理科数学学霸笔记06 二次函数与幂函数
二次函数与幂函数知识点总结

二次函数与幂函数知识点总结在数学课程中,二次函数和幂函数是一个经常被学习的知识点,在实际问题中也有着重要的应用。
因此,了解两者的特点及其之间的关系有助于学生更好的学习和掌握这两方面的知识,着重加强自己的数学基础知识。
本文针对二次函数和幂函数的概念、特点、关系及应用进行简单的介绍,以期对大家的理解有所帮助。
二次函数是指一类具有如下形式的函数:y = ax2 + bx + c,a≠0。
其中,a是二次项系数,b、c是常数项系数。
二次函数反映的是一定范围内物体经过某一特定点位于一定距离处的路径,它体现出了物体上升或下降的趋势。
二次函数的形状取决于a的正负,当a>0时,函数在原点处取得最大值,因此函数曲线为一个凹曲线;当a< 0时,函数在原点处取得最小值,曲线为凸曲线。
另一方面,幂函数的形式为:y=x^n,n为正整数。
它体现的是一种物体在相同路径上,所经过的距离随次数的增加而不断增加,曲线越向右,陡度越大。
如果n>1,则函数为凹曲线;如果n<1,则函数为凸曲线。
二次函数与幂函数之间还存在一定的联系,即可以将二次函数改写为幂函数的形式:y = ax2 + bx + c = a(x^2 + 2bx^(1/2) + c/a)。
在实际应用中,二次函数和幂函数都有其独特的应用,二次函数可以用来描述抛物线的运动轨迹。
另外,当a=-1时,二次函数可以用来计算球的落点位置、反弹高度等,在高尔夫球中得到广泛应用。
此外,幂函数也在实际中得到广泛应用,比如在经济学和财经学中,金融工具的收益率可以用幂函数来描述;另外,还可以用来概括基于时间的变化,比如种植植物的高度、排水的时间等。
从上面可以看出,二次函数和幂函数在实际应用中具有重要的意义。
通过认真研究,我们可以更好的理解这两类函数,从而更好地掌握两者之间的内在联系,以便在实践中更好地应用。
本文分析了二次函数和幂函数的概念、特点、关系及应用,并对实际应用中的重要性进行了阐述。
二次函数与幂函数的关系

二次函数与幂函数的关系二次函数和幂函数是数学中常见的两种函数,它们之间存在一定关系。
这篇文章将介绍二次函数和幂函数的定义、图像、特点以及它们之间的关系。
首先,我们来回顾一下二次函数和幂函数的定义。
二次函数是指函数的最高次项为二次的多项式函数。
它的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c是实数且a不等于0。
在这个函数中,x是自变量,f(x)是因变量。
幂函数是指函数的自变量和因变量之间的关系式为 y = x^a,其中a 是实数。
幂函数的图像通常是一个曲线,并且根据a的不同取值,可以得到不同的曲线形状。
接下来,我们来分析二次函数和幂函数的图像。
对于二次函数,它的图像通常是一个抛物线。
根据二次函数的系数a 的正负和大小,可以得到不同类型的抛物线。
当 a 大于0时,抛物线开口向上;当 a 小于0时,抛物线开口向下。
我们可以根据开口方向和顶点的位置来确定抛物线的图像。
例如,当 a 大于0且顶点位于y轴上方时,抛物线开口向上且顶点为最低点;当 a 小于0且顶点位于y轴下方时,抛物线开口向下且顶点为最高点。
而幂函数的图像则由指数 a 的大小来决定。
当 a 大于1时,函数的图像呈现出上升的斜线;当 a 等于1时,函数的图像是一条直线;当 0 小于 a 小于 1 时,函数的图像呈现出下降的斜线。
与二次函数不同的是,幂函数的图像没有顶点或拐点。
然而,二次函数和幂函数并不是完全独立的。
实际上,我们可以将二次函数视为一种特殊的幂函数。
具体来说,二次函数 f(x) = ax^2 + bx + c 可以写成 f(x) = a(x - h)^2 + k 的形式,其中 h 和 k 是实数,代表了二次函数图像的平移。
这种表达方式可以让我们更好地理解二次函数和幂函数之间的关系。
当平移的值 h 和 k 分别等于0时,即 h = 0 且 k = 0 时,二次函数变为f(x) = ax^2,这就是一个幂函数。
幂函数与二次函数基础梳理

