2020-2021学年九年级数学中考数学 反比例函数 专项训练(含答案)

合集下载

2020-2021初中数学反比例函数真题汇编含答案解析

2020-2021初中数学反比例函数真题汇编含答案解析

2020-2021初中数学反比例函数真题汇编含答案解析一、选择题1.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-【答案】A【解析】 【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.2.在同一平面直角坐标系中,反比例函数y b x=(b ≠0)与二次函数y =ax 2+bx (a ≠0)的图象大致是( ) A . B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b 的值取值范围,进而利用反比例函数的性质得出答案.【详解】A 、抛物线y =ax 2+bx 开口方向向上,则a>0,对称轴位于y 轴的右侧,则a ,b 异号,即b<0.所以反比例函数y b x =的图象位于第二、四象限,故本选项错误; B 、抛物线y =ax 2+bx 开口方向向上,则a>0,对称轴位于y 轴的左侧,则a ,b 同号,即b>0.所以反比例函数y b x=的图象位于第一、三象限,故本选项错误; C 、抛物线y =ax 2+bx 开口方向向下,则a<0,对称轴位于y 轴的右侧,则a ,b 异号,即b>0.所以反比例函数y b x=的图象位于第一、三象限,故本选项错误; D 、抛物线y =ax 2+bx 开口方向向下,则a<0,对称轴位于y 轴的右侧,则a ,b 异号,即b>0.所以反比例函数y b x=的图象位于第一、三象限,故本选项正确; 故选D .【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.3.如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( )A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2【答案】D【解析】【分析】先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.【详解】∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称.∵A(2,1),∴B(-2,-1).∵由函数图象可知,当0<x<2或x<-2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<-2或0<x<2.故选D.4.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.5.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.6.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.7.函数21ayx--=(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1【答案】B【解析】【分析】【详解】解:当x=-4时,y1=214a---;当x=-1时,y2=211a---,当x=2时,y3=212a--,∵-a2-1<0,∴y3<y2<y1.故选B.【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数的性质数形结合思想解题是关键.8.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO∽△OCA,∴251522BODOACS OBS OA⎛⎫==÷=⎪⎝⎭△△,∴5OBOA=,∴tan∠BAO=5OBOA=.故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.9.如图,点P是反比例函数(0)ky kx=≠的图象上任意一点,过点P作PM x⊥轴,垂足为M. 连接OP. 若POM∆的面积等于2. 5,则k的值等于()A.5-B.5 C. 2.5-D.2. 5【答案】A【解析】【分析】利用反比例函数k的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k的值.【详解】解:∵△POM的面积等于2.5,∴12|k|=2.5,而k<0,∴k=-5,故选:A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.10.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C 的坐标,再通过反比例函数的性质求解即可.11.函数y =1-k x 与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0B .k<1C .k>0D .k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围.【详解】 令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k <0,即k >1. 故选D .【点睛】 函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.13.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a 的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C【解析】【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解.【详解】 210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<,故选C .【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.14.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.15.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=k x在同一坐标系内的大致图象是( ) A . B . C . D .【答案】D【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=k x的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,∴△=4﹣4(k+1)>0,解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=kx 的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.16.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA =∴13OBOA=,23OCOA=∴21()9BOFOADS OBS OA==VV,24()9COEAODS OCS OA==VV∴4COEBOFSS=VV∵点B在反比例函数2yx=的图象上∴212BOFS==V∴4COES=V∴42k=,解得k=±8又∵反比例函数位于第二象限,∴k=-8故选:D.【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.17.若点()11,A y-,()22,B y-,()33,C y在反比例函数8yx=-的图象上,则y1,y2,y3的大小关系是()A.123y y y<<B.213y y y<<C.132y y y<<D.321y y y<<【答案】D【解析】【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出123,,y y y的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上,∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.18.如图,直线y =k 和双曲线y =k x相交于点P ,过点P 作PA 0垂直于x 轴,垂足为A 0,x 轴上的点A 0,A 1,A 2,…A n 的横坐标是连续整数,过点A 1,A 2,…A n :分别作x 轴的垂线,与双曲线y =k x(k >0)及直线y =k 分别交于点B 1,B 2,…B n 和点C 1,C 2,…C n ,则n n n n A B C B 的值为( )A .11n +B .11n -C .1nD .11n- 【答案】C【解析】【分析】由x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,则得到点An (n +1,0),再分别表示出∁n (n +1,k ),B n (n +1,k n 1+),根据坐标与图形性质计算出A n B n =k n 1+,B n ∁n =k ﹣k n 1+,然后计算n n n nA B B C . 【详解】∵x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,∴An (n +1,0),∵∁n A n ⊥x 轴,∴∁n (n +1,k ),B n (n +1,k n 1+), ∴A nB n =k n 1+,B n ∁n =k ﹣k n 1+, ∴n n n n A B B C =11k n k k n +-+=1n . 故选:C .【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.19.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,22OA OB ∴==,2AC =, ∴点C 的坐标为22⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.20.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A【解析】【分析】 设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.。

2020-2021学年九年级数学中考数学《反比例函数》专题训练【含答案】

2020-2021学年九年级数学中考数学《反比例函数》专题训练【含答案】

k (2)不等式2x+6-x>0的解集为x>1;
8
n-6
(3)由题意,点M,N的坐标为M(n,n),N∵0<n<6,∴ 2 <0,∴n- 2 >0,
1
1 8 n-6
1
25
∴S△BMN=2|MN|×|yM|=2×(n- 2 )×n=-4(n-3)2+ 4 ,
25 ∴n=3时,△BMN的面积最大,最大值为 4 .
18.
如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线,与反比例 4
函数y=x的图象交于A、B两点,则四边形MAOB的面积为________.
三、解答题
19.
3
k
如图,直线y1=-x+4,y2=4x+b都与双曲线y=x交于点A(1,m).这两条直线
分别与x轴交于B,C两点. (1)求y与x之间的函数关系式;
3k
(2)直接写出当x>0时,不等式4x+b>x的解集;
(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1∶3两部分,求此时点P的 坐标.
20.
k 如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y=x 的图象上,一次函数y=x+b的图象经过点A,且与反比例函数图象的另一交点 为B. (1)求k和b的值; (2)设反比例函数值为y1,一次函数值为y2,求y1>y2时x的取值范围.
2020-2021学年九年级数学中考数学《反比例函数》专题训练
一、选择题 1. 反比例函数y= 的图象位于( )
A.第一、三象限 C.第一、二象限
B.第二、三象限 D.第二、四象限
2.
已知反比例函数y=- ,下列结论:①图象必经过(-
2,4);②图象在二、四象限内;③y随x的增大而增大;④当x>1时,y>8.其中错误的结论有 ( )

