(完整版)高等数学微分方程试题
高等数学 微分方程

第十二章 微分方程§ 1 微分方程的基本概念1、由方程x 2-xy+y 2=C 所确定的函数是方程( )的解。
A. (x-2y)y '=2-xy '=2x-y C.(x-2)dx=(2-xy)dy D.(x-2y)dx=(2x-y)dy2、曲线族y=Cx+C 2 (C 为任意常数) 所满足的微分方程 ( ) 4.微分方程y '=yx 21-写成以y 为自变量,x 为函数的形式为( )A.yx 21dxdy -=B.yx 21dydx -='=2x-y D. y '=2x-y §2 可分离变量的微分方程1.方程P(x,y)dx+Q(x,y)dy=0是( )A.可分离变量的微分方程 一阶微分方程的对称形式, C.不是微分方程 D.不能变成)y ,x (P )y ,x (Q dy dx -= 2、方程xy '-ylny=0的通解为( )A y=e x B. y=Ce x cx D.y=e x +C 3、方程满足初始条件:y '=e 2x-y , y|x=0=0的特解为( )A. e y=e 2x+1 21e ln x 2+= C. y=lne 2x +1-ln2 D. e y =21e 2x +C4、已知y=y(x)在任一点x 处的增量α+∆+=∆x x1yy 2,且当∆x →0时,α是∆x 高阶无穷小,y(0)=π,则y(1)=( )A. 2πB. πC. 4e π 4eππ5、求特解 cosx sinydy=cosy sinxdx , y|x=0=4π解:分离变量为tanydy=tanxdx ,即-ln(cosy)=-ln(cosx)-lnC ,cosy=ccosx 代入初始条件:y|x=0=4π得:22C =特解为:2cosy=cosx 6、求微分方程()2y x cos y x 21cos dxdy +=-+满足y(0)=π的特解。
高等数学题库常微分方程

高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。
2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。
3、通解为xce y =(c 为任意常数)的微分方程是___________。
4、满足条件()()=+?dx x f x f x2的微分方程是__________。
5、 y y x 4='得通解为__________。
6、1+=y dxdy的满足初始条件()10=y 的特解为__________。
7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。
8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。
二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。
微积分综合练习题与参考答案完美版

微积分综合练习题与参考答案完美版综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k 2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( )A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x(3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e2)(='')0(f 2-(1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-=综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2xD .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
高等数学 第十二章 常微分方程 习题课

1 4x41 2x2y21 4y4
(0,0) (x,0)
1 4x41 2x2y21 4y4c 为原方程的隐式通解.
例 5. (x3x2y)dx(x2yy3)dy0
又.解dy dx
x3xy2 x2yy3
1
y x
y2
x2 y3 x3
齐次方程
设 u x y,则 y x u ,d d x y u x d d u x .
P y(xys(xiyyn ) syi(y x n )2 coy)s
Q x
例 6. dy3(x1)2(y1)2 dx 2(x1)(y1)
解 .令 u x 1 ,v y 1 ,
则dyd(v1) d v dx d(u1) d u
dv 3u2 v2 du 2uv
3
2
v u v u
x
du dx
1 cosu
,
cousdudxx, xcesinxy .
例 3.(cx o )d dx s yysixn 1 解 . d dx y(tax)n ysexc 一阶线性方程
ye ta xd nx se xe c ta xd nd x x c
e lc n x o ss x e e lc c n x d o c s x
uxd du x1 u u u2 3, xd d u x 1 2 u u 2 u 3 u 4 1 u u 2, 1uduu2 dxx, 1 2ln 1u (2) ln xln c,
ln 1 u (2 ) 2 ln x 2 lc n ,
x2(1u2)2c, x2y2c2.
例 5 .( x 3 x 2 ) d y ( x 2 y y 3 ) d 0 y 事 ,x ( x 实 2 y 2 ) d 上 y x ( x 2 y 2 ) d 0 y
(完整版)微分方程试题及部分应用题答案整理版

第十章微分方程习题一.填空题:(33)1-1-40、微分方程4233''4''')'(x y x y y 的阶数是 . 1-2-41、微分方程0'2'2xy yy xy 的阶数是 . 1-3-42、微分方程0d d d d 22sxs x s的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(的阶数是 .1-5-44、微分方程xyxy2d d 满足条件1|'0xy 的特解是 .1-6-45、微分方程0d d yxy的通解是 .1-7-46、方程y e y x'的通解是 . 1-8-47、方程y y y ln '的通解是 .1-9-48、方程04'4''y y y 的通解是 . 1-10-49、方程04'4''y y y 的通解是 . 1-11-50、方程013'4''yy y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y ''的通解为 . 