221ax bx c x ax b ++=++-,所以,121a b a c b =⎧⎪=⎨⎪=-⎩,解得121a b c =⎧⎪=⎨⎪=⎩,因此,()221f x x x =++.故选:B.4.D【分析】利用函数单调性求得a ,b 关系,结合几何概型即可求解.【详解】因为a ,b 是区间[0,4]上的任意实数,则函数2()1f x ax bx =-+在[2,)+∞上单调递增所以242≤⇒≤b b a a如图所示阴影部分:则所要求的概率为14414147244168⨯-⨯⨯===⨯P 故选:D5.B【分析】先求出函数的定义域,然后由复合函数的单调性可得出答案.【详解】由2230x x --+>,得31x -<<,当31x -<<-时,函数223y x x =--+单调递增,所以函数2()ln(23)f x x x =--+单调递增;当11x -<<时,函数223y x x =--+单调递减,所以所以函数2()ln(23)f x x x =--+单调递减,故选:B.6.D【分析】条件121221()()(0)22x x f x f x f x x ++⎛⎫≤>> ⎪⎝⎭表明函数应是上凹函数或者是一次函数,结合幂函数的图象可作答.【详解】只有上凹函数或者是一次函数才满足题中条件,所以只有①②③⑤满足.故选:D.7.D【分析】利用指对函数的性质,结合中间量比较大小【详解】ln 2ln 1a e =<=Q,0.10.101b c =>=>=,b c a ∴>>.故选:D8.D【分析】由幂函数的性质求参数a 、b ,根据点在直线上得2m n +=,有14111n m m +=-++且02m <<,进而可求11n m ++的取值范围.【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<,∴11(,3)13n m +∈+.故选:D.【点睛】关键点点睛:根据幂函数的性质求参数,再由点在线上确定m 、n 的数量关系,进而结合目标式,应用分式型函数的性质求范围.9.BD【分析】由()f x 所过点可求得幂函数()f x 解析式,由此得到()132f <,知A 错误;由()12f =恒成立可知()f x 过定点()1,2,知B 正确;由二次函数的性质可知C 错误;由二次函数的最值可确定自变量的范围,即可确定m 的范围,知D 正确.【详解】对于A ,令()f x x α=,则122α=,解得:1α=-,()1f x x -∴=,()11332f ∴=<,A 错误;对于B ,令10x -=,即1x =时,()1112f =+=,()f x ∴恒过定点()1,2,B 正确;对于C ,()f x 为开口方向向上,对称轴为0x =的二次函数,()f x ∴在()0,∞+上单调递增,C 错误;对于D ,令()4f x =,解得:0x =或2x =;又()()min 13f x f ==,∴实数m 的取值范围为[]1,2,D 正确.故选:BD.10.2【分析】由()24aa f x x -=在()0+∞,上是减函数,可得04a <<,进而可得结果.【详解】因为()24a a f x x -=在()0+∞,上是减函数,所以240a a -<,解得04a <<,又函数为偶函数,且a Z ∈,当1a =时,()-3f x x =为奇函数当2a =时,()4f x x -=为偶函数当3a =时,()3f x x -=为奇函数;所以2a =故答案为:211.31331322x +-+-≤≤【分析】把函数f (x )视为关于参数a 的一次型函数,在端点-1,1处的函数值不小于0,建立不等式组求解即得.【详解】令g (a )=x 2·a -3x +1,则g (a )是一次型函数,它在闭区间上图象为线段,则在闭区间上函数值不小于0,即对应图象不在x 轴下方,只需端点不在x 轴下方即可,22310[1,1],()0[1,1],()0310x x a f x a g a x x ⎧-+≥∴∀∈-≥⇔∀∈-≥⇔⎨--+≥⎩,解2310x x -+≥得:352x ≤或352x ≥,解2310x x --+≥得:31331322x --+≤≤,所以有3322x +-+-≤≤.答案为:3322x +-+-≤≤【点睛】在参数范围给定的含该参数的函数问题中,转换“主”、“辅”变元的位置是解题的关键.12.②③④【分析】利用幂函数的单调性可判断①的正误;利用对数函数的单调性结合作差法、基本不等式可判断②的正误;利用函数()sin x f x x=的单调性可判断③的正误;利用对数函数()ln x g x x=可判断④的正误.【详解】对于①,()()0.10.10.330.170.10.40.40.0640.10.0000001==>=,①错误;对于②,()()22245ln 3ln 5ln 4ln 3ln 5ln 4ln 3ln 42log 3log 4ln 4ln 5ln 4ln 5ln 4ln 5+⎛⎫- ⎪-⎝⎭-=-=<(()22ln 40ln 4ln 5-=<,所以,45log 3log 4<,②正确;对于③,令()sin x f x x =,其中()0,1x ∈,则()2cos sin x x x f x x -'=,令()cos sin h x x x x =-,其中()0,1x ∈,则()sin 0h x x x '=-<,所以,函数()h x 在()0,1上单调递减,当()0,1x ∈时,()0h x <,则()0f x '<,所以,函数()f x 在()0,1上单调递减,因为110132<<<,则1123f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即112sin 3sin 23<,故131sin sin 223<,③正确;对于④,设()ln x g x x =,其中0x >,则()21ln x g x x-'=,当x e >时,()0g x '<,即函数()g x 在(),e +∞上单调递减,所以,()()1618g g >,即ln16ln181618>,所以,1816ln16ln18>,因此,16181816<,④正确.