2020-2021初中数学反比例函数真题汇编及答案解析

2020-2021初中数学反比例函数真题汇编及答案解析

2020-2021初中数学反比例函数真题汇编及答案解析一、选择题1.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.如图,是反比例函数3y x =和7y x=-在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点,A B ,点P 在x 轴上.则点P 从左到右的运动过程中,APB △的面积是( )A .10B .4C .5D .从小变大再变小【答案】C【解析】【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴,∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5.故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.3.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D .【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A 、由函数y=k x 的图象可知k >0与y=kx+3的图象k >0一致,正确; B 、由函数y=k x 的图象可知k >0与y=kx+3的图象k >0,与3>0矛盾,错误; C 、由函数y=k x 的图象可知k <0与y=kx+3的图象k <0矛盾,错误; D 、由函数y=k x的图象可知k >0与y=kx+3的图象k <0矛盾,错误. 故选A .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.4.已知点()11,A y -、()22,B y -都在双曲线32m y x +=上,且12y y >,则m 的取值范围是( )A .0m <B .0m >C .32m >-D .32m <- 【答案】D【解析】【分析】根据已知得3+2m <0,从而得出m 的取值范围.【详解】∵点()11,A y -、()22,B y -两点在双曲线32m y x+=上,且y 1>y 2, ∴3+2m <0, ∴32m <-, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,当k>0时,该函数图象位于第一、三象限,当k<0时,函数图象位于第二、四象限.5.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小6.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣5x(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF ⊥x轴于点F.下列说法正确的是()A.b=5B.BC=ADC.五边形CDFOE的面积为35D.当x<﹣2时,y1>y2【答案】B【解析】【分析】根据函数值与相应自变量的关系,可得C点坐标,根据待定系数法,可得一次函数解析式,可判断A选项;根据解方程组,可得C、D点的坐标,根据全等三角形的判定与性质,可判断B选项;根据图形的分割,可得梯形、矩形,根据面积的和差,可判断C选项;根据函数与不等式的关系:函数图象在上方的函数值大,可判断D选项.【详解】解:由反比例函数y2=﹣5x(x<0)经过C,点C的横坐标为﹣1,得y =﹣51-=5,即C (﹣1,5). 反比例函数与一次函数交于C 、D 点,5=﹣1+b ,解得b =6,故A 错误;CE ⊥y 轴于E 点,E (0,﹣5),BE =6﹣5=1.反比例函数与一次函数交于C 、D 点,联立65y x y x =+⎧⎪⎨=-⎪⎩, x 2+6x +5=0解得x 1=﹣5,x 2=﹣1,当x =﹣5时,y =﹣5+6=1,即D (﹣5,1),即DF =1,在△ADF 和△CBE 中,DAF BCE AFD CEB DF BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADF ≌△CBE (AAS ),AD =BC ,故B 正确;作CG ⊥x 轴,S △CDFOE =S 梯形DFGC +S 矩形CGOE=()(15)422DF CG FG OG CG ++⨯+g +1×5=17,故C 错误; 由一次函数图象在反比例函数图象上方的部分,得﹣5<x <﹣1,即当﹣5<x <﹣1时,y 1>y 2,故D 错误;故选:B .【点睛】本题考查了反比例函数综合题,利用了自变量与函数值的对应关系,点的坐标与函数解析式的关系,全等三角形的判定与性质,图形分割法求图形的面积,函数图象与不等式的关系.7.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1【答案】A【解析】【分析】 先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.8.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣2【答案】C【解析】 分析:根据题意可以求得点B 的坐标,从而可以求得k 的值.详解:∵四边形ABCD 是菱形,∴BA=BC ,AC ⊥BD ,∵∠ABC=60°,∴△ABC 是等边三角形,∵点A (1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.9.如图,点P是反比例函数y=kx(x<0)图象上一点,过P向x轴作垂线,垂足为M,连接OP.若Rt△POM的面积为2,则k的值为()A.4 B.2 C.-4 D.-2【答案】C【解析】【分析】根据反比例函数的比例系数k的几何意义得到S△POD=12|k|=2,然后去绝对值确定满足条件的k的值.【详解】解:根据题意得S△POD=12|k|,所以12|k||=2,而k<0,所以k=-4.故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.下列各点中,在反比例函数3yx图象上的是()A.(3,1) B.(-3,1)C.(3,13) D.(13,3)【答案】A【解析】【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵13=133垂, ∴此点不在反比例函数的图象上,故C错误;D、∵13=133垂, ∴此点不在反比例函数的图象上,故D错误;故选A.11.函数y=1-kx与y=2x的图象没有交点,则k的取值范围是()A.k<0 B.k<1 C.k>0 D.k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k的取值范围.【详解】令1-kx=2x,化简得:x2=1-2k;由于两函数无交点,因此1-2k<0,即k>1.故选D.【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A【解析】【分析】 设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ), ∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .13.如图,Rt △AOB 中,∠AOB=90°,AO=3BO ,OB 在x 轴上,将Rt △AOB 绕点O 顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=k x 的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.14.如图,已知在平面直角坐标系中,点O是坐标原点,AOBV是直角三角形,90AOB∠=︒,2OB OA=,点B在反比例函数2yx=上,若点A在反比例函数kyx=上,则k的值为()A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫-⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭ ∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.15.反比例函数k y x=的图象在第二、第四象限,点()()()1232,,4,,5,A y B y C y -是图象上的三点,则123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >> 【答案】B【解析】【分析】根据反比例函数图像在第二、四象限,反比例函数图像在第二、四象限,y 随x 的增大而增大,再根据三点横坐标的特点即可得出结论.【详解】 解:∵反比例函数k y x=图象在第二、四象限, ∴反比例函数图象在每个象限内y 随x 的增大而增大,∵-2<4<5,∴点B 、C 在第四象限,点A 在第二象限,∴23y y <<0,10y > ,∴132y y y >>.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答本题的关键.16.如图,点A,B是双曲线18yx=图象上的两点,连接AB,线段AB经过点O,点C为双曲线kyx=在第二象限的分支上一点,当ABCV满足AC BC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0,∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.17.反比例函数y=的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .【答案】D【解析】【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb >0,∴k ,b 同号,选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.18.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a),点B的坐标为(3a-,a),即可求出BH和AB,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B作BH⊥x轴于H∵四边形ABCD为平行四边形∴//AB x轴,CD=AB∴点A和点B的纵坐标相同由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a)∴BH=a,CD=AB=2a-(3a-)=5a∴ABCDSY=BH·CD=5故选D.【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.19.如图,直线y=k和双曲线y=kx相交于点P,过点P作PA0垂直于x轴,垂足为A0,x 轴上的点A0,A1,A2,…A n的横坐标是连续整数,过点A1,A2,…A n:分别作x轴的垂线,与双曲线y=kx(k>0)及直线y=k分别交于点B1,B2,…B n和点C1,C2,…C n,则n nn nA BC B 的值为()A.11n+B.11n-C.1nD.11n-【答案】C【解析】【分析】由x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,则得到点An (n +1,0),再分别表示出∁n (n +1,k ),B n (n +1,k n 1+),根据坐标与图形性质计算出A n B n =k n 1+,B n ∁n =k ﹣k n 1+,然后计算n n n n A B B C . 【详解】∵x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,∴An (n +1,0),∵∁n A n ⊥x 轴, ∴∁n (n +1,k ),B n (n +1,k n 1+), ∴A n B n =k n 1+,B n ∁n =k ﹣k n 1+, ∴n n n n A B B C =11k n k k n +-+=1n . 故选:C .【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.20.下列函数:①y=-x ;②y=2x ;③1y x=-;④y=x 2 . 当x<0时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y =-x 中k <0,∴y 随x 的增大而减小,故本选项正确;∵正比例函数y =2x 中,k =2,∴当x <0时,y 随x 的增大而增大,故本选项错误; ∵反比例函数1y x-=中,k =-1<0,∴当x <0时函数的图像在第二象限,此时y 随x 的增大而增大,故本选项错误; ∵二次函数y =x 2,中a =1>0,∴此抛物线开口向上,当x <0时,y 随x 的增大而减小,故本选项正确.故选B .【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.。