幂函数与二次函数基础梳理1.幂函数的定义一般地,形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数. 2.幂函数的图象在同一平面直角坐标系下,幂函数y =x ,y =x 2,y =x 3,y =x 12, y =x -1的图象分别如右图. 3.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞) 值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减奇偶性 当b =0时为偶函数,b ≠0时为非奇非偶函数顶点 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a对称性图象关于直线x =-b2a 成轴对称图形5.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0) (2)顶点式:f (x )=a (x -h )2+k (a ≠0) (3)两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0) 函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 22对称.(2)一般地,函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立,则函数y =f (x )的图象关于直线x =a 对称(a 为常数).练习检测1.(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ). A .-3 B .-1 C .1 D .3 解析 ∵f (x )为奇函数,∴f (1)=-f (-1)=-3. 答案 A2.如图中曲线是幂函数y =x n 在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为( ).A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D .2,12,-2,-12 答案 B3.(2011·浙江)设函数f (x )=⎩⎨⎧-x ,x ≤0,x 2,x >0.若f (α)=4,则实数α等于( ).A .-4或-2B .-4或2C .-2或4D .-2或2 解析 由⎩⎨⎧ α≤0,-α=4或⎩⎨⎧α>0,α2=4,得α=-4或α=2,故选B.答案 B4.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b 等于( ). A .3 B .2或3 C .2 D .1或2 解析 函数f (x )=x 2-2x +2在[1,b ]上递增,由已知条件⎩⎨⎧f (1)=1,f (b )=b ,b >1,即⎩⎨⎧b 2-3b +2=0,b >1.解得b =2. 答案 C5.(2012·武汉模拟)若函数f (x )=(x +a )(bx +2a )(常数a 、b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.解析 f (x )=bx 2+(ab +2a )x +2a 2由已知条件ab +2a =0,又f (x )的值域为(-∞,4],则⎩⎨⎧a ≠0,b =-2,2a 2=4.因此f (x )=-2x 2+4.答案 -2x 2+46.函数f (x )=x 2-2x +2在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)作g (t )的图象并写出g (t )的最小值.[审题视点] 分类讨论t 的范围分别确定g (t )解析式. 解 (1)f (x )=(x -1)2+1.当t +1≤1,即t ≤0时,g (t )=t 2+1. 当t <1<t +1,即0<t <1时,g (t )=f (1)=1 当t ≥1时,g (t )=f (t )=(t -1)2+1综上可知g (t )=⎩⎨⎧t 2+1≤0,t ≤0,1,0<t <1,t 2-2 t +2,t ≥1.(2)g (t )的图象如图所示,可知g (t )在(-∞,0]上递减,在[1,+∞)上递增,因此g (t )在[0,1]上取到最小值1.(1)二次函数y =ax 2+bx +c ,在(-∞,+∞)上的最值可由二次函数图象的顶点坐标公式求出;(2)二次函数y =ax 2+bx +c ,在[m ,n ]上的最值需要根据二次函数y =ax 2+bx +c 图象对称轴的位置,通过讨论进行求解. 7. 已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值.(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], ∴x =1时,f (x )取得最小值1; x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为直线x =-a , ∵y =f (x )在区间[-5,5]上是单调函数, ∴-a ≤-5或-a ≥5,故a 的取值范围是a ≤-5或a ≥5. 