故答案为:②③④.【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个:(1)判断各个数值所在的区间;(2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.13.25()f x x =或85()f x x =.【分析】根据幂函数的定义和性质得到关于t 满足的式子,即可求得t 的值.【详解】因为幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,所以322117320732t t t t t t ⎧-+=⎪+->⎨⎪+-⎩是偶数,解得1t =或1t =-,当1t =时,25()f x x =,当1t =-时,85()f x x =.【点睛】关键点点睛:该题考查的是有关幂函数的问题,能够正确解题的关键是熟练掌握幂函数的定义和幂函数的性质.。
高三数学一轮复习知识点专题2-4二次函数与幂函数

精品基础教育教学资料,仅供参考,需要可下载使用!专题2-4二次函数与幂函数【核心素养分析】1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.3.培养学生逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】 知识点一 幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 知识点二 二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质【特别提醒】1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.【典型题分析】高频考点一 幂函数的图象与性质例1.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.【答案】-1【解析】由题意知α可取-1,1,3.又y =x α在(0,+∞)上是减函数, ∴α<0,取α=-1.【方法技巧】(1)幂函数y =x α的形式特点是“幂指数坐在x 的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y 轴左侧的增减性即可.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.【变式探究】(2020·山东临沂一中质检)幂函数y =x (m ∈Z)的图象如图所示,则m 的值为( )A .-1B .0C .1D .2【答案】C【解析】从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.高频考点二 求二次函数的解析式例2.(2020·河北衡水中学调研) 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.【答案】f (x )=-4x 2+4x +7.【解析】法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 2-2-3mm法三:(利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8, 即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7. 【方法技巧】求二次函数解析式的策略 (1)已知三点坐标,选用一般式(2)已知顶点坐标、对称轴、最值,选用顶点式 (3)已知与x 轴两点坐标,选用零点式【变式探究】(2020·湖南湘潭二中模拟)已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.【答案】19x 2+49x -59【解析】法一:(一般式)设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎨⎧-b2a=-2,4ac -b24a=-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:(顶点式)设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.高频考点三 二次函数的图象及应用例3.(2020·吉林长春实验中学模拟)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是()【答案】A【解析】若0<a<1,则y=log a x在(0,+∞)上单调递减,y=(a-1)x2-x开口向下,其图象的对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上是增函数,y=(a-1)x2-x图象开口向上,且对称轴在y轴右侧,因此B项不正确,只有选项A满足.【方法技巧】1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是抛物线上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【变式探究】(2020·河南商丘一中模拟)已知abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()A BC D【答案】D【解析】A项,因为a<0,-b2a<0,所以b<0.又因为abc>0,所以c>0,而f(0)=c<0,故A错.B项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B错.C项,因为a>0,-b2a<0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C错.D项,因为a>0,-b2a>0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D。