中考数学压轴题专项训练反比例函数含解析

中考数学压轴题专项训练反比例函数含解析

2021年中考数学压轴题专项训练《反比例函数》1.如图,反比例函数y1=和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.解:(1)∵点A(1,3)在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的解析式为y1=,∵点B(﹣3,a)在反比例函数y1=的图象上,∴﹣3a=3,∴a=﹣1,∴B(﹣3,﹣1),∵点A(1,3),B(﹣3,﹣1)在一次函数y2=mx+n的图象上,∴,∴,∴一次函数的解析式为y2=x+2;(2)如图,∵△OAP为以OA为腰的等腰三角形,∴①当OA=OP时,∵A(1,3),∴OA=,∵OP=,∵点P在x轴上,∴P(﹣,0)或(,0),②当OA=AP时,则点A是线段OP的垂直平分线上,∵A(1,3),∴P(2,0),即:在x轴上存在点P,使得△OAP为以OA为腰的等腰三角形,此时,点P的坐标为(﹣,0)或(2,0)或(,0).2.在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(3,2),直线l:y=kx﹣1(k≠0)与y轴交于点B,与图象G交于点C.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C 之间的部分与线段BA,BC围成的区域(不含边界)为W.①当直线l过点(2,0)时,直接写出区域W内的整点个数;②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.解:(1)把A(3,2)代入y=得m=3×2=6,(2)①当直线l过点(2,0)时,直线解析式为y=x﹣1,解方程=x﹣1得x1=1﹣(舍去),x2=1+,则C(1+,),而B(0,﹣1),如图1所示,区域W内的整点有(3,1)一个;②如图2,直线l在AB的下方时,直线l:y=kx﹣1过(6,1)时,1=6k﹣1,解得k=,当直线在OA的上方时,直线经过(1,4)时,4=k﹣1,解得k=5,观察图象可知:当k≤或k≥5时,区域W内的整点不少于4个.3.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O 出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC 向终点C运动,设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线y=经过点D,问k 的值是否变化?若不变化,请求出k的值;若变化,请说明理由.解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4﹣t,3),∴PE=3,EQ=|4﹣t﹣t|=|4﹣t|,∴PQ2=PE2+EQ2=32+|4﹣t|2=t2﹣20t+25,∴y关于t的函数解析式及t的取值范围:;故答案为:.(2)当时,整理,得5t2﹣16t+12=0,解得:t1=2,.(3)经过点D的双曲线的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=3,BC=4,∴.∵BQ∥OP,∴△BDQ∽△ODP,∴,∴OD=3.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,,,∴,,∴点D的坐标为,∴经过点D的双曲线的k值为.4.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且当x1<x2时,y1>y2,指出点P、Q各位于哪个象限?解:(1)将A(﹣3,m+8)代入反比例函数y=得﹣3(m+8)=m,解得m=﹣6,∴点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得﹣6n=﹣6,解得n=1,∴点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,如图,当﹣2x﹣4=0,解得x=﹣2,则点C的坐标为(﹣2,0),∴S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=8;(3)∵当x1<x2时,y1>y2,∴点P和点Q不在同一象限,∴P在第二象限,Q在第四象限.5.如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,=.(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.解:(1)由题意A(1,0),B(0,﹣1),∴OA=OB=1,∴∠OAB=∠CAE=45°∵AE=3OA,∴AE=3,∵EC⊥x轴,∴∠AEC=90°,∴∠EAC=∠ACE=45°,∴EC=AE=3,∴C(4,3),∵反比例函数y=经过点C(4,3),∴k=12,由,解得或,∴D(﹣3,﹣4).(2)如图,设M(a,a﹣1).当点N在反比例函数的图象上时,N(a,),∵四边形ECMN是平行四边形,∴MN=EC=3,∴|a﹣1﹣|=3,解得a=6或﹣2或﹣1±(舍弃),∴M(6,5)或(﹣2,﹣3),观察图象可知:当边MN与反比例函数y=的图象有公共点时4<a≤6或﹣3≤a≤﹣2.6.如图,一次函数y=kx+2的图象与y轴交于点A,正方形ABCD 的顶点B在x轴上,点D在直线y=kx+2上,且AO=OB,反比例函数y=(x>0)经过点C.(1)求一次函数和反比例函数的解析式;(2)点P是x轴上一动点,当△PCD的周长最小时,求出P 点的坐标;(3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M的坐标.解:(1)设一次函数y=kx+2的图象与x轴交于点E,连接BD,如图1所示.当x=0时,y=kx+2=2,∴OA=2.∵四边形ABCD为正方形,OA=OB,∴∠BAE=90°,∠OAB=∠OBA=45°,∴∠OAE=∠OEA=45°,∴OE=2,点E的坐标为(﹣2,0).将E(﹣2,0)代入y=kx+2,得:﹣2k+2=0,解得:k=1,∴一次函数的解析式为y=x+2.∵∠OBD=∠ABD+∠OBA=90°,∴BD∥OA.∵OE=OB=2,∴BD=2OA=4,∴点D的坐标为(2,4).∵四边形ABCD为正方形,∴点C的坐标为(2+2﹣0,0+4﹣2),即(4,2).∵反比例函数y=(x>0)经过点C,∴n=4×2=8,∴反比例函数解析式为y=.(2)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时△PCD的周长取最小值,如图2所示.∵点D的坐标为(2,4),∴点D′的坐标为(2,﹣4).设直线CD′的解析式为y=ax+b(a≠0),将C(4,2),D′(2,﹣4)代入y=ax+b,得:,解得:,∴直线CD′的解析式为y=3x﹣10.当y=0时,3x﹣10=0,解得:x=,∴当△PCD的周长最小时,P点的坐标为(,0).(3)设点M的坐标为(x,y),分三种情况考虑,如图3所示.①当DP为对角线时,,解得:,∴点M1的坐标为(,2);②当CD为对角线时,,解得:,∴点M2的坐标为(,6);③当CP为对角线时,,解得:,∴点M3的坐标为(,﹣2).综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,2),(,6)或(,﹣2).7.如图在平面直角坐标系中,一次函数y=﹣2x﹣4的图象与反比例函数y=的图象交于点A(1,n),B(m,2)(1)求反比例函数关系式及m的值;(2)若x轴正半轴上有一点M满足△MAB的面积为16,求点M 的坐标;(3)根据函数图象直接写出关于x的不等式在<﹣2x﹣4的解集解:(1)∵一次函数y=﹣2x﹣4的图象过点A(1,n),B(m,2)∴n=﹣2﹣4,2=﹣2m﹣4∴n=﹣6,m=﹣3,∴A(1,﹣6)把A(1,﹣6)代入y=得,k=﹣6,∴反比例函数关系式为y=﹣;(2)设直线AB与x轴交于N点,则N(﹣2,0),设M(m,0),m>0,∵S△MAB=S△BMN+S△AMN,△MAB的面积为16,∴|m+2|×(2+6)=16,解得m=2或﹣6(不合题意舍去),∴M(2,0);(3)由图象可知:不等式在<﹣2x﹣4的解集是x<﹣3或0<x<1.8.如图,在平面直角坐标系中,点A(3,5)与点C关于原点O 对称,分别过点A、C作y轴的平行线,与反比例函数的图象交于点B、D,连结AD、BC,AD与x轴交于点E(﹣2,0).(1)求直线AD对应的函数关系式;(2)求k的值;(3)直接写出阴影部分图形的面积之和.解:(1)设直线AD对应的函数关系式为y=ax+b.∵直线AD过点A(3,5),E(﹣2,0),∴解得∴直线AD的解析式为y=x+2.(2)∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=的图象经过点D,∴k=﹣3×(﹣1)=3;(3)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,∴S阴影=4×3=12.9.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解:(1)把点A(4,3)代入函数得:a=3×4=12,∴y=,OA=5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:∴y=2x﹣5;(2)作MD⊥y轴.∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5).∵MB=MC,∴CD=BD,∴x2+(8﹣2x+5)2=x2+(﹣5﹣2x+5)2∴8﹣(2x﹣5)=2x﹣5+5解得:x=∴2x﹣5=,∴点M的坐标为(,).10.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k≠0)的第一象限内的图象上,OA =3,OC=5,动点P在x轴的上方,且满足S△PAO=S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.解:(1)由题意,可知:点B的坐标为(3,5).∵点B在反比例函数y=(k≠0)的第一象限内的图象上,∴k=3×5=15,∴反比例函数的解析式为y=.∵S△PAO=S矩形OABC,∴×3×y P=×3×5,∴y P=3.当y=3时,=3,解得:x=5,∴当点P在这个反比例函数的图象上时,点P的坐标为(5,3).(2)由(1)可知:点P在直线y=3上,作点O关于直线y =3的对称点O′,连接AO′交直线y=3于点P,此时PO+PA 取得最小值,如图1所示.∵点O的坐标为(0,0),∴点O′的坐标为(0,6).∵点A的坐标为(3,0),∴AO′==3,∴PO+PA的最小值为3.(3)∵AB∥y轴,AB=5,点P的纵坐标为3,∴AB不能为对角线,只能为边.设点P的坐标为(m,3),分两种情况考虑,如图2所示:①当点Q在点P的上方时,AP=AB=5,即(m﹣3)2+(3﹣0)2=25,解得:m1=﹣1,m2=7,∴点P1的坐标为(﹣1,3),点P2的坐标为(7,3).又∵PQ=5,且PQ∥AB∥y轴,∴点Q1的坐标为(﹣1,8),点Q2的坐标为(7,8);②当点Q在点P的下方时,BP=AB=5,即(m﹣3)2+(3﹣5)2=25,解得:m3=3﹣,m4=3+,同理,可得出:点Q3的坐标为(3﹣,﹣2),点Q4的坐标为(3+,﹣2).综上所述:当以A、B、P、Q为顶点的四边形是菱形时,点Q 的坐标为(﹣1,8),(7,8),(3﹣,﹣2)或(3+,﹣2).11.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.又∵x1<x2,∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.12.如图,在平面直角坐标系中,矩形OABC的两边分别在x 轴、y轴上,D是对角线的交点,若反比例函数y=的图象经过点D,且与矩形OABC的两边AB,BC分别交于点E,F.(1)若D的坐标为(4,2)①则OA的长是8,AB的长是4;②请判断EF是否与AC平行,井说明理由;③在x轴上是否存在一点P.使PD+PE的值最小,若存在,请求出点P的坐标及此时PD+PE的长;若不存在.请说明理由.(2)若点D的坐标为(m,n),且m>0,n>0,求的值.解:(1)①∵点D的坐标为(4,2),∴点B的坐标为(8,4),∴OA=8,AB=4.故答案为:8;4.②EF∥AC,理由如下:∵反比例函数y=的图象经过点D(4,2),∴k=4×2=8.∵点B的坐标为(8,4),BC∥x轴,AB∥y轴,∴点F的坐标为(2,4),点E的坐标为(8,1),∴BF=6,BE=3,∴=,=,∴=.∵∠ABC=∠EBF,∴△ABC∽△EBF,∴∠BCA=∠BFE,∴EF∥AC.③作点E关于x轴对称的点E′,连接DE′交x轴于点P,此时PD+PE的值最小,如图所示.∵点E的坐标为(8,1),∴点E′的坐标为(8,﹣1),∴DE′==5.设直线DE′的解析式为y=ax+b(a≠0),将D(4,2),E′(8,﹣1)代入y=ax+b,得:,解得:,∴直线DE′的解析式为y=﹣x+5.当y=0时,﹣x+5=0,解得:x=,∴当点P的坐标为(,0)时,PD+PE的值最小,最小值为5.(2)∵点D的坐标为(m,n),∴点B的坐标为(2m,2n).∵反比例函数y=的图象经过点D(m,n),∴k=mn,∴点F的坐标为(m,2n),点E的坐标为(2m,n),∴BF=m,BE=n,∴=,=,∴=.又∵∠ABC=∠EBF,∴△ABC∽△EBF,∴==.13.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于A(﹣3,1),B(1,n)两点.(1)求反比例函数和一次函数解析式;(2)结合图象直接写出不等式﹣kx﹣b>0的解.解:(1)∵点A(﹣3,1)在反比例函数y=(m≠0)的图象上,∴m=(﹣3)×1=﹣3,∴反比例函数的表达式为y=﹣,∵点B(1,n)也在反比例函数y=﹣的图象上,∴n=﹣=﹣3,即B(1,﹣3),把点A(﹣3,1),点B(1,﹣3)代入一次函数y=kx+b中,得,解得,∴一次函数的表达式为y=﹣x﹣2;(2)如图所示,当>kx+b时,x的取值范围是﹣3<x<0或x >1,所以不等式﹣kx﹣b>0的解是:﹣3<x<0或x>1.14.如图,在平面直角坐标系xOy内,函数y=的图象与反比例函数y=(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.解:(1)∵函数y=的图象过点A(8,a),∴a=×8=4,∴点A的坐标为(8,4),∵反比例函数y=(k≠0)图象过点A(8,4),∴4=,得k=32,∴反比例函数的解析式为y=;(2)设BP=b,则AP=b+2,∵点A(8,4),AB⊥x轴于点B,∴AB=4,∠ABP=90°,∴b2+42=(b+2)2,解得,b=3,∴OP=8﹣3=5,即线段OP的长是5;(3)设点D的坐标为(d,d),∵点A(8,4),点B(8,0),点P(5,0),S△ODP=S△ABO,∴,解得,d=,∴d=,∴点D的坐标为(,).15.阅读理解:如图(1),在平面直角坐标系xOy中,已知点A的坐标是(1,2),点B的坐标是(3,4),过点A、点B作平行于x轴、y轴的直线相交于点C,得到Rt△ABC,由勾股定理可得,线段AB==.得出结论:(1)若A点的坐标为(x1,y1),B点的坐标为(x2,y2)请你直接用A、B两点的坐标表示A、B两点间的距离;应用结论:(2)若点P在y轴上运动,试求当PA=PB时,点P的坐标.(3)如图(2)若双曲线L1:y=(x>0)经过A(1,2)点,将线段OA绕点O旋转,使点A恰好落在双曲线L2:y=﹣(x>0)上的点D处,试求A、D两点间的距离.解:(1)∵A点的坐标为(x1,y1),B点的坐标为(x2,y2),∴根据两点间的距离公式得,AB=;(2)设点P(0,a),∵A的坐标是(1,2),点B的坐标是(3,4),∵PA=,PB=,∵PA=PB,∴=,∴a=5,∴P(0,5);(3)∵双曲线L1:y=(x>0)经过A(1,2)点,∴OA=,k=1×2=2,∴双曲线L1:y=(x>0),双曲线L2:y=﹣(x>0),设点D坐标为(m,﹣)(m>0),∴OD=,由旋转知,OA=OD,∴=,∴m=±1或m=±2,∵m>0,∴m=1或m=2,∴D(1,﹣2)或(2,﹣1).∵A(1,2),∴AD=4或.。