8.已知幂函数)()(*322N m x x f m m ∈=--的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足33)23()1(m m a a ---<+的a 的取值范围.[审题视点] 由幂函数的性质可得到幂指数m 2-2m -3<0,再结合m 是整数,及幂函数是偶数可得m 的值.解 ∵函数在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1<m <3. ∵m ∈N *,∴m =1,2. 又函数的图象关于y 轴对称, ∴m 2-2m -3是偶数, 而22-2×2-3=-3为奇数, 12-2×1-3=-4为偶数, ∴m =1.而f (x )=x -13在(-∞,0),(0,+∞)上均为减函数, ∴(a +1)-13<(3-2a )-13等价于a +1>3-2a >0 或0>a +1>3-2a 或a +1<0<3-2a . 解得a <-1或23<a <32. 故a的取值范围为⎩⎨⎧⎭⎬⎫a |a <-1或23<a <32. 本题集幂函数的概念、图象及单调性、奇偶性于一体,综合性较强,解此题的关键是弄清幂函数的概念及性质.解答此类问题可分为两大步:第一步,利用单调性和奇偶性(图象对称性)求出m 的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a 的取值范围.9.(2011·济南模拟)已知f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有最大值-5,求a 的值及函数表达式f (x ).求二次函数f (x )的对称轴,分对称轴在区间的左侧、中间、右侧讨论.[解答示范] ∵f (x )=-4⎝ ⎛⎭⎪⎫x -a 22-4a ,∴抛物线顶点坐标为⎝ ⎛⎭⎪⎫a 2,-4a .(1分)①当a2≥1,即a ≥2时,f (x )取最大值-4-a 2. 令-4-a 2=-5,得a 2=1,a =±1<2(舍去);(4分) ②当0<a 2<1,即0<a <2时,x =a2时, f (x )取最大值为-4a .令-4a =-5,得a =54∈(0,2);(7分)③当a2≤0,即a ≤0时,f (x )在[0,1]内递减, ∴x =0时,f (x )取最大值为-4a -a 2, 令-4a -a 2=-5,得a 2+4a -5=0,解得a =-5或a =1,其中-5∈(-∞,0].(10分) 综上所述,a =54或a =-5时,f (x )在[0,1]内有最大值-5. ∴f (x )=-4x 2+5x -10516或f (x )=-4x 2-20x -5.(12分)求解本题易出现的问题是直接利用二次函数的性质——最值在对称轴处取得,忽视对称轴与闭区间的位置关系,不进行分类讨论.10. 设函数y =x 2-2x ,x ∈[-2,a ],求函数的最小值g (a ).[尝试解答] ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1,而x =1不一定在区间[-2,a ]内,应进行讨论.当-2<a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1. 综上,g (a )=⎩⎨⎧a 2-2a ,-2<a <1,-1,a ≥1.。
高中理科数学 二次函数与幂函数

f ( x1 ) f ( x2 ) 任意的x1,x2∈(0,+∞),且x1≠x2,满足 x x >0,若a,b∈R,且a+b>0,ab 1 2
<0,则f(a)+f(b)的值 ( A )
A.恒大于0
C.等于0
B.恒小于0
D.无法判断
栏目索引
解析
x4m ∵f(x)=(m -m-1)
2
9
m5 1
是幂函数,
∴m2-m-1=1,解得m=2或m=-1. 当m=2时,指数4×29-25-1=2 015>0,满足题意. 当m=-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f(x)=x2 015. 易知幂函数f(x)=x2 015是定义在R上的奇函数,且是增函数. 又∵a,b∈R,且a+b>0,∴a>-b,又ab<0,不妨设b<0, 则a>-b>0,∴f(a)>f(-b)>0,又f(-b)=-f(b),
∴f(a)>-f(b),∴f(a)+f(b)>0.故选A.
存在,请说明理由.