第4节幂函数与二次函数

第4节幂函数与二次函数幂函数和二次函数是数学中的两个重要概念,它们在不同的场景中起着不同的作用。
本文将介绍这两个函数的定义、性质以及它们的关系。
一、幂函数的定义与性质幂函数是指由x的正整数幂次构成的函数,其一般形式可以表示为f(x)=ax^n,其中a为非零实数,n为正整数。
幂数n决定了函数图像的性质,下面我们来看几个不同幂次的幂函数。
1. 当n=1时,幂函数就是一次函数,即f(x)=ax。
它的图像是一条斜率为a的直线。
2. 当n=2时,幂函数就是二次函数,即f(x)=ax^2、它的图像是一个开口向上或向下的抛物线。
3. 当n=3时,幂函数就是三次函数,即f(x)=ax^3、它的图像是一个类似于字母"S"形状的曲线。
幂函数的性质如下:1.当n为奇数时,函数图像关于y轴对称;当n为偶数时,函数图像关于原点对称。
2.当a>0时,函数递增;当a<0时,函数递减。
3.当n>1时,函数在原点附近增长或下降得非常快;当n=1时,函数图像为一条直线,增长或下降速度相对较慢。
二、二次函数的定义与性质二次函数是指由x的二次幂和一次幂构成的函数,其一般形式可以表示为f(x)=ax^2+bx+c,其中a、b、c为实数且a不为0。
二次函数的图像是一个开口向上或向下的抛物线。
二次函数的性质如下:1.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 抛物线的顶点坐标为(-b/2a, c-b^2/4a),其中b^2-4ac<0时,抛物线没有实根;b^2-4ac=0时,抛物线与x轴相切;b^2-4ac>0时,抛物线与x轴有两个交点。
3.如果a>0,则抛物线的最小值为c-b^2/4a;如果a<0,则抛物线的最大值为c-b^2/4a。
三、幂函数与二次函数的关系从上面的定义与性质可以看出,二次函数是幂函数的一个特例,即二次函数是幂函数在幂次n=2时的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
值域⎣⎢⎢⎡⎭⎪⎪⎫4ac -b 24a +∞⎝ ⎛⎦⎥⎥⎤-∞4ac -b 24a 单调性在x ∈⎝ ⎛⎦⎥⎥⎤-∞-b 2a 上单调递减;在x ∈⎣⎢⎢⎡⎭⎪⎪⎫-b 2a +∞上单调递增在x ∈⎝ ⎛⎦⎥⎥⎤-∞-b 2a 上单调递增;在x ∈⎣⎢⎢⎡⎭⎪⎪⎫-b 2a +∞上单调递减奇偶性 当b =0时为偶函数,b ≠0时为非奇非偶函数顶点⎝ ⎛⎭⎪⎫-b 2a4ac -b 24a 对称性图像关于直线x =-b2a成轴对称图形3、 幂函数形如y =x α (α∈R )的函数称为幂函数,其中x 就是自变量,α就是常数. 4. 幂函数的图像及性质(1)幂函数的图像比较(2)幂函数的性质比较y =xy =x 2y =x 3y =x 12y =x -1定义域RRR[0,+∞){x |x ∈R 且x ≠0} 值域 R [0,+∞) R [0,+∞) {y |y ∈R 且y ≠0} 奇偶性奇函数偶函数奇函数非奇非偶函奇函数数单调性增x ∈[0,+∞)时,增;x ∈(-∞,0]时,减增增x ∈(0,+∞) 时,减;x ∈(-∞,0)时,减[难点正本 疑点清源] 1. 二次函数的三种形式(1)已知三个点的坐标时,宜用一般式.(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. (3)已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 2. 幂函数的图像(1)在(0,1)上,幂函数中指数越大,函数图像越靠近x 轴,在(1,+∞)上幂函数中指数越大,函数图像越远离x 轴. (2)函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1可作为研究与学习幂函数图像与性质的代表.1. 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上就是减函数,则实数a 的取值范围为____________.答案 (-∞,-2]解析 f (x )的图像的对称轴为x =1-a 且开口向上, ∴1-a ≥3,即a ≤-2、2. (课本改编题)已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________.答案 [1,2]解析 y =x 2-2x +3的对称轴为x =1、 当m <1时,y =f (x )在[0,m ]上为减函数. ∴y max =f (0)=3,y min =f (m )=m 2-2m +3=2、 ∴m =1,无解.当1≤m ≤2时,y min =f (1)=12-2×1+3=2, y max =f (0)=3、当m >2时,y max =f (m )=m 2-2m +3=3, ∴m =0,m =2,无解.∴1≤m ≤2、3. 若幂函数y =(m 2-3m +3)xm 2-m -2的图像不经过原点,则实数m 的值为________.答案 1或2解析 由⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0,解得m =1或2、经检验m =1或2都适合.4. (人教A 版教材例题改编)如图中曲线就是幂函数y =x n 在第一象限的图像.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为____________.答案 2,12,-12,-2解析 可以根据函数图像就是否过原点判断n 的符号,然后根据函数凸凹性确定n 的值. 5. 函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件就是( )A.m =-2B.m =2C.m =-1D.m =1答案 A解析 函数f (x )=x 2+mx +1的图像的对称轴为x =-m 2,且只有一条对称轴,所以-m2= 1,即m =-2、题型一 求二次函数的解析式例2已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上就是单调函数; (3)当a =1时,求f (|x |)的单调区间.