1-14-53、微分方程x e y xsin ''2的通解为 .1-15-54、若0d ),(dx ),(yy x Q y x P 是全微分方程, 则Q P,应满足 .1-16-55、与积分方程xy x f yx x d ),(0等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22yxy xx y xy 化为齐次方程是 .1-18-57、通解为21221,(C C e C eC yxx 为任意常数)的微分方程为 .1-19-58、方程yx e y 2'满足条件0xy 的特解是 .1-19-59、方程0dy1dx2x xy 化为可分离变量方程是1-20-60、方程xy y 2'的通解是1-21-61、方程x yxyxy xyd d d d 22化为齐次方程是1-22-62、若t ycos 是微分方程09''yy 的解, 则.1-23-63、若ktCe Q 满足Qdt dQ03.0, 则k.1-24-64、y y 2'的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x 1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、圆222r yx 满足的微分方程是1-27-67、ax ae y满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q yx P x的通解是 .1-29-69、已知特征方程的两个根3,221r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y是微分方程y xy 2'的解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与之和.1-32-72、二阶常系数齐次线性微分方程0'''qypy y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22dyxy xdxy xy写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dxdy 的通解是 ( )A.2x yB.25x y C.2Cx yD.Cxy 2-2-57、微分方程0dy 1dx 2x xy 的通解是 ( ) A.21x eyB.21x CeyC.x C yarcsin D.21xC y 2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2x y xB. 0dy dx x yC.0dy)(1dx)1(xy y xy D.dydx)(22xy y x2-4-59、下列函数组中,线性无关的是 ( ) A.xxe e 32, B.x x 2sin ,2cos C. x x x sin cos ,2sin D.2ln ,ln xx 2-5-60、方程03'2''y y y 的通解是 ( )A.xxe C eC y 321 B. xxeC eC y 321 C.xx eC eC y 321 D.xxeC e C y3212-6-61、方程0''y y 的通解是 ( ) A.x C ysin B.x C ycos C.x C xycos sin D.xC xC ycos sin 212-7-62、下列方程中是可分离变量的方程是( )A.xyyx 33dxdy B.dy 2dx)3(2xy y exC.234dxdy xyyx D.yx xyy321dxdy 2-8-63、微分方程0cot 'x y y 的通解是 ( ) A.x C ycos B.x C ysin C.x C ytan D.xC ycsc2-9-64、已知微分方程0''pyy 的通解为)(212x C C e yx,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'yy 的通解是 ( )A.C x y2sin B.C eyx24 C.xCe y2 D.xCey 2-11-66、方程xy2dx dy的通解是 ( )A.C ex2B.Cxe2C.2CxeD.2)(C x e2-12-67、xe y ''的通解为y( )A.xe B.xe C.21C xC exD.21C x C ex2-13-68、微分方程xe21dxdy满足1xy 的特解为 ( )A.1221xeyB.3221x ey C.C ey x212 D.212121xey2-14-69、微分方程0ydy-dx 3x 的通解是 ( ) A.Cyx2422B.Cyx2422C.2422yxD.12422yx2-15-70、微分方程0ydy-dx 3x 的通解是 ( )A.222yxB.933yxC.133yxD.13333yx2-16-71、过点,0()2的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32xyB.52xy C.53xey D.5xCe y 2-17-72、齐次方程x yxy tandx dy化为可分离变量的方程, 应作变换 ( )A.2ux yB.22x u yC.ux yD.33xu y2-18-73、设方程)()('x Q y x P y 有两个不同的解21,y y ,若21y y 也是方程的解,则( ) A.B.0 C. 1 D.,为任意常数2-19-74、方程dx 2dx dy y x x 的通解是 ( ) A.x Cxy2B. x xC y2sin C.C xy 2cos D.Cxy 22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.xyxy 2'B .xxyy sin 'C .xyy' D.xyy 2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y xy' B.y xy'C.x yy' D.xy y'2-22-77、方程2)3(,0'y yy 的解是 ( )A.xey 32 B.xey 32 C.32x ey D.32x ey 2-23-78、微分方程x y y ln '的通解是 ( ) A.xx eyln B. xx Ceyln C.xx x ey ln D.xx x Cey ln 2-24-79、下列哪个不是方程y y 4''的解 ( )A. xey22 B.xe y2 C.xey 2 D.xey 22-25-80、方程0sin '''653)4(yy y y x xyy的阶是 ( )A. 6B. 5C. 4D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2,则这条曲线是( )A.椭圆 B.抛物线 C.双曲线 D. 圆2-27-82、下列可分离变量的方程是 ( )A.xyy x dxdy33B.2)3(2xydy dxy exC. xy yx dxdy D.yx xyy dxdy 3212-28-83、微分方程0cot 'xy y 的通解是 ( )A.x C ycos B.x C ysin C.x C ytan D.xC y csc 2-29-84、已知微分方程0''pyy 的通解为)(212x C C e yx ,则p 的值( )A. 1B. 0C.21D.41三.