中考数学专题练习:反比例函数(含答案)

中考数学专题练习:反比例函数(含答案)

中考数学专题练习:反比例函数(含答案)1.(·海南)已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于( )A.二、三象限B.一、三象限C.三、四象限D.二、四象限2.(·哈尔滨)已知反比例函数y=2k-3x的图象经过点(1,1),则k的值为( )A.-1 B.0 C.1 D.23.(·湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象交于M,N两点,若点M的坐标是(1,2),则点N的坐标是( )A.(-1,-2) B.(-1,2)C.(1,-2) D.(-2,-1)4.(·临沂)如图,正比例函数y1=k1x与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为1,当y1<y2时,x的取值范围是( )A.x<-1或x>1B.-1<x<0或x>1 C.-1<x<0或0<x<1 D.x<-1或0<x<15.(·无锡)已知点P(a,m)、Q(b,n)都在反比例函数y=-2x的图象上,且a<0<b,则下列结论一定成立的是( ) A .m +n<0B .m +n>0C .m<nD .m>n6.(原创)如图是反比例函数y =kx图象的一支,则一次函数y =-kx +k 的图象大致是( )7.(·怀化)函数y =kx -3与y =kx(k≠0)在同一坐标系内的图象可能是( )8.(·安庆一模)对于反比例函数y =2x ,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小9.(·郴州) 如图,A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .110.(·嘉兴) 如图,点C 在反比例函数y =kx (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A 、B,且AB =BC,△AOB 的面积为1.则k 的值为( )A .1B .2C .3D .411.(·台州)如图,点 A,B 在反比例函数y =1x (x>0)的图象上,点 C,D 在反比例函数y =kx (k>0)的图象上, AC∥BD∥y 轴. 已知点 A,B 的横坐标分别为 1,2,△OAC 与△ABD 的面积之和为32,则 k 的值为( )A .4B .3C .2D. 3212.(·重庆B 卷)如图,菱形ABCD 的边AD⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k≠0,x >0)的图象同时经过顶点C,D.若点C 的横坐标为5,BE=3DE,则k 的值为( )A.52B.3 C.154D.513.(·南京)已知反比例函数y=kx的图象经过点(-3,-1),则k=________.14.(·云南省卷)已知点P(a,b)在反比例函数y=2x的图象上,则ab=________.15.(·宜宾)已知:点P(m,n)在直线 y=-x+2上,也在双曲线 y =-1x上,则m2+n2的值为________.16.(·随州)如图,一次函数y=x-2的图象与反比例函数y=kx(k>0)的图象相交于A、B两点,与x轴交于点C,若tan∠AOC=13,则k的值为________.17.(·泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=mx的图象经过点E,与AB交于点F.(1)若点B的坐标为(-6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF-AE=2,求反比例函数的表达式.18.(·杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时). (1)求v 关于t 的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?19.(·山西)如图,一次函数y 1=k 1x +b(k 1≠0)的图象分别与x 轴,y 轴相交于点A,B,与反比例函数y 2=k 2x (k 2≠0)的图象相交于点C(-4,-2),D(2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.20.(·甘肃省卷)如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.21.(·绵阳)如图,一次函数y=-12x+52的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点的坐标.22.(·改编)某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:年度2014 2015 2016 2017投入技改资金x(万元) 2.5 3 4 4.5产品成本y(万元/件) 7.2 6 4.5 4(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其表达式;(2)按照这种变化规律,若2018年已投入资金5万元. ①预计生产成本每件比2017年降低多少万元?②若打算在2018年把每件产品成本降低到3.2万元,则还需要投入资金多少万元?(结果精确到0.01万元).1.(·瑶海区二模)如图,已知点A 是反比例函数y =1x (x>0)的图象上的一个动点,连接OA,OB⊥OA ,且OB =2OA.那么经过点B 的反比例函数图象的表达式为( )A .y =-2xB .y =2xC .y =-4xD .y =4x2.(·宿迁)如图,在平面直角坐标系中,反比例函数y=2x(x>0)的图象与正比例函数y=kx,y=1kx(k>1)的图象分别交于点A,B.若∠AOB=45°,则△AOB的面积是________.3.(·北京)在平面直角坐标系xOy中,函数y=kx(x>0)的图象G经过点A(4,1),直线l:y=14x+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=-1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.4.(·杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(-1,-1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值;(3)已知点C(x 1,y 1),D(x 2,y 2)在该一次函数图象上,设m =(x 1-x 2)(y 1-y 2),判断反比例函数y =m +1x 的图象所在的象限,说明理由.参考答案【基础训练】1.D 2.D 3.A 4.D 5.D 6.A 7.B 8.C 9.B 10.D 11.B 12.C13.3 14.2 15.6 16.317.解:(1)∵B(-6,0),AD =3,AB =8,E 为CD 的中点, ∴E(-3,4),A(-6,8).∵反比例函数的图象过点E(-3,4), ∴m=-3×4=-12.设图象经过A 、E 两点的一次函数表达式为:y =kx +b,∴⎩⎨⎧-6k +b =8,-3k +b =4,解得⎩⎨⎧k =-43,b =0,∴y=-43x ;(2)∵AD=3,DE =4,∴AE=5. ∵AF-AE =2,∴AF=7.∴BF=1.设E 点坐标为(a,4),则F 点坐标为(a -3,1). ∵E ,F 两点在y =mx的图象上,∴4a=a -3,解得a =-1.∴E(-1,4),∴m=-4,∴y=-4x .18.解:(1)根据题意,得vt =100 (t>0),所以v =100t (t>0);(2)由题意知,v =100t (0<t ≤5),而100>0,所以当t>0 时,v 随着t 的增大而减小,当0<t≤5时,v≥1005=20,所以平均每小时至少要卸货20吨.19.解:(1)∵一次函数y 1=k 1x +b(k 1≠0)的图象经过点C(-4,-2),D(2,4),∴⎩⎨⎧-2=-4k 1+b 4=2k 1+b ,解得:⎩⎨⎧k1=1b =2,∴一次函数的表达式为:y 1=x +2.∵反比例函数y 2=k 2x (k 2≠0)的图象经过点D(2,4),∴4=k 22,即k 2=8,∴反比例函数的表达式为:y 2=8x ;(2)令y 1=x +2中y 1>0,即x +2>0,解得x >-2,∴当x >-2时,y 1>0;(3)由图象可知:当x <-4或0<x <2时,y 1<y 2.20.解:(1)把点A(-1,a)代入y =x +4,得a =3,∴ A(-1,3).把A(-1,3)代入反比例函数y =k x ,得k =-3,∴ 反比例函数的表达式为y =-3x ;(2)联立两个函数表达式得 ⎩⎨⎧y =x +4,y =-3x , 解得⎩⎨⎧x =-1,y =3,⎩⎨⎧x =-3,y =1.∴ 点B 的坐标为B(-3,1).当y =x +4=0时,得x =-4.∴ 点C(-4,0).设点P 的坐标为(x,0).∵S △ACP =32S △BOC ,∴12×3×|x-(-4)|=32×12×4×1.即|x +4|=2,解得 x 1=-6,x 2=-2.∴ 点P(-6,0)或(-2,0).21.解:(1)∵△AOM 的面积为1,∴12||k =1,∵k>0,∴k=2.∴y=2x ;(2)如解图,作点A 关于y 轴的对称点C,连接BC 交y 轴于P 点.∵A ,B 是两个函数图象的交点,第21题解图∴⎩⎪⎨⎪⎧y =2x ,y =-12x +52,解得:⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=4,y 2=12.∴A(1,2),B(4,12).∴C(-1,2).设y BC =kx +b,则⎩⎨⎧-k +b =2,4k +b =12, 解得⎩⎪⎨⎪⎧k =-310,b =1710,∴y=-310x +1710,∴P(0,1710),∴PA+PB =BC =52+(32)2=1092.22.解:(1)∵2.5×7.2=18,3×6=18,4×4.5=18,4.5×4=18,∴x 与y 的乘积为定值18,∴反比例函数能表示其变化规律,其表达式为y =18x ;(2)①当x =5时,y =3.6.4-3.6=0.4(万元),∴生产成本每件比2017年降低0.4万元.②当y =3.2时,3.2=18x ,x =5.625≈5.63,5.63-5=0.63(万元).∴还需投入0.63万元.【拔高训练】1.C 2.23.解:(1)∵点A(4,1)在y =kx (x>0)的图象上.∴k4=1,∴k=4.(2)① 3个.(1,0),(2,0),(3,0).② a.如解图1,当直线过(4,0)时:14×4+b =0,解得b =-1, b .如解图2,当直线过(5,0)时:14×5+b =0,解得b =-54,c .如解图3,当直线过(1,2)时,14×1+b =2,解得b =74, d .如解图4,当直线过(1,3)时14×1+b =3,解得b =114,∴综上所述:-54≤b<-1或74<b≤114. 4.解:(1)将A(1,3),B(-1,-1)的坐标分别代入y =kx +b,得⎩⎨⎧k +b =3,-k +b =-1,解得⎩⎨⎧k =2,b =1, 故一次函数的表达式为y =2x +1.(2)∵点(2a +2,a 2)在该一次函数图象上,∴a 2=2(2a +2)+1,∴a 2-4a -5=0,解得a1=5,a2=-1.(3)由题意知,y1-y2=(2x1+1)-(2x2+1)=2(x1-x2).∴m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,∴m+1≥1>0,∴反比例函数y=m+1x的图象在第一、三象限.。