思维启迪:对于(1)与(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值就是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值就是35、(2)由于函数f (x )的图像开口向上,对称轴就是x =-a ,所以要使f (x )在[-4,6]上就是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4、 (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3x ∈(06]x 2-2x +3x ∈[-60],∴f (|x |)的单调递增区间就是(0,6], 单调递减区间就是[-6,0].探究提高 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键就是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解.若函数f (x )=2x 2+mx -1在区间[-1,+∞)上递增,则f (-1)的取值范围就是____________. 答案 (-∞,-3]解析 ∵抛物线开口向上,对称轴为x =-m 4,∴-m4≤-1,∴m ≥4、又f (-1)=1-m ≤-3,∴f (-1)∈(-∞,-3]. 题型三 二次函数的综合应用例3若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1、(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.思维启迪:对于(1),由f (0)=1可得c ,利用f (x +1)-f (x )=2x 恒成立,可求出a ,b ,进而确定f (x )的解析式.对于(2),可利用函数思想求得.解 (1)由f (0)=1,得c =1、∴f (x )=ax 2+bx +1、 又f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2a +b =0∴⎩⎪⎨⎪⎧a =1b =-1、因此,f (x )=x 2-x +1、(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. ∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1、 因此满足条件的实数m 的取值范围就是(-∞,-1).探究提高 二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又就是“三个二次”的核心,通过二次函数的图像贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图像就是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其就是恒成立)问题就是高考命题的热点.已知函数f (x )=x 2+mx +n 的图像过点(1,3),且f (-1+x )=f (-1-x )对任意实数都成立,函数y =g (x )与y =f (x )的图像关于原点对称. (1)求f (x )与g (x )的解析式;(2)若F (x )=g (x )-λf (x )在(-1,1]上就是增函数,求实数λ的取值范围. 解 (1)∵f (x )=x 2+mx +n ,∴f (-1+x )=(-1+x )2+m (-1+x )+n=x 2-2x +1+mx +n -m =x 2+(m -2)x +n -m +1,f (-1-x )=(-1-x )2+m (-1-x )+n =x 2+2x +1-mx -m +n =x 2+(2-m )x +n -m +1、又f (-1+x )=f (-1-x ),∴m -2=2-m ,即m =2、 又f (x )的图像过点(1,3), ∴3=12+m +n ,即m +n =2, ∴n =0,∴f (x )=x 2+2x ,又y =g (x )与y =f (x )的图像关于原点对称, ∴-g (x )=(-x )2+2×(-x ), ∴g (x )=-x 2+2x 、(2)∵F (x )=g (x )-λf (x )=-(1+λ)x 2+(2-2λ)x , 当λ+1≠0时,F (x )的对称轴为x =2-2λ2(1+λ)=1-λλ+1,又∵F (x )在(-1,1]上就是增函数. ∴⎩⎪⎨⎪⎧ 1+λ<01-λ1+λ≤-1或⎩⎪⎨⎪⎧1+λ>01-λ1+λ≥1、∴λ<-1或-1<λ≤0、当λ+1=0,即λ=-1时,F (x )=4x 显然在(-1,1]上就是增函数. 综上所述,λ的取值范围为(-∞,0]. 题型四 幂函数的图像与性质方法与技巧1. 二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图像数形结合来解,一般从①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图像、性质求解. 2. 与二次函数有关的不等式恒成立问题(1)ax 2+bx +c >0,a ≠0恒成立的充要条件就是⎩⎨⎧a >0b 2-4ac <0、(2)ax 2+bx +c <0,a ≠0恒成立的充要条件就是⎩⎨⎧a <0b 2-4ac <0、3. 幂函数y =x α(α∈R ),其中α为常数,其本质特征就是以幂的底x 为自变量,指数α为常数. 失误与防范1. 