计算题:(59)3-1-52、0d tan sec d tan sec 22y x y x y x 3-2-53、0ln 'yy xy 3-3-54、0d sec )2(d tan 32yy e x y e x x3-4-55、yx y y x xy22222')1(3-5-56、yx eye x dxdy3-6-57、0)1()1(xdy y ydxx3-7-58、x x y yy x d sin cos d sin cos ,4|0xy 3-8-59、0)0(,02')1(22y xy y x3-9-60、1)(,ln 2'e y x y y 3-10-61、x x y y y x d sin cos d sin cos ,4|0xy 3-11-62、0y)dx -(x dy)(y x3-12-63、)ln (ln dx d x y y y x 3-13-64、0)2(22dyx dx xy y3-14-65、xy x y xy tan'3-15-66、xyx y x y xy ln)('3-16-67、dxdy xydxdy xy223-17-68、x y yx y', 2|1x y 3-18-69、x y xy y', ey ex|3-19-70、2|,'122xy y xyxy3-20-71、xx yxy sin 1', 1|xy 3-21-72、xex y xy 43'3-22-73、342'xxyy 3-23-74、xyxy ln 11'3-24-75、xeyxxy x21'3-25-76、x xy y sec tan ', 0|0xy 3-26-77、xx yxy sin 1', 1|xy 3-27-78、22112'xy xx y ,|0xy 3-28-79、x x yxy ln ', ey ex|3-29-80、22d dyx xexy x3-30-81、)sin (cos d dy2x xy yx3-31-82、5d dyxyy x3-32-83、02d dy4xyxy x3-33-84、4)21(3131d dy yx yx3-34-85、xyxy x 2d dy23-35-86、xy y '''3-36-87、01)'(''2y yy 3-37-88、01''3y y 3-38-89、y y 3'', 1|0xy , 2|'0xy 3-39-90、223''yy ,1|3xy ,1|'3xy 3-40-91、02''yy 3-41-92、013'4''y y y 3-42-93、0'2''y y y 3-43-94、04'5''y y y 3-44-95、04'3''y y y , 0|0xy , 5|'0xy 3-45-96、029'4''y y y , 0|0x y ,15|'0xy 3-46-97、0'4''4y y y , 2|0x y , 0|'0x y 3-47-98、0'4''4y y y , 2|0xy , 0|'0xy 3-48-99、013'4''y y y , 0|0x y , 3|'0x y 3-49-100、04'4''y y y , 0|0x y , 1|'0xy 3-50-101、xey y y 2'''23-51-102、x eyy xcos ''3-52-103、xex y y y 3)1(9'6''3-53-104、'''22xy y ye3-54-105、123'2''x y y y 3-55-106、''sin 20y yx, 1|xy , 1|xy 3-56-107、52'3''yy y , 1|0xy , 2|'0xy 3-57-108、xe y y y 29'10'',76|0x y ,733|'0x y 3-58-109、xxe yy 4'', 0|0xy , 1|'0xy 3-59-110、xxeyy y 26'5''四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知xxxy t t y tt 03231d )(12, 求函数)(x y 4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x2.4-4-14、试求x y ''的经过点)1;0(M 且在此点与直线12x y相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x 满足xx t t t x x 01d sin )(2cos )(, 求)(x .4-8-10、已知某商品需求量Q 对价格p 的弹性为22pEpEQ, 最大需求量为1000Q, 求需求函数)(p f Q.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为02v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dL L Ak x,(其中0,0Ak), 若不做广告, 即0x时纯利润为0L , 且A L 0, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101,投资额)(t I 是国民收入增长率t d dy的31. 设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w 证明: )(x w 满足方程0)('wx p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x的3个相异特解,证明1213y y y y 为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).解. 设)(t i i, 由回路电压定律tE dtdi LRisin 0, 即tLE LR dtdisin 0]sin [)(0C dt teLE et i t dtLRLR =]sin [0C dt te LE et t LR LR =)cos sin (2220t L t R LRE CetLR将0|0ti 代入通解得222LRLE C)cos sin ()(2220t L t R LeLRE t i t LR488.设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系解:.