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)一、反比例函数的图象与性质1.已知反比例函数的解析式为y=( |a|-2 ) / x,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a=±22.反比例函数y=-3 / x,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y=x 对称D. y 随x 的增大而增大3.下列各点中,与点(-3,4) 在同一个反比例函数图象上的点的是( )A. (2,-3)B. (3,4)C. (2,-6)D. (-3,-4)4.点M(a,2a) 在反比例函数y=8 / x 的图象上,那么a 的值是( )A. 4B. -4C. 2D. ±25.如果反比例函数y=(a-2) / x ( a 是常数) 的图象在第一、三象限,那么a 的取值范围是( )A. a<0B. a>0C. a<2D. a>26.若点A(-3,y1),B(-2,y2),C(1,y3) 都在反比例函数y=-12 / x 的图象上,则y1,y2,y3 的大小关系是( )A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y17.反比例函数y=k / x 的图象经过点A(-1,2),则当x>1 时,函数值y 的取值范围是( )A. y>-1B. -1<y<0C. y<-2D. -2<y<08.若点A(a,b) 在反比例函数y=3 / x 的图象上,则代数式ab-1 的值为________.9.反比例函数y=(2m-1)xm2-2,x>0时,y 随着x 的增大而增大,则m 的值是________.10.已知一个反比例函数的图象位于第二、四象限内,点P(x0,y0) 在这个反比例函数的图象上,且x0y0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11.已知A(x1,y1),B(x2,y2) 都在反比例函数y=-2 / x 的图象上.若x1x2=-4,则y1y2 的值为________.12.已知A(1,m),B(2,n) 是反比例函数y=k/x 图象上的两点,若m-n=4,则k 的值为________.13.已知反比例函数的图象经过三个点A(-4,-3)、B(2m,y1)、C(6m,y2).若y1-y2=4,则m 的值为________.14.已知反比例函数y=m / x 在其所在象限内y 随x 的增大而减小,点P(2-m,m+1) 是该反比例函数图象上一点,则m 的值为________.15.已知A(x1,y1),B(x2,y2) 是反比例函数y=k / x 图象上的两点,且x1+x2=-2,x1·x2=2,y1+y2=-4/3,则k=________.16.已知点A(x1,y1)、B(x2,y2) 是反比例函数y=k/x 图象上的两点,且(x1-x2)(y1-y2)=9,3x1=2x2,则k 的值为________.17.在平面直角坐标系xOy 中,点A(a,b) (a>0,b>0) 在双曲线y=k1/x 上,点A 关于x 轴的对称点B 在双曲线y=k2/x 上,则k1+k2 的值为________.18.反比例函数y=k/x 的图象上有一点P(2,n),将点P 向右平移1 个单位,再向下平移1 个单位得到点Q,若点Q 也在该函数的图象上,则k=________.19.已知A、B 两点分别在反比例函数y=(2m-3) / x ( m ≠3/2 ) 和y=(3m-2) / x ( m ≠2/3) 的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.【参考答案】二、反比例函数与几何图形或一次函数结合1.若一次函数y=ax+6 (a≠0) 的图象与反比例函数y=3/x 的图象只有一个交点,则a 的值为________.2.若直线y=-x+m 与双曲线y=n/x (x>0) 交于A(2,a),B(4,b) 两点,则mn 的值为________.3.一次函数y1=-x+6 与反比例函数y2=8/x (x>0) 的图象如图所示,当y1>y2 时,自变量x 的取值范围是________.4. 如图,在平面直角坐标系中,直线y=-x+2 与反比例函数y=1/x 的图象有唯一公共点.若直线y=-x+b 与反比例函数y=1/x 的图象没有公共点,则b 的取值范围是________.5.如图,过x 轴的正半轴上任意一点P,作y 轴的平行线,分别与反比例函数y=3/x (x>0),y=-6/x (x>0) 的图象相交于点A,B,若C 为y 轴上任意一点,连接AC,BC,则△ABC 的面积为________.6.如图,矩形ABCD 的顶点A,C 在反比例函数y=k/x (k>0,x>0) 的图象上,若点A 的坐标为(3,4),AB=2,AD∥x 轴,则点C 的坐标为________.7.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=k/x 的图象交于E、F 两点,若△DEF 的面积为9/8,则k 的值为________.8.如图,已知反比例函数y=4/x 的图象经过Rt△OAB 斜边OB 的中点D,与直角边AB 相交于点C,则△OBC 的面积为________.9.如图,反比例函数y=k/x 的图象经过平行四边形ABCD 对角线的交点P,已知点A、C、D 在坐标轴上,BD⊥DC,平行四边形ABCD 的面积为6,则k=________.10.如图,点A,C 分别是正比例函数y=x 的图象与反比例函数y=4/x 的图象的交点,过A 点作AD⊥x 轴于点D,过C 点作CB⊥x 轴于点B,则四边形ABCD 的面积为________.11.如图,点A 是反比例函数y=-8/x 图象上的一点,过点A 的直线与y 轴交于点B,与反比例函数y=k/x (x>0) 的图象交于点C、D.若AB=BC=CD,则k 的值为________.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k/x 在第一象限的图象经过点B,若OA2-AB2=8,则k 的值为________.【参考答案】。