对于函数y =ax 2+bx +c ,要认为它就是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0与a ≠0两种情况、2. 幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于就是否出现在第二、三象限内,要瞧函数的奇偶性;幂函数的图像最多只能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定就是原点、A 组 专项基础训练知A,C 错误,D 符合要求.由B 知f (0)=c >0,∴ab >0,∴x =-b2a<0,B 错误.4. 设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围就是( )A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]答案 D解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1], 所以a >0,即函数图像的开口向上,对称轴就是直线x =1、 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2、 二、填空题(每小题5分,共15分)5. 二次函数的图像过点(0,1),对称轴为x =2,最小值为-1,则它的解析式为____________.答案 y =12(x -2)2-16. 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上就是减函数,则实数a 的取值范围为____________.答案 (-∞,-2]解析 f (x )的图像的对称轴为x =1-a 且开口向上, ∴1-a ≥3,即a ≤-2、7. 当α∈⎩⎨⎧⎭⎬⎫-11213时,幂函数y =x α的图像不可能经过第________象限.答案 二、四解析 当α=-1、1、3时,y =x α的图像经过第一、三象限;当α=12时,y =x α的图像经过第一象限.三、解答题(共22分)8. (10分)已知二次函数f (x )的二次项系数为a ,且f (x )>-2x 的解集为{x |1<x <3},方程f (x )+6a =0有两相等实根,求f (x )的解析式.解 设f (x )+2x =a (x -1)(x -3) (a <0), 则f (x )=ax 2-4ax +3a -2x , f (x )+6a =ax 2-(4a +2)x +9a ,Δ=[-(4a +2)]2-36a 2=0,即(5a +1)(a -1)=0, 解得a =-15或a =1(舍去).A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)答案 B解析 当m ≤0时,显然不合题意;当m >0时,f (0)=1>0,①若对称轴4-m2m ≥0,即0<m ≤4,结论显然成立;②若对称轴4-m2m <0,即m >4,只要Δ=4(4-m )2-8m =4(m -8)(m -2)<0即可,即4<m <8,综上,0<m <8,选B 、3. 已知二次函数y =x 2-2ax +1在区间(2,3)内就是单调函数,则实数a 的取值范围就是( )A.a ≤2或a ≥3B.2≤a ≤3C.a ≤-3或a ≥-2D.-3≤a ≤-2答案 A解析 由函数图像知,(2,3)在对称轴x =a 的左侧或右侧,∴a ≥3或a ≤2、 二、填空题(每小题5分,共15分)4. 已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎪⎫-3249,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式就是______________.答案 f (x )=-4x 2-12x +40解析 设二次函数的解析式为f (x )=a ⎝⎛⎭⎫x +322+49 (a <0),方程a (x +32)2+49=0的两个根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, ∴a =-4,故f (x )=-4x 2-12x +40、5. 若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围就是________.答案 0<a ≤14解析 令f (x )=x 2-11x +30+a ,结合图像有⎩⎪⎨⎪⎧Δ≥0(图像与x 轴有交点)f (5)>0(图像与x 轴交点在x =5的右侧)(无需考虑对称轴因为对称轴方程x =112>5)、∴0<a ≤14、6. 已知函数f (x )=x 12,给出下列命题:①若x >1,则f (x )>1;②若0<x 1<x 2,则f (x 2)-f (x 1)>x 2-x 1;③若0<x 1<x 2,则x 2f (x 1)<x 1f (x 2);④若0<x 1<x 2,则f (x 1)+f (x 2)2<f ⎝⎛⎭⎫x 1+x 22、则所有正确命题的序号就是________. 答案 ①④解析 对于①,f (x )=x 12就是增函数,f (1)=1,当x >1时,f (x )>1,①正确;对于②,f (x 2)-f (x 1)x 2-x 1>1,可举例(1,1),(4,2),故②错;对于③,f (x 1)-0x 1-0<f (x 2)-0x 2-0,说明图像上两点x 1,x 2到原点连线的斜率越来越大,由图像可知,③错;对于④,f (x 1)+f (x 2)2<f ⎝ ⎛⎭⎪⎫x 1+x 22,根据图像可判断出④正确. 三、解答题7. (13分)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值.解 f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,y max =f (1)=a ; 当0<a <1时,y max =f (a )=a 2-a +1; 当a ≤0时,y max =f (0)=1-a 、根据已知条件:⎩⎪⎨⎪⎧ a ≥1a =2或⎩⎨⎧ 0<a <1a 2-a +1=2或⎩⎪⎨⎪⎧a ≤01-a =2解得a =2或a =-1、、。