物体重力为mg w, 阻力为kv R , 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dtdv m ,从而得线性方程gv mk dtdv ,|0tv tmkdtdtCeg km C dt gee v km m k ][, 将0|0tv 代入通解得gkm C)1(t mk eg km v, 再积分得122C gekm gtkm Stmk,将0|0t S 代入求得gkm C 221)1(22t mkeg km gtkm S 489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x yt v y 1'0, 又弧OP 的长度为x tv dxy 0022'1,从以上两式消去t v 0得''121''')1(2y y y y x , 即2'121'')1(y y x 根据题意, 初始条件为0)0(y , 0)0('y 令p y', 原方程化为2121')1(pp x , 它是可分离变量得方程,解得21)1(112x C pp , 即21)1('1'12x C y y 将0)0('y 代入上式得11C , 故21)1('1'2x y y 而21)1(''1'1'122x y y y y , 得2121)1()1(21'x x y 积分得22321)1(31)1(C x x y, 将0)0(y 代入上式得322C ,所以鱼雷的航行曲线为32)1(31)1(2321x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dLL A k x ,(其中0,0Ak ), 若不做广告, 即0x时纯利润为0L , 且AL 0, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL,|L L x, 解可分离变量得微分方程, 得通解kxCeAL , 将00|L L x 代入通解, 得AL C 0, 所以纯利润L 与广告费x 之间的函数关系为kxeA LAx L )()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy的31.设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:yS101,dt dyI31, 解之得通解tCe y103, 将5|0ty 代入通解得5C, 所以国民收入函数为tey 1035492.试建立描述市场价格形成的动态过程的数学模型.解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dtdp,)0(p p , 其中0p 为0t时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kpr p f ),(, d cpp g )(, 则方程为)()(d b k p c k k dtdp ,)0(p p , 其中d c b k ,,,均为正常数, 其解为ckd b eckd b p t p tc k k )(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(p g r p f , 即dpc bpk ,则c kdb p, 从而价格函数pep p t p c k k )(0)()(,取极限:pt p t)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p 0, 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于tc k k ec kk p pdtdp)(0)()(, 所以当p p 0时, 0dtdp,)(t p 单调下降向p 靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
考研数学一-高等数学常微分方程(一)

考研数学一-高等数学常微分方程(一)(总分:178.00,做题时间:90分钟)一、选择题(总题数:11,分数:11.00)1.以下可以看作某个二阶微分方程的通解的函数是(A) y=C1x2+C2x+C3. (B) x2+y2=C.(C) y=ln(C1x)+ln(C1sinx). (D) y=C1sin2x+C2cos2x.(分数:1.00)A.B.C.D. √解析:[解析] 由二阶微分方程的通解需含两个任意的独立常数可知,仅(D)符合要求,故应选(D).2.微分方程y"+2y'+y=3xe-x的特解形式为(A) axe-x. (B) (ax+b)e-x. (C) (ax+b)xe-x. (D) (ax+b)x2e-x.(分数:1.00)A.B.C.D. √解析:[解析] 由于方程对应的特征方程为λ2+2λ+1=0,故特征根为重根λ1=λ2=-1,方程的非齐次项为Q(x)e-x且Q(x)=3x为一次多项式,因此待定特解的形式为(ax+b)x2e-x.故应选(D).3.微分方程y"-3y'+2y=3x-2e x的特解形式为(A) (ax+b)e x. (B) (ax+b)xe x.(C) (ax+b)+ce x. (D) (ax+b)+cxe x.(分数:1.00)A.B.C.D. √解析:[解析] 由于特征方程为λ2-3λ+2=0,所以特征根为λ1=1,λ2=2.从而方程y"-3y'+2y=3x待定特解形式为;方程y"-3y'+2y=-2e x待定特解形式为,是原方程的一个特解,故选(D).4.微分方程y"+2y'+y=(x+1)e-x+2x+1有一个特解y*形式为(A) y*=x(ax+b)e-x+(cx+d). (B) y*=(ax+b)e-x+x2(cx+d).(C) y*=x2(ax+b)e-x+(cx+d). (D) y*=(ax+b)e-x+x(cx+d).(分数:1.00)A.B.C. √D.解析:[解析] 因为特征方程为λ2+2λ+1=0,特征根为重根λ1=λ2=-1,所以对应于非齐次项(x+1)e-x应设特解,对应非齐次项2x+1,再由迭加原理知应设特解y*=x2(ax+b)e-x+(cx+d),故应选(C).5.若A,B为非零常数,c1,c2为任意常数,则微分方程y"+k2y=cosx的通解应具有形式(A) c1coskx+c2sinkx+Asinx+Bcosx. (B) c1coskx+c2sinkx+Axsinx.(C) c1coskx+c2sinkx+Axcosx. (D) c1coskx+c2sinkx+Axsinx+Bxcosx.(分数:1.00)A.B. √C.D.解析:[解析] 由于对应的齐次方程的通解为c1coskx+c2sinkx.这样需验证的是哪一个是非齐次方程的特解.如果非齐次方程的特解有形式Asinx+Bcosx,说明此时k≠1,经验证可知特解为,即A=0,.而根据题设,A,B均为非零常数,说明它不符合题意,故选项(A)错误.如果k=1,则特解应具有形式Axsinx+Bxcosx,B=0,由此可见,应选(B).6.设y1(x),y2(x),y3(x)是二阶线性非齐次微分方程y"+p(x)y'+q(x)y=f(x)的三个线性无关解,C1,C2是任意常数,则此微分方程的通解是(A) C1y1+C2y2+y3. (B) C1y1+C2y2+(1-C1-C2)y3.(C) C1y1+C2y2-(C1+C2)y3. (D) C1y1+C2y2-(1-C1-C2)y3.(分数:1.00)A.B. √C.D.