2020—2021年人教版初中数学九年级下册反比例函数专项训练及答案(精品试题).docx

2020—2021年人教版初中数学九年级下册反比例函数专项训练及答案(精品试题).docx

第26章反比例函数专项训练专训1 用反比例函数系数k的几何意义解与面积相关问题名师点金:反比例函数的比例系数k具有一定的几何意义,|k|等于反比例函数图象上任意一点向两坐标轴所作垂线段与坐标轴所围成的矩形的面积.在反比例函数的图象中,涉及三角形或矩形的面积时,常用比例系数k的几何意义解决问题.反比例函数的比例系数k与面积的关系1.如图,点P在反比例函数y=3x(x>0)的图象上,横坐标为3,过点P分别向x轴,y轴作垂线,垂足分别为M,N,则矩形OMPN的面积为( ) A.1 B.2 C.3 D.4(第1题)(第2题)2.如图,P是反比例函数y=kx的图象上一点,过点P分别向x轴,y轴作垂线,所得到的图中阴影部分的面积为6,则这个反比例函数的解析式为( )A.y=-6xB.y=6xC.y=-3xD.y=3x3.如图,A,C是函数y=1x的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( )A.S1>S2B.S1<S2C.S1=S2D.S1和S2的大小关系不能确定(第3题)(第4题)4.如图,正比例函数y=x与反比例函数y=1x的图象相交于A,B两点,BC⊥x轴于点C,则△ABC的面积为( ) A.1 B.2 C.3 D.45.如图,函数y=-x与函数y=-4x的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,则四边形ACBD的面积为( ) A.2 B.4 C.6 D.8(第5题)(第6题)6.如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=kx经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD=________.已知面积求反比例函数解析式题型1:已知三角形面积求解析式7.如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB对应的函数解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.(第7题)题型2:已知四边形面积求解析式8.如图,矩形ABOD的顶点A是函数y=-x-(k+1)的图象与函数y=k x 在第二象限的图象的交点,B,D两点在坐标轴上,且矩形ABOD的面积为3.(1)求两函数的解析式;(2)求两函数图象的交点A,C的坐标;(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.(第8题)已知反比例函数解析式求图形的面积题型1:利用解析式求面积9.如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=k1x的图象上的两点,且x1<x2,y1<y2,指出点M,N各位于哪个象限,并简要说明理由.(第9题)题型2:利用对称性求面积10.如图,是由四条曲线围成的广告标志,建立平面直角坐标系,双曲线对应的函数解析式分别为y=-6x,y=6x.现用四根钢条固定这四条曲线,这种钢条加工成矩形产品按面积计算,每单位面积25元,请你帮助工人师傅计算一下,所需钢条一共花多少钱?(第10题)题型3:利用点的坐标及面积公式求面积11.如图,直线y=k1x+b与反比例函数y=k2x(x<0)的图象相交于点A,B,与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4.(1)试确定反比例函数的解析式;(2)求△AOC 的面积.(第11题)专训2 巧用根的判别式解图象的公共点问题名师点金:解反比例函数与一次函数的图象的公共点问题,可转化为一元二次方程根的情况 ,用判别式来辅助计算.判别式大于0,则有两个公共点;判别式等于0,则有一个公共点;判别式小于0,则没有公共点.无公共点(Δ<0)1.关于x 的反比例函数y =a +4x 的图象如图,A ,P 为该图象上的点,且关于原点成中心对称.在△PAB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B.若△PAB 的面积大于12,则关于x 的方程(a -1)x 2-x +14=0的根的情况是______________.(第1题)2.若反比例函数y =kx 与一次函数y =x +2的图象没有公共点,则k 的取值范围是________.有唯一公共点(Δ=0)3.如图,将直线y =x 沿x 轴负方向平移4个单位后,恰好与双曲线y =mx(x<0)有唯一公共点A,并交双曲线y=nx(x>0)于B点,若y轴平分△AOB的面积,求n的值.(第3题) 有两个公共点(Δ>0)4.如图,已知一次函数y=-x+8和反比例函数y=kx(k≠0)的图象在第一象限内有两个不同的公共点A,B.(1)求实数k的取值范围;(2)若△AOB的面积为24,求k的值.(第4题)有公共点(Δ≥0)(第5题)5.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线y=3x(x>0)与此正方形的边有交点,则a的取值范围是________.6.如图,过点C(1,2)分别作x轴,y轴的平行线,交直线y=-x+6于点A,B,若反比例函数y=kx(x>0)的图象与△ABC有公共点,求k的取值范围.(第6题)答案专训11.C 2.A 3.C 4.A5.D点拨:由题意,易得出S△ODB=S△AOC=12×|-4|=2.因为OC=OD,AC=BD(易求得),所以S△AOC=S△ODA=S△ODB=S△OBC=2.所以四边形ACBD的面积为S△AOC+S△ODA+S△ODB+S△OBC=2×4=8.6.6(第7题)7.解:(1)如图,过点B作BD⊥x轴,垂足为D.∵S△AOB=12OA·BD=12×2n=4,∴n=4.∴B(2,4).∴反比例函数解析式为y =8x.设直线AB 对应的函数解析式为y =kx +b ,由题意得 ⎩⎨⎧-2k +b =0,2k +b =4,解得⎩⎨⎧k =1,b =2. ∴直线AB 对应的函数解析式为y =x +2. (2)当x =0时,y =0+2=2,∴C(0,2). ∴S △OCB =S △AOB -S △AOC =4-12×2×2=2.8.解:(1)由图象知k <0,由已知条件得|k|=3, ∴k =-3.∴反比例函数的解析式为y =-3x ,一次函数的解析式为y =-x +2.(2)由⎩⎨⎧y =-3x ,y =-x +2,解得⎩⎨⎧x 1=-1,y 1=3,⎩⎨⎧x 2=3,y 2=-1.∴点A ,C 的坐标分别为(-1,3),(3,-1).(3)设点P 的坐标为(0,m),直线y =-x +2与y 轴的交点为M ,则M 的坐标为(0,2).∵S △APC =S △AMP +S △CMP =12×PM ×(|-1|+|3|)=5,∴PM =52,即|m -2|=52.∴m =92或m =-12.∴点P 的坐标为⎝⎛⎭⎪⎫0,92或⎝ ⎛⎭⎪⎫0,-12.点拨:依据图象及已知条件求k 的值是解本题的关键,只有求出k 的值,才能通过解方程组求A ,C 两点的坐标,然后才能解决第(3)问.9.解:(1)把A(1,8)的坐标代入y =k 1x,得k 1=8.把B(-4,m)的坐标代入y =8x ,得m =-2.把A(1,8),B(-4,-2)的坐标代入y =k 2x +b , 可得k 2=2,b =6.(2)设直线AB 与x 轴的交点为C ,当y =0时,2x +6=0,解得x =-3.∴C(-3,0). ∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15.(3)点M 在第三象限,点N 在第一象限.理由:∵M(x 1,y 1),N(x 2,y 2)在反比例函数y =8x 的图象上,∴当M(x 1,y 1),N(x 2,y 2)在同一象限时,x 1<x 2,则y 1>y 2. ∵x 1<x 2,y 1<y 2,∴M(x 1,y 1),N(x 2,y 2)不在同一个象限. ∴点M 在第三象限,点N 在第一象限.10.解:由反比例函数图象的对称性可知,两条坐标轴将矩形ABCD 分成四个全等的小矩形.因为点A 为y =6x的图象上的一点,所以S 矩形AEOH =6.所以S 矩形ABCD=4×6=24.所以总费用为25×24=600(元). 答:所需钢条一共花600元.11.解:(1)∵点A(-2,4)在反比例函数y =k 2x 的图象上,∴k 2=-8.∴反比例函数的解析式为y =-8x.(2)∵B 点的横坐标为-4,∴其纵坐标为2.∴B(-4,2). ∵点A(-2,4),B(-4,2)在直线y =k 1x +b 上, ∴⎩⎨⎧4=-2k 1+b ,2=-4k 1+b ,解得⎩⎨⎧k 1=1,b =6.∴直线AB 对应的函数解析式为y =x +6,与x 轴的交点为C(-6,0).∴S △AOC =12×6×4=12.专训21.没有实数根2.k <-1 点拨:∵反比例函数y =kx与一次函数y =x +2的图象没有公共点,∴⎩⎨⎧y =k x ,y =x +2无解,即k x=x +2无解.整理得x 2+2x -k =0,∴Δ=4+4k <0.解得k <-1.3.解:直线y =x 沿x 轴负方向平移4个单位后可得直线y =x +4,由题意可得⎩⎨⎧y =x +4,y =m x只有一组解.整理得x 2+4x -m =0.∴Δ=42-4·(-m)=0,解得m =-4. ∴反比例函数y =m x 的解析式是y =-4x.将m =-4代入x 2+4x -m =0中,解得x 1=x 2=-2, ∴A 点坐标为(-2,2).∵直线y =x 沿x 轴负方向平移4个单位后与双曲线y =nx (x >0)交于B 点且y轴平分△AOB 的面积,∴B 点坐标为(2,6).∴6=n2.∴n =12.4.解:(1)∵一次函数与反比例函数的图象有两个公共点,∴⎩⎨⎧y =-x +8,y =k x有两组解,整理得x 2-8x +k =0. ∴Δ=82-4k >0,解得k <16.易知k >0,∴0<k <16. (2)设A(x 1,y 1),B(x 2,y 2),令一次函数y =-x +8中x =0,得y =8,故OC =8.∴S△COB=12OC·x2,S△COA=12OC·x1.∴S△AOB=S△COB-S△COA=12OC·(x2-x1)=24.∴24=4(x2-x1).∴(x2-x1)2=36.∴(x1+x2)2-4x1x2=36.由(1)x2-8x+k=0得,x1+x2=8,x1x2=k,∴64-4k=36.∴k=7.5.3≤a≤3+16.解:当点C(1,2)在反比例函数y=kx的图象上时,k=2.由kx=-x+6,得x2-6x+k=0,当(-6)2-4k=0,即k=9时,直线与双曲线有且只有一个公共点(3,3),点(3,3)在线段AB上 .因此反比例函数y=kx(x>0)的图象与△ABC有公共点时,k的取值范围是2≤k≤9.。