栏目索引
解析 (1)函数f(x)=9x-2a· 3x+3,设t=3x,t∈[1,3], 则φ(t)=t2-2at+3=(t-a)2+3-a2,函数图象的对称轴为t=a. 当a=1时,φ(t)=(t-1)2+2在[1,3]上递增, ∴φ(t)∈[φ(1),φ(3)],φ(1)=2,φ(3)=6, ∴函数f(x)的值域是[2,6]. (2)函数φ(t)图象的对称轴为t=a,
∴满足题意的m,n不存在.
栏目索引
方法 2 幂函数的图象及性质的应用
二次函数和幂函数知识点

二次函数和幂函数知识点二次函数是形如y=ax²+bx+c的函数,其中a、b、c是常数且a≠0。
它的图像是一个抛物线,称为二次曲线。
而幂函数是形如y=axⁿ的函数,其中a是常数,n是实数且n≠0。
它的图像可以是一条直线、开口向上或向下的抛物线、以及其他形状,取决于指数n的值。
首先,我们来看二次函数。
二次函数的图像可以分为三种情况:开口向上的抛物线、开口向下的抛物线和一条直线。
当a>0时,二次函数的图像是开口向上的抛物线,对称轴是x=-b/2a,最低点坐标为:(-b/2a, -△/(4a)),其中△=b²-4ac是二次函数的判别式。
图像在对称轴上方递增,在对称轴下方递减。
当a<0时,二次函数的图像是开口向下的抛物线,对称轴、最高点坐标和递增递减性质与开口向上的情况相反。
当a=0时,二次函数变为一条直线y=bx+c。
这个直线与x轴平行,斜率为b。
接下来,我们来看幂函数。
幂函数的图像可以根据指数n的值分为几种情况。
当n>0时,幂函数的图像在原点右侧递增且没有上下界,图像随着x的增大而增大。
当n<0时,幂函数的图像在原点左侧递增且也没有上下界,图像随着x的增大而减小。
当n=1时,幂函数就变成了y=ax,它的图像是一条过原点的直线。
斜率a的正负决定了直线的倾斜方向。
当n=0时,幂函数就变成了y=a,它的图像是一条水平直线,与x轴平行。
根据常数a的值,直线的位置可以在y轴的任意位置。
当n是偶数且n≠0时,幂函数的图像在最高点或最低点有一个上下界,其余部分无上下界。
当n为偶数时,函数的值随着x的增大和减小而逐渐增大,形状类似于开口向上的抛物线。
当n为负偶数时,函数的值随着x的增大和减小而逐渐减小,形状类似于开口向下的抛物线。
当n是奇数时,幂函数图像没有上下界,且随着x的增大和减小而在原点两侧单调。
根据实数n的正负,函数的图像可能在原点两侧分别开口向上或向下。
总结起来,二次函数和幂函数都是常见的数学函数类型。
第6节 二次函数与幂函数

b ∉ [m,n] 时 , 二次函数的最值在区间端点达到 , 而非 2a
︱高中总复习︱一轮·文数
知识梳理
1.二次函数 (1)定义 形如 y=ax2+bx+c(a≠0) 的函数叫做二次函数.
(2)表示形式
①一般式:y= ax2+bx+c(a≠0)
2 ②顶点式:y= a(x-h) +k(a≠0)
; ,其中 (h,k) 为抛物线顶点坐标;
知识梳理自测
考点专项突破
易混易错辨析
︱高中总复习︱一轮·文数
知识梳理自测
【教材导读】
把散落的知识连起来
1.幂函数与指数函数有何不同?y=(x+1)3,y=x3-1,y= x 是幂函数吗?
提示:幂函数与指数函数的本质区别在于自变量的位臵不同,幂函数的自变量 在底数位臵 , 而指数函数的自变量在指数位臵 . 在所给的三个函数中只有 y= x 是幂函数.