解析:[解析] 因为y1(x),y2(x),y3(x)是线性微分方程y"+p(x)y'+q(x)y=f(x)的解,所以y1-y3和y2-y3都是相应的二阶齐次微分方程的解.由于y1(x),y2(x),y3(x)线性无关,若令k1(y1-y3)+k2(y2-y3)=0,即 k1y1+k2y2-(k1+k2)y3=0,则必有k1=k2=0,故y1-y3和y2-y3线性无关.所以原方程的通解为y=C1(y1-y3)+C2(y2-y3)+y3=C1y1+C2y2+(1-C1-C2)y3,故正确选项为(B).7.已知y1=xe x+e2x,y2=xe x+e-x是二阶非齐次线性微分方程的解,则此方程为(A) y"-y'-2y=e x-2xe x. (B) y"+y'+2y=e x-2xe x.(C) y"-y'-2y=-e x+2xe x. (D) y"+y'+2y=-e x+2xe x.(分数:1.00)A. √B.C.D.解析:[解析] 因y1-y2=e2x-e-x为对应齐次方程的解,故特征方程为(λ-2)(λ+1)=λ2-λ-2=0,从而对应齐次方程为y"-y'-2y=0.把特解y1代入方程得y"1-y'1-2y1=e x-2xe x,因此所求方程为y"-y'-2y=e x-2xe x.所以应选(A).8.设y1(x),y2(x)为二阶常系数齐次线性方程y"+py'+qy=0的两个特解,则c1y1(x)+c2y2(x)(c1,c2为任意常数)是该方程通解的充分必要条件是(A) y1(x)y'2(x)-y2(x)y'1(x)=0. (B) y1(x)y'2(x)-y2(x)y'1(x)≠0.(C) y1(x)y'2(x)+y2(x)y'1(x)=0. (D) y1(x)y'2(x)+y2(x)y'1(x)≠0.(分数:1.00)A.B. √C.D.解析:[解析] 根据题设,y1(x)与y2(x)应线性无关,也就是说(常数).反之若这个比值为常数,即y1(x)=λy2(x),则y1(x)与y2(x)线性相关.由y1(x)=λy2(x)可得:y'1(x)=λy'2(x),所以y1(x)y'2(x)-y2(x),y'1(x)=0,因此应选(B).9.下列结论不正确的是(A) 若已知y'=P(x)+Q(x)y+R(x)y2的一个特解,则必定可将该方程化为伯努利方程.(B) 若微分方程P(x,y)dx+Q(x,y)dy=0有积分因子μ(x,y),则μ(x,y)必定满足(C) 是微分方程y'+y2=0的解,则y=Cy1也是该方程的解.(D) 方程y"-y'2+2y=0的任何积分曲线在下半平面内不能有拐点.(分数:1.00)A.B.C. √D.解析:[解析] 对于(A):设y*是微分方程y'=P(x)+Q(x)y+R(x)y2的一个特解.令y=z+y*,代入方程化简得z'=[Q(x)+2R(x)y*]z+R(x)z2,这正是伯努利方程,故(A)正确.对于(B):函数μ=μ(x,y)是微分方程Pdx+Qdy=0的积分因子的充分必要条件是即.故(B)正确.对于(C)不满足方程y'+y2=0,故(C)不正确.对于(D):用反证法.假设下半平面(y<0)的点(x0,y0)是积分曲线的拐点,则y"(x0)=0,于是与题设条件矛盾.故(D)正确.综上分析,应选(C).10.在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是(A) y'"+y"-4y'-4y=0. (B) y'"+y"+4y'+4y=0.(C) y'"-y"-4y'+4y=0. (D) y'"-y"+4y'-4y=0.(分数:1.00)A.B.C.D. √解析:[解析] 从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是:1方程是(λ-1)(λ+2i)(λ-2i)=(λ-1)(λ2+4)=λ3-λ2+4λ-4=0,因此所求的微分方程是y'"-y"+4y'-4y=0.选(D).11.具有特解y1=e-x,y2=2xe-x,y3=3e x的三阶常系数齐次线性微分方程是(A) y'"-y"-y'+y=0. (B) y'"+y"-y'-y=0.(C) y'"-6y"+11y'-6y=0. (D) y'"-2y"-y'+2y=0.(分数:1.00)A.B. √C.D.解析:[解析] 首先,由已知的三个特解可知特征方程的三个根为r1=r2=-1,r3=1,从而特征方程为(r+1)2(r-1)=0,即r3+r2-r-1=0,由此,微分方程为y'"+y"-y'-y=0.应选(B).二、填空题(总题数:22,分数:22.00)12.______.(分数:1.00)填空项1:__________________ (正确答案:解析:[解析] 原方程可化为,这是一阶线性微分方程,所以其通解为13.______.(分数:1.00)填空项1:__________________ (正确答案:y(x-1)=Cx)解析:[解析]y(x-1)=Cx.14.______.(分数:1.00)填空项1:__________________ (正确答案:解析:[解析] 此微分方程既不是齐次微分方程也不是可分离变量的微分方程.若以y为未知函数也不是一阶线性微分方程.但注意到其特点,把它改写成以x为未知函数的微分方程,即这是以x为未知函数的一阶线性微分方程,由通解公式得:15.微分方程2x3y'=y(2x2-y2)的通解为______.(分数:1.00)填空项1:__________________ 是不为零的任意常数))解析:[解析] 原方程可改写为,从而是齐次微分方程,令得方程(*)是变量可分离的,其通解为(C是不为零的任意常数).16.微分方程x3yy'=1-xyy'+y2的通解为______.(分数:1.00)填空项1:__________________解析:[解析] 原方程经整理后化成可分离变量的方程两边积分得17.微分方程3e x tanydx+(1-e x)sec2ydy=0的通解是______.(分数:1.00)填空项1:__________________ (正确答案:tany=C(e x-1)3)解析:[解析] 在原方程两边同乘以,经分离变量可化为积分得 ln|tany|=3ln|e x-1|+ln|C|,所以方程有通解为tany=C(e x-1)3.18.微分方程(2y-x)dy=ydx的通解是 1.(分数:1.00)填空项1:__________________ (正确答案:y2-xy=C)解析:[解析] 题设方程可变形为2ydy-(xdy+ydx)=0即d(y2-xy)=0,故通解为y2-xy=C.19.y(0)=1的特解为 1.(分数:1.00)填空项1:__________________ (正确答案:[*])解析:[解析] 方程是齐次微分方程,令,则原方程变为,由此可得方程的通解为,由y(0)=1可得C=1.20.______.(分数:1.00)填空项1:__________________解析:[解析] 因为,令,则原方程可化为这是一个一阶线性微分方程,解得所以原微分方稗的通解为21.