2020-2021学年最新北师大版九年级数学上册《反比例函数》同步练习及答案解析-精品试题

2020-2021学年最新北师大版九年级数学上册《反比例函数》同步练习及答案解析-精品试题

北师大版九年级上册数学第五章反比例函数第一节反比例函数同步练习一、选择题1.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( ) A .两条直角边成正比例 B .两条直角边成反比例 C .一条直角边与斜边成正比例 D .一条直角边与斜边成反比例 答案:B解析:解答:设该直角三角形的两直角边是a 、b ,面积为S .则12S ab =. ∵S 为定值, ∴ab =2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .分析:直角三角形的面积一定,则该直角三角形的两直角边的乘积一定. 2.下列函数中,是反比例函数的为( ) A .21y x =+ B .22 y x = C .15y x=D .2y x = 答案:C解析:解答:A 、是一次函数,错误; B 、不是反比例函数,错误; C 、符合反比例函数的定义,正确; D 、是正比例函数,错误.故选C .分析:根据反比例函数的定义,解析式符合0k y k x≠=()这一形式的为反比例函数.3.下列关于y 与x 的表达式中,反映y 是x 的反比例函数的是( ) A .4y x =B .2xy=-C .4xy =D .43y x =- 答案:C解析:解答:A 、4y x =是正比例函数,故A 错误; B 、2xy=-是正比例函数,故B 错误; C 、4xy =是反比例函数,故C 正确; D 、43y x =-是一次函数,故D 错误; 故选:C .分析:根据反比例函数的定义,可得答案. 4.下列函数中,不是反比例函数的是( )A .3y x=-B .32y x -=C .11y x =- D .32xy = 答案:C解析:解答:A 、符合反比例函数的定义,y 是x 的反比例函数,错误; B 、符合反比例函数的定义,y 是x 的反比例函数,错误; C 、y 与x -1成反比例,y 不是x 的反比例函数,正确; D 、符合反比例函数的定义,y 是x 的反比例函数,错误. 故选C .分析:根据反比例函数的定义,反比例函数的一般式是0ky k x≠=(),即可判定各函数的类型是否符合题意. 5.若函数()221m y m x --=为反比例函数,则m 的值为( )A .±1B .1 CD .-1 答案:D解析:解答:根据题意得:221m -=-,且10m -≠ 解得:1m =-. 故选D .分析:根据反比例函数的定义即可求出m 的值.6.若y 与x 成反比例,x 与z 成反比例,则y 是z 的( ) A .正比例函数 B .反比例函数 C .一次函数 D .不能确定 答案:A解析:解答::∵y 与x 成反比例, ∴1k y x=, ∵x 与z 成反比例, ∴2k x z =, ∴12k z y k =, 故选:A .分析:根据反比例函数的定义分别写出相应的解析式,根据常见函数的一般形式判断y 与z 的关系即可.7.下列关系中,两个量之间为反比例函数关系的是( )A .正方形的面积S 与边长a 的关系B .正方形的周长l 与边长a 的关系C .矩形的长为a ,宽为20,其面积S 与a 的关系D .矩形的面积为40,长a 与宽b 之间的关系 答案:D解析:解答:A 、根据题意,得2S a =,所以正方形的面积S 与边长a 的关系是二次函数关系;故本选项错误;B 、根据题意,得4l a =,所以正方形的周长l 与边长a 的关系是正比例函数关系;故本选项错误;C 、根据题意,得20S a =,所以正方形的面积S 与边长a 的关系是正比例函数关系;故本选项错误;D 、根据题意,得40b a=,所以正方形的面积S 与边长a 的关系是反比例函数关系;故本选项正确. 故选D .分析:根据每一个选项的题意,列出方程,然后由反比例函数的定义进行一一验证即可. 8.根据下表中,反比例函数的自变量x 与函数y 的对应值,可得p 的值为( )A .3B .1C .-2D .-6 答案:D解析:解答:∵y 与x 成反比例关系, ∴231p -⨯=⨯, 解得6p =-. 故选:D .分析:根据反比例函数的定义知,反比例函数横纵坐标坐标的乘积是定值k . 9.若2m y x=+是反比例函数,则m 必须满足( ) A .m ≠0 B .m =-2 C .m =2 D .m ≠-2 答案:D解析:解答:依题意有m +2≠0, 所以m ≠-2. 故选D .分析:根据反比例函数的定义.即y =kx (k ≠0),只需令m +2≠0即可. 10.若52m y x -=为反比例函数,则m =( )A .-4B .-5C .4D .5 答案:C解析:解答:∵52m y x -=为反比例函数,∴51m -=-, 解得4m =. 故选C .分析:根据反比例函数的定义求出m 的值.11.下列函数中①2y x =,②31xy =.③1y x=,④2x y =,反比例函数有( ) A .1个 B .2个 C .3个 D .4个 答案:C解析:解答:①2y x=是反比例函数,故本小题正确; ②31xy =可化为13y x=是反比例函数,故本小题正确;③y =是反比例函数,故本小题正确; ④2xy =是正比例函数,故本小题错误. 故选C .分析:根据反比例函数的定义对各小题进行逐一分析即可. 12.下列函数中,y 是x 的反比例函数的是( ) A .5x y =- B .53y x=- C .11y x =+ D .1y x π=答案:B解析:解答:A 、是正比例函数,故选项错误; B 、是反比例函数,故选项正确; C 、y 是1x +的反比例函数,故选项错误; D 、是正比例函数,故选项错误. 故选:B .分析:根据反比例函数的定义,反比例函数的一般式0ky k x=≠(),即可判定各函数的类型是否符合题意.13.下列选项中,能写成反比例函数的是( ) A .人的体重和身高 B .正三角形的边长和面积 C .速度一定,路程和时间的关系D .销售总价不变,销售单价与销售数量的关系解析:解答:A 、人的体重和身高,不是反比例函数关系;B 、正三角形面积S ,边长为a ,则24S a =,不是反比例函数关系; C 、路程=速度×时间,速度一定,路程和时间成正比例; D 、销售总价不变,销售单价与销售数量成反比例关系. 故选:D .分析:根据题意先对每一问题列出函数关系式,再根据反比例函数的定义判断变量间是否为反比例函数关系.14.如果函数my x =为反比例函数,则m 的值是( ) A .1 B .0 C .12 D .-1 答案:D解析:解答:∵m y x =为反比例函数, ∴1m =-. 故选:D .分析:根据反比例函数的定义进行解答.15.下列问题中,两个变量间的函数关系式是反比例函数的是( ) A .小颖每分钟可以制作2朵花,x 分钟可以制作y 朵花 B .体积为310cm 的长方体,高为hcm ,底面积为2ScmC .用一根长50cm 的铁丝弯成一个矩形,一边长为xcm ,面积为2ScmD .汽车油箱中共有油50升,设平均每天用油5升,x 天后油箱中剩下的油量为y 升 答案:B解析:解答:A 、根据题意可知,y 与x 之间的关系式为2y x =,故该选项错误, B 、根据题意可知,S 与h 之间的关系式为10S h=,故该选项正确, C 、根据题意可知,S 与x 之间的关系式为25S x x =-(),故该选项错误, D 、根据题意可知,y 与x 之间的关系式为505y x =-,故该选项错误,分析:根据题意写出函数表达式再判断它们的关系则可,找到符合反比例函数解析式的一般形式0ky k x≠=() 的选项. 二、填空题16.如果函数221k y k x -=+()是反比例函数,那么k =______.答案:1解答:根据题意221k -=-,解得1k =±; 又10k +≠,则1k ≠-; 所以k =1. 故答案为:1.解析:分析:根据反比例函数的定义.即0k y k x=≠(),只需令221k -=-、10k +≠即可.17. 若函数141k y k x -=+()是反比例函数,则其表达式是______.答案:1y x=解析:解答:∵函数141k y k x -=+()是反比例函数,∴11k -=-且410k +≠. 解得0k =,则该函数解析式为:1y x=. 故答案是:1y x=. 分析:根据反比例函数的定义得到11k -=-且410k +≠.由此求得k 的值,然后代入即可得到函数解析式.18.已知反比例函数的解析式为y =k =______. 答案:1解答:反比例函数的解析式为y x=得210k ->, 解得12k >,所以k 的最小整数值为1. 故答案为:1.解析:分析:根据反比例函数的意义,可得2k -1>0,然后解不等式求出k 的取值范围,再找出此范围中的最小整数即可.19.已知1ay a x =-()是反比例函数,则a 的值是______. 答案:-1解析:解答:∵1ay a x =-()是反比例函数, ∴10a -≠,且1a =-, 解得1a =-,故答案为:-1.分析:根据反比例函数形式1y kx -=可得1a =-,10a -≠再解即可. 20.如果函数21m y x -=为反比例函数,则m 的值是_____.答案:0解析:解答:∵21m y x -=是反比例函数,∴211m -=-, 解之得:0m =. 故答案为0.分析:根据反比例函数的定义.即0ky k x=≠(),只需令211m -=-即可. 三、解答题21.已知反比例函数的解析式为23a a y x-+=,确定a 的值,求这个函数关系式. 答案:3a =;6 y x=解答:由反比例函数的解析式为23a a y x-+=,得 21a -=和30a +≠,解得3a =,3a =-(不符合题意要舍去).故2323336a a y x x x--++===;故答案为:3a =;6 y x=. 解析:分析:根据0ky k x≠=()是反比例函数,可得答案. 22.如果函数222k k y kx +-=是反比例函数,求函数的解析式.答案:12?y x =或1y x=- 解答:∵222kk y kx +-=是反比例函数,∴2221k k +-=-, 解得:112k =,21k =-, ∴函数的解析式为:12?y x =或1y x=-. 解析:分析:利用反比例函数的定义得出2221k k +-=-,进而求出即可. 23.当m 取何值时,函数2113m y x+=是反比例函数?答案:0m = 解答:∵函数2113m y x+=是反比例函数,∴211m +=, 解得:0m =.解析:分析:根据反比例函数的定义.即0k y k x=≠(),只需令211m +=即可.24. 已知变量x ,y 满足222210x y x y -=++()(),问:x ,y 是否成反比例关系?如果不是,请说明理由;如果是,请求出比例系数. 答案:成反比例关系,54-解答:∵222210x y x y -=++()(), ∴2222444410x xy y x xy y -+=+++, 整理得出:810xy =-, ∴54y x-=, ∴x ,y 成反比例关系,比例系数为:54-. 解析:分析:直接去括号,进而合并同类项得出y 与x 的函数关系式即可.25.已知函数21m y m x -=-()是反比例函数.(1)求m 的值;答案:1m =- 解答:(1)21m -=-且10m -≠,解得:1m =±且1m ≠,∴1m =-.(2)求当3x =时,y 的值. 答案:23y =- (2)当1m =-时,原方程变为2y x=-, 当3x =时,23y =-. 故答案为:(1)1m =-|(2)23y =-. 解析:分析:(1)让x 的次数等于-1,系数不为0列式求值即可;(2)把3x =代入(1)中所得函数,求值即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