2.(2016· 江西南昌模拟)若四个幂函数y=xa,y=xb,y=xc,y=xd在同一坐标系中
的图象如图,则a,b,c,d的大小关系是( (A)d>c>b>a (B)a>b>c>d (C)d>c>a>b (D)a>b>d>c 解析:在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大, 所以a>b>c>d.故选B. B )
③零点式:y= a(x-x1)(x-x2)(a≠0) ,其中x1,x2是抛物线与x轴交点的横坐标.
︱高中总复习︱一轮·文数
(3)图象与性质
y=ax +bx+c
2
a>0
a<0
二次函数与幂函数

二次函数与幂函数[考纲传真] 1.(1)了解幂函数的概念;(2)结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况.2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.【知识通关】1.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0);顶点式:f (x )=a (x -h )2+k (a ≠0),顶点坐标为(h ,k ); 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象与性质 函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上减, 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上增, 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上减 对称性 函数的图象关于直线x =-b2a对称 (1)定义:形如y =x α(α∈R)的函数称为幂函数,其中x 是自变量,α是常数. (2)五种常见幂函数的图象与性质函数 特征 性质y =xy =x 2y =x 3y =x 12y =x -1图象定义域 R RR {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性 奇 偶 奇 非奇非偶奇 单调性 增(-∞,0)减, (0,+∞)增增增(-∞,0)和 (0,+∞)减公共点 (1,1)1.幂函数y =x α在第一象限的两个重要结论 (1)恒过点(1,1);(2)当x ∈(0,1)时,α越大,函数值越小;当x ∈(1,+∞)时,α越大,函数值越大.2.研究二次函数y =ax 2+bx +c (a ≠0)在区间[m ,n ](m <n )上的单调性与值域时,分类讨论-b2a与m 或n 的大小. 3.二次函数图象对称轴的判断方法(1)对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 22对称.(2)对于二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图象关于直线x =a 对称(a 为常数).【基础自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( ) (2)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( ) (3)幂函数的图象一定经过点(1,1)和点(0,0).( )(4)当α>0时,幂函数y =x α在(0,+∞)上是增函数.( ) [答案] (1)× (2)× (3)× (4)√2.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α等于( )A .12B .1C.32 D .2C3.如图是①y =x a ;②y =x b ;③y =x c 在第一象限的图象,则a ,b ,c 的大小关系为( ) A .a >b >c B .a <b <c C .b <c <a D .a <c <bD 4.已知函数y =x 2+ax +6在⎣⎢⎡⎭⎪⎫52,+∞内是增函数,则a 的取值范围为( ) A .a ≤-5 B .a ≤5 C .a ≥-5 D .a ≥5 C5.函数g (x )=x 2-2x (x ∈[0,3])的值域是________. [-1,3]【题型突破】幂函数的图象及性质1.幂函数y =f (x )的图象经过点(3,3),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是减函数 D .非奇非偶函数,且在(0,+∞)上是增函数 D2.幂函数y =x m 2-4m (m ∈Z)的图象如图所示,则m 的值为( ) A .0 B .1 C .2 D .3C3.若(a +1) 12<(3-2a ) 12,则实数a 的取值范围是________. ⎣⎢⎡⎭⎪⎫-1,23[方法总结] (1)求解与幂函数图象有关的问题,应根据幂函数在第一象限内的函数图象特征,结合其奇偶性、单调性等性质研究.(2)利用幂函数的单调性比较幂值大小的技巧:结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较.求二次函数的解析式【例1】 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________.(2)若函数f (x )=(x +a )(bx +2a )(a ,b ∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________. (1)f (x )=x 2-2x +3 (2)-2x 2+4 [方法总结] 求二次函数解析式的方法试确定该二次函数的解析式. [解] 法一(利用一般式): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7.