______.(分数:1.00)填空项1:__________________ (正确答案:siny=Ce-x+x-1.)解析:[解析] 因为y'cosy=(siny)',令u=siny,则原微分方程化为u'+u=x.这是关于未知函数u(x)的一个一阶线性非齐次微分方程,其通解为所以原微分方程的通解为siny=Ce-x+x-1.22.设函数y1(x),y2(x),y3(x)是二阶线性微分方程y"+a(x)y'+b(x)y=f(x)该微分方程的通解为______.(分数:1.00)填空项1:__________________ (正确答案:y=y1(x)+C1[y2(x)-y1(x)]+C2[y3(x)-y1(x)])解析:[解析] 根据线性微分方程解的叠加原理及题中条件知函数y2(x)-y1(x)和y3(x)-y1(x)都是原方程所,所以函数y2(x)-y1(x)和y3(x)-y1(x)线性无关.根据线性微分方程解的结构知原方程的通解为y=y1(x)+C1[y2(x)-y1(x)]+C2[y3(x)-y1(x)].23.已知(x-1)y"-xy'+y=0的一个解是y1=x,又知y=e x-(x2+x+1),y*=-x2-1是(x-1)y"-xy'+y=(x-1)2的两个解,则此方程的通解是y=______.(分数:1.00)填空项1:__________________ (正确答案:y=C1x+C2e x-x2-1)解析:[解析] 由非齐次方程(x-1)y"-xy'+y=(x-1)2①的两个特解与y*可得它的相应的齐次方程(x-1)y"-xy'+y=0②的另一特解.事实上 y2=(e x-x)+x=e x也是②的一个解,又e x与x线性无关,因此非齐次方程①的通解为y=C1x+C2e x-x2-1.24.已知y1=3,y2=3+x2,y3=3+x2+e x都是微分方程(x2-2x)y"-(x2-2)y'+(2x-2)y=6x-6的解,则此方程的通解为______.(分数:1.00)填空项1:__________________ (正确答案:y=C1(y2-y1)+C2(y3-y2)+y1=C1x2+C2e x+3)解析:[解析] 根据解的结构定理,方程的通解为y=C1(y2-y1)+C2(y3-y2)+y1=C1x2+C2e x+3.25.设二阶线性微分方程y"+p(z)y'+q(x)y=f(x)有三个特解y1=e x,y3=e x+e-x,则该方程为______.(分数:1.00)填空项1:__________________解析:[解析] 因为y2-y1,y3-y1是对应的齐次方程的解,代入齐次方程可求得,q(x)=,再将y1代入原方程可得f(x)=e x..26.______.(分数:1.00)填空项1:__________________ (正确答案:y"-4y'+7y=0)解析:[解析] 由给定的两个线性无关的特解可知:该二阶常系数线性齐次方程对应的特征方程的特征根为.由根与系数的关系知:相应的特征方程为λ2-4λ+7=0.因此该二阶常系数线性齐次方程为:y"-4y'+7y=0.27.以y=(C1+C2x)e-x+x2e-x(其中C1,C2为任意常数)为通解的微分方程为______.(分数:1.00)填空项1:__________________ (正确答案:y"+2y'+y=2e-x)解析:[解析] 设所求微分方程为y"+py'+qy=f(x),其对应的齐次微分方程的特征方程的根为r1=r2=-1,因而特征方程为(r+1)2=0,即r2+2r+1=0,其对应的齐次微分方程为y"+2y'+y=0.非齐次微分方程对应的特解为y*=x2e-x,代入微分方程即得=2e-x.故所求微分方程为y"+2y'+y=2e-x.28.以y=C1e-x+C2e2x+sinx为通解的二阶常系数非齐次微分方程为______.(分数:1.00)填空项1:__________________ (正确答案:y"-y'-2y=-3sinx-cosx)解析:[解析] 由所给通解知二阶常系数线性微分方程的二特征根分别为λ1=-1与λ2=2,从而特征方程为(λ+1)(λ+2)=0,即λ2-λ-2=0,又方程的非齐次项f(x)=(sinx)"-(sinx)'-2sinx=-sinx-cosx-2sinx=-3sinx-cosx.故以y=C1e-x+C2e2x+sinx为通解的二阶常系数非齐次微分方程为y"-y'-2y=-3sinx-cosx.29.微分方程y"+2y'=12x2-10的通解是______.(分数:1.00)填空项1:__________________ (正确答案:y=C1+C2e-2x+2x3-3x2-2x)解析:[解析] 方程对应的齐次方程的特征方程为λ2+2λ=0,所以特征根为λ=-2,λ=0.从而对应的齐次方程有二线性无关特解y*1=1与y*2=e-2x.设原方程的一个特解为y*=x(ax2+6x+c),代入原方程得6ax+2b+2(3ax2+2bx+c)=12x2-10,不难求得:a=2,b=-3,c=-2.故非齐次方程有一个特解y*=2x3-3x2-2x.因此原方程的通解为:y=C1+C2e-2x+2x3-3x2-2x.30.微分方程y"+4y=cos2x的通解为y=______.(分数:1.00)填空项1:__________________解析:[解析] 方程对应的齐次方程的特征方程为λ2+4=0,它的特征根为λ1,2=±2i.因此对应齐次方程二线性无关的特解为.设原非齐次方程的一个特解为y*=x(Acos2x+Bsin2x),代入原方程得-4Asin2x+4Bcos2x=cos2x.所以A=0,.因此原方程的通解为.31.微分方程y"-3y'+ay=e-x有一特解为Axe-x,则a=______.(分数:1.00)填空项1:__________________ (正确答案:-4)解析:[解析] 将y=Axe-x代入方程y"-3y'+ay=e-x得A(a+4)xe-x-5Ae-x=e-x.所以a=-4.32.微分方程(2xsiny+3x2y)dx+(x3+x2cosy+y2)dy=0的通解是______.(分数:1.00)填空项1:__________________解析:[解析] 令P(x,y)=2xsiny+3x2y,Q(x,y)=x3+x2cosy+y2,则它们在整个平面上都有一阶连续偏导数,且,故方程是全微分方程,它的通解为33.已知,及相应的齐次方程,分别有特解则方程满足y(0)=1的特解是y=______.(分数:1.00)填空项1:__________________解析:[解析] 由一阶线性方程通解的结构得该一阶线性非齐次方程的通解为由y(0)=1C=-1.因此特解为三、解答题(总题数:29,分数:145.00)34.求微分方程xy'=y(1+lny-lnx)的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(方程可变形为,是一阶齐次微分方程.