4
(2)过点B作BE⊥y轴于点E,如解图,设点B坐标为(n,n),则OE=n,BE=n.
1 ∴S△BEO=2OE·BE=2,(4分)
∵S△BOC=3,
∴S△BCE=1,
∴OE∶EC=2∶1,
2
6
∴CE=n,OC=n.(6分)
4
6
6
4
{ )=nk+
n
n
6 1=4k+
设直线AB的解析式为y=kx+n,把(n,n)和(4,1)分别代入得:
答案
2. D 【解析】要使函数有意义,则x+2≠0,即x≠-2.
3. D [解析]过B作BD⊥x轴,垂足为D. ∵A,C的坐标分别为(0,3),(3,0), ∴OA=OC=3,∠ACO=45°,∴AC=3 . ∵AC=2BC,∴BC= . ∵∠ACB=90°,
∴∠BCD=45°,∴BD=CD= ,∴点B的坐标为
8.
C [解析]根据反比例函数y= ,y=-
及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显 然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2 的半圆的面积. ∴S阴影= π×22=2π.故选C.
二、填空
20. 在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3. (1)设矩形的相邻两边长分别为x,y. ①求y关于x的函数表达式; ②当y≥3时,求x的取值范围; (2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10.你认为圆圆和方方的说 法对吗?为什么?
一、选择题(本大题共8道小题) 1. A
15.
4 如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线,与反比例函数y=x的图 象交于A、B两点,则四边形MAOB的面积为________.
16.
a
b
如图,已知点A,C在反比例函数y=x的图象上,点B,D在反比例函数y=x的图象上,a>b>0
3
3
,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=4,CD=2,AB与CD间的距离为6,则a-b的
值是________.
三、解答题(本大题共4道小题,每题10分,共40分) 17. 如图,双曲线y= 经过点P(2,1),且与直线y=kx-4(k<0)有两个不同的交点. (1)求m的值;
(2)求k的取值范围.
18.
m 如图,一次函数y=kx+b(k<0)与反比例函数y= x 的图象相交于A、B两点,一次函数的图象与 y轴相交于点C,已知点A(4,1). (1)求反比例函数的解析式;
7.
k1
k2
如图,A、B两点在反比例函数y= x 的图象上,C、D两点在反比例函数y= x 的图象上,AC
10 ⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF= 3 ,则k2-k1=( )
14 16 A. 4 B. 3 C. 3 D. 6
8. 如图,☉O的半径为2,双曲线的解析式分别为y= 和y=- ,则阴影部分的面积为 ( )
,∴ =
,化简得m=4a.∵b= ,∴ab
13. 16 [解析]如图,分别过点D,C作x轴的垂线,垂足为E,F,则OE=1,DE=4,OA=4, ∴AE=3,AD=5,
∴AB=CB=5,∴B(1,0), 易得△DAE≌△CBF, 可得BF=AE=3,CF=DE=4, ∴C(4,4),∴k=16.
3
∴ =kx-4, 整理得:kx2-4x-2=0, ∵双曲线与直线有两个不同的交点,∴Δ>0, 即(-4)2-4k·(-2)>0, 解得:k>-2. 又∵k<0, ∴k的取值范围为-2<k<0.
18.
mm 解:(1)把A(4,1)代入y= x 得1= 4 .
∴m=4,(2分)
4 ∴反比例函数的解析式为y=x.(3分)
7.
A
k1
k2
k1
k2
【解析】设E(x1,0),F(x2,0),则A(x1,x1),D(x2,x2),B(x2,x2),C(x1,x1),∴AC=
k1-k2
k2-k1
x1 =2,BD= x2 =3,∴k1-k2=2x1,k2-k1=3x2,∴2x1+3x2=0,又∵EF=x2-x1=
10
4
4
3 ,∴x2=3,∴k2-k1=3x2=3×3=4.
11.
k 已知反比例函数y=x(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大 而减小,那么k的取值范围是________. 12. 如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y= (x>0)的图象上,顶点B在反比例函数y= (x>0)的图象上,点C在x轴的正半轴上,则平行四边 形OABC的面积是 .
3
2,即 x2 =2,∴x2=3x1,∴x1= 2,x2 = 2,∴k= 2x1x2=2.
15.
10
【解析】如解图,设AM与x轴交于点C,MB与y轴交于点D,∵点A、B分别在反比例函数y=
4
1
x上,根据反比例函数k的几何意义,可得S△ACO=S△OBD=2×4=2,∵M(-3,2),∴S矩形MCO
3.
如图,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,3),(3,0),∠ACB=90° ,AC=2BC,函数y= (k>0,x>0)的图象经过点B,则k的值为( )
A.
B.9
C.
D.
x+4 4. 在函数y= x 中,自变量x的取值范围是( ) A. x>0 B. x≥-4 C. x≥-4且x≠0 D. x>0且x≠-4
10 ∴反比例函数的解析式是y= x , 一次函数的解析式是y=x+3.
10 解方程x+3= x ,(4分)
∴x2+3x-10=0,(5分) 解得x1=2(舍去),x2=-5, ∴点B 坐标是(-5,-2), ∵反比例函数的值大于一次函数值,即反比例函数的图象在一次函数图象上方时,x的取值范 围, ∴根据图象可得不等式的解集是x<-5或0<x<2.(6分)
D=3×2=6,∴S四边形MAOB=S△ACO+S△OBD+S矩形MCOD=2+2+6=10.
16.
3
【解析】设点A的纵坐标为y1,点C的纵坐标为y2,∵AB∥CD∥x轴,∴点B的纵坐标为y1,
a
b
3a
点D的纵坐标为y2,∵点A在函数y=x的图象上,点B在函数y=x的图象上,且AB=4,∴y1
b3
3 ∴y=x(x>0);(2分) ②∵由已知y≥3,
3 ∴x≥3,∴0<x≤1, ∴x的取值范围是0<x≤1;(4分) (2)圆圆的说法不对,方方的说法对. 理由:∵圆圆的说矩形的周长为6,∴x+y=3,
3 ∴x+x=3,化简得,x2-3x+3=0, ∴Δ=(-3)2-4×1×3=-3<0,方程没有实数根, 所以圆圆的说法不对;(6分)
14.
2
k
k
k
k
【解析】设A(x1,x1),B(x2,x2),∵直线y=-2x+4与y=x交于A,B两点,∴-2x+4=x
,即-2x2+4x-k=0,∴x1+
k
AP AB
x2=2,x1x2=2,如解图,过点A作AQ⊥x轴于点Q,BP⊥AQ于点P,则PB∥QC,∴PQ=BC=
kk -
x1 x2
k
1
3
.
∵函数y= (k>0,x>0)的图象经过点B,
∴k= = ,故选D
.
4.
C
【解析】综合开平方时被开方数为非负数和分母不为0可得x取值范围,则x+4≥0且x≠0,故x≥
-4且x≠0.
5.
A
n
【解析】如解图,根据题意,两个函数的图象在第一象限有公共点,则关于x的方程x=mx+
6有实数根,方程化简为:mx2+6x-n=0,显然m≠0,Δ=36+4mn≥0,所以mn≥-9,由于
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.
19.
k 如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y=x的图象上,一 次函数y=x+b的图象经过点A,且与反比例函数图象的另一交点为B. (1)求k和b的值; (2)设反比例函数值为y1,一次函数值为y2,求y1>y2时x的取值范围.
A.4π
B.3π
C.2π
D.π
二、填空题(本大题共8道小题,每题5分,共40分)
9.
k
已知反比例函数y=x的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例 函数解析式____________.
10. 若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为 .
n,
{ )n=2 1 k=-
解得
2 ,(7分)
6 ∴n=3,
1 ∴一次函数的解析式为y=-2x+3.(8分)
19.
k 解:(1)把点A(2,5)代入反比例函数的解析式y=x,
∴k=xy=10, 把(2,5)代入一次函数的解析式y=x+b,(2分)
∴5=2+b,
∴b=3.(3分) (2)由(1)知k=10,b=3,
3 方方的说矩形的周长为10,∴x+y=5,∴x+x=5, 化简得,x2-5x+3=0,(8分) ∴Δ=(-5)2-4×1×3=13>0,
5 ± 13 ∴x= 2 , ∵x>0,
5+ 13 5- 13 ∴x= 2 ,y= 2 , 所以方方的说法对.(10分)
20.
【思维教练】(1)①由题干条件知矩形的面积相等,可得矩形的长×宽等于定值,所以y关于x 的函数表达式是反比例函数;②将y的值带入反比例函数解析式中,求出x的求值范围即可;( 2)设长为x,用含长的代数式表示出宽,得出关于面积的分式方程,化为一元二次方程,再根 据根的判别式即可判断圆圆和方方说法的正误. 解:(1)①由题意得,1×3=xy,
相关文档
最新文档