法二(利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴函数图象的对称轴为x =2+(-1)2=12. ∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8,解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7.二次函数的图象与性质►考法1 二次函数的单调性【例2】 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-3] C .[-2,0] D .[-3,0]D[母题探究] 若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. -3►考法2 二次函数的最值【例3】 求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. [解] f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a . (1)当-a <12,即a >-12时,f (x )max =f (2)=4a +5; (2)当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max =⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.►考法3 二次函数中的恒成立问题 【例4】 (1)已知函数f (x )=ax 2-2x +2,若对一切x ∈⎣⎢⎡⎦⎥⎤12,2,f (x )>0都成立,则实数a 的取值范围为( ) A .⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎭⎪⎫12,+∞ C .[-4,+∞)D .(-4,+∞)(2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. (1)B (2)⎝ ⎛⎭⎪⎫-22,0[方法总结] 1.二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.2.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围. [解] (1)由题意知⎩⎪⎨⎪⎧-b 2a=-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.所以f (x )=x 2+2x +1,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x2+2x+1>x+k在区间[-3,-1]上恒成立,即k<x2+x+1在区间[-3,-1]上恒成立,令g(x)=x2+x+1,x∈[-3,-1].g(x)在区间[-3,-1]上是减函数,则g(x)min=g(-1)=1,所以k<1,故k的取值范围是(-∞,1).。
二次函数与幂函数

幂函数的性质
1
单调性
幂函数的单调性取决于指数n的奇偶性,当n为偶数时,幂函数是非负的。
2
零点
幂函数的零点是函数图像与x轴相交的点,通过求解方程kx^n=0可以找到幂函数 的解。
3
增长趋势
幂函数在大多数情况下,随着x的增加而增加,但增速逐渐减慢。
二次函数与幂函数的相似性
二次函数和幂函数都是常见的数学函数类型,二者都具有图像特征、性质和 变形,但在具体形式和曲线特点上存在明显的差异。
二次函数与幂函数在几何上的 解释
二次函数的图像可以解释为抛物线,幂函数的图像可以解释为曲线。这些曲 线在几何学中具有特定的形状和性质,有助于解释和分析各种问题。
二次函数与幂函数的应用
工程设计
二次函数和幂函数经常用于模拟 或优化工程设计中的各种曲线和 问题。
金融分析
二次函数和幂函数可以用来分析 股票走势、财务数据和经济指标 等。
顶点
二次函数的抛物线图像的顶 点是形状的最高点或最低点, 代表函数的最值。
轴对称,这种对称性质 有助于分析函数的性质。
零点
二次函数的零点是函数图像 与x轴相交的点,对于方程 y=0,求解零点可以找到函数 的解。
幂函数概述
幂函数是指数和常数的乘积,具有形如y=kx^n的基本形式。幂函数的图像可能会出现上升或下降的曲线,取决 于指数n的值。
二次函数与幂函数
了解二次函数与幂函数的概念和基本形式,探索二次函数和幂函数在图像、 性质和变形方面的特点,以及它们在各个领域的实际应用和几何解释。
二次函数概述
二次函数是一个数学函数的类型,具有形如y=ax^2+bx+c的基本形式。它们的图像通常呈现出一个开口朝上或 开口朝下的抛物线形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择规律如下:
(1)已知三个点的坐标,选用一般式;
(2)已知顶点坐标、对称轴、最大(小)值,选用顶点式;
(3)已知与x轴两交点的坐标,选用零点式。
2.求幂函数解析式的方法
幂函数的解析式是一个幂的形式,且需满足:
(1)指数为常数;
(2)底数为自变量;
(3)系数为 1.
3.幂函数y=xα的图象与性质,由于α值的不同而比较复杂,一般从两个方面考查:
①α的正负:当α>0时,图象过原点,在第一象限的
图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.
②幂函数的指数与图象特征的关系
(1)幂函数的形式是y=xα(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.
(2)判断幂函数y=xα(α∈R)的奇偶性时,当α是分数时,一般将其先化为根式,再判断.
(3)若幂函数y=xα在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.
4.二次函数的图象及性质的应用
(1)图象识别问题。