令,则原方程变为(*)(*)是变量可分离的微分方程,分离变量得.上式两端求不定积分得u=e Cx.从而原方程的通解为y=xe Cx.)解析:35.求微分方程(1+y2)dx+(x-arctany)dy=0的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(原微分方程可变形为,这是一阶线性微分方程,其通解为)解析:36.(分数:5.00)__________________________________________________________________________________________ 正确答案:(原微分方程两边同除以x,得当x>0时,这是齐次微分方程.作变换,有,即.解之,得arcsinu=lnCx.再以代回,便得原方程的通解:,即y=xsin(lncx).)解析:37.(分数:5.00)__________________________________________________________________________________________ 正确答案:(方程变形为,是齐次微分方程.令,则,两边积分得所以有即代回即得原方程通解为)解析:38.设求微分方程y(0)=0的连续解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(当0≤x≤1时,微分方程为,这是一阶线性微分方程,通解为y=C1e-x+2;当x>1时,微分方程为,这是变量可分离的微分方程,通解为y=C2e-x.根据y(x)的连续性知:,所以C2=C1+2e.故原方程的通解为由于y(0)=0,所以C=-2,故满足条件的特解为)解析:39.求微分方程y"-2y'-3y=3x+1+e-x+sin2x的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(将方程右端作变形,得(1)特征方程λ2-2λ-3=0,特征根λ1=-1,λ2=3,则相应齐次微分方程通解(2)求原方程一个特解y*.因为有特解=ax+b;y"-2y'-3y=e-x有特解有特解=dcos2x+esin2x,所以其中a,b,c,d,e为待定系数.将y*代入原方程得待定系数于是(3)原方程通解为)解析:40.求微分方程y"+4y'+4y=cos2x满足条件y(0)=y'(0)=0的特解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(先求方程对应的齐次方程的通解.特征方程为λ2+4λ+4=0,特征根为λ1=λ2=-2,所以对应的齐次方程的通解为Y=(C1+C2x)e-2x.再求原方程的一个特解.设y*=acos2x+bsin2x是原方程的一个特解,代入原方程得:a=0,,因此是原方程的一个特解.从而原方程的通解为.又因为y(0)=y'(0)=0,代入通解可得C1=0,.所以满足初始条件的特解为)解析:41.求微分方程y"+4y=3|sinx|在[-π,π](分数:5.00)__________________________________________________________________________________________ 正确答案:(当-π≤x≤0时,方程为y"+4y=-3sinx,可求得该方程的通解为y=C1cos2x+C2sin2x-sinx.当0<x≤1T时,方程为y"+4y=3sinx,可求得此方程的通解为y=C3cos2x+C4sin2x+sinx.由于方程的解y(x)及其导函数y'(x)都在分段点x=0处连续,所以从而C1=C3,C2=C4+1.故原方程通解为又因为因此所求特解为)解析:42.求常数a,b,c,d的值,使得微分方程y"+ay'+by=(cx+d)e2x有一个解是y=e x+x2e2x.(分数:5.00)__________________________________________________________________________________________ 正确答案:(将y=e x+x2e2x代入原方程得(1+a+b)e x+[2+(8+2a)x+(4+2a+b)x2]e2x≡(cx+d)e2x,从而)解析:43.求微分方程3y'-ysecx=y4tanx的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是伯努利方程.令z=y-3,于是原方程化为一阶线性方程上述方程的通解为因此原方程的通解为)解析:44.已知方程(6y+x2y2)dx+(8x+x3y)dy=0的两边乘以y3f(x)后便成为全微分方程,试求出可导函数f(x),并解此微分方程.(分数:5.00)__________________________________________________________________________________________正确答案:(设P(x,y)=(6y4+x2y5)f(x),Q(x,y)=(8xy3+x3y4)f(x),由得(8y3+3x3y4)f(x)+(8xy3+x3y4)f'(x)=(24y2+5x2y4)f(x).消去y3得 16f(x)-8xf'(x)+y[2x2f(x)-x3f'(x)]=0,有且全微分方程为(6y4+x2y5)C1x2dx+(8xy2+x3y4)C1x2dy=0,故微分方程的通解为 10x3y4+x5y5=C.)解析:45.(分数:5.00)__________________________________________________________________________________________正确答案:(这是欧拉方程,令x=±e t即t=ln|x|,方程变成(*)特征方程λ2+2λ+1=0,特征根λ1=λ2=-1.(*)的通解为y=e-t(C1t+C2).因此,原方程的通解为,C1,C2常数.)解析:46.设f(x)在(-∞,+∞)上满足对任意x,y恒有f(x+y)=e2y f(x)+f(y)cosx,又f(x)在x=0处可导,且f'(0)=1,求f(x).(分数:5.00)__________________________________________________________________________________________正确答案:(由于对任意x∈(-∞,+∞),由于f(x+y)=e2y f(x)+f(y)cosx,所以f(0)=0,因此=2f(x)+f'(0)cosx=2f(x)+cosx.从而得到f(x)满足的微分方程f'(x)-2f(x)=cosx.这是一阶线性微分方程,其通解为记所以从而.由f(0)=0,可得,所以)解析:47.设函数f(x)在[0,+∞)上可导,且f(1)=3,若f(x)的反函数g(x)满足求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是含变上限定积分的方程,两端对x求导得因为f(x)与g(x)互为反函数,所以gf(u)]=u,从而上式变为令x=e t-1,且f'(t)=e t-1,积分得f(t)=e t-1+C.由f(1)=3可得C=2,故f(x)=e x-1+2.)解析:48.设f(x)f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是含变上限积分的方程,且被积函数中含有参变量,所以应首先去掉被积函数中的参变量,化为被积函数中不含参变量的情况.令x-t=u,原方程变为,即.将以上方程求导两次可转化为微分方程为f"(x)=2+f(x)且f(1)=0,f'(1)=0.方程f"(x)=2+f(x)的通解为f(x)=C1e-x+C2e x-2.由f(1)=0,f'(1)=0可得:C1=e,C2=e-1.因此f(x)=e1-x+e x-1-2.) 解析:49.若y(x)是[0,1]上的连续可微函数,且满足条件求y(x)的表达式.(分数:5.00)__________________________________________________________________________________________ 正确答案:(原方程两边关于x求导两次,得到分离变量后再积分,得.因为函数y(x)在点x=0处右连续,则所以方程的通解为将初始条件y(1)=2代入,得C=2e,故所求函数为)解析:50.设函数f(x)在(-∞,+∞)内有连续导数,且满足求f(t).(分数:5.00)__________________________________________________________________________________________ 正确答案:(令x=rcosθ,r=sinθ,由可得所以f'(t)=4πt3f(t)+4t3,且f(0)=0,即,且f(0)=0.因此,将,f(0)=0代入可得C=0)解析:51.设函数u的全微分du=[e x+f'(x)]ydx+f'(x)dy,其中f在(-∞,+∞)内具有二阶连续的导数,且f(0)=4,f'(0)=3,求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(,且由于f有二阶连续的导数,则u,即f"(x)-f'(x)=e x.方程的通解为 f(x)=C1+C2e x+xe x,由条件f(0)=4,f'(0)=3求得C1=2,C2=2.因而 f(x)=2+(2+x)e x.)解析:52.设f(x)在区间[0,+∞)上连续,且,求证:微分方程x→+∞时都趋于1.(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是一阶非齐次线性微分方程,其通解为因为,所以存在X>0,当x>X时,.因此当x>X时,.于是)解析:53.设f(x)二阶连续可导,且f(0)=0,f'(0)=1,求u(x,y),使du=y[f(x)+3e2x]dx+f'(x)dy.(分数:5.00)__________________________________________________________________________________________正确答案:(,由Pdx+Qdy是u(x,y)的全微分知:,从而f"(x)-f(x)=3e2x,解此微分方程得f(x)=-e x+e2x.于是)解析:54.设当x>0时,f(x)存在一阶连续导数,且f'+(0)存在,并设对于半空间x>0内的任意光滑封闭曲面∑,恒有求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(根据高斯公式可得即 f(x)+xf'(x)-y+f(x)+2yz+y-2yz-x2=0,解得:.由于f'+(0)存在,所以C=0.)解析:55.作变换t=tanx y关于t的微分方程,并求原微分方程的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(由于,,解之得:y=(C1+C2t)e-t+t-2.故原方程的通解为y=(C1+C2tanx)e-tanx+tanx-2.)解析:56.若一曲线上任一点M(x,y)处的切线斜率为,且过点,求此曲线方程.又当x取何值时,.(分数:5.00)__________________________________________________________________________________________ 正确答案:(所求曲线方程为如下齐次微分方程定解问题的特解令,方程可化为,其通解为从而原方程的通解为,由得,故所求曲线方程为欲使即,解得y=x,代入曲线方程程得,即当时,切终斜率为1/4.)解析:57.在xOy平面的第一象限求一曲线,使由其上任一点P处的切线,x轴与线段OP所同成的三角形的面积为常数k,且曲线通过点(1,1).(分数:5.00)__________________________________________________________________________________________ 正确答案:(设P点坐标为(x,y),曲线方程为y=y(x),该曲线在点P的切线方程为Y-y=y'(X-x),它与x轴交点Q坐标为,从而所围成三角形的面积为这是以x为未知函数,并以y.由初始条件y(1)=1,可确定C=1-k,于是所求曲线为xy=(1-k)y2+k.)解析:58.对任意实数x>0,设曲线y=f(x)上点(x,f(x))处的切线在y[0,x2]上的平均值,求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(25,曲线y=f(x)上点(x,f(x))处的切线方程为Y-f(x)=f'(x)(X-x),它在y轴上的截距等于f(x)-f'(x)x.由题设可得:,即.上式两端求导数可得-x3f"(x)一2x2J。
(完整版)高等数学-微分方程证明题

17、验证 是初值问题 的解。
18、验证 是方程 的通解,并确定积分常数 ,使积分曲线经过点 。
19、验证 是方程 的通解。
20、设 试证明 是初始值问题
的解。
21、验证:当 时,曲线族 为方程 在 上的解;而当 时,该曲线族是上述方程在 上的解。
22、证明:若 和 是全微分方程 的两个解,则它们只差一个常数。
(2)(6分)
由(1),(2)消去 得
故知已知函数是微分方程的解,且是通解。(10分)
1Байду номын сангаас、
(2分)
(6分)
将 代入原方程,得
故 为初始问题的解。(10分)
11、
对已知隐函数方程两边关于 求导得
即 (8分)
此外, 含有任意常数 ,故它是方程的通解。(10分)
12、
(4分)
(6分)
即 (8分)
此外, 含有一任意常数 ,所以它是方程的通解。
故 是方程的通解。(10分)
6、
对已知隐函数两边微分得
(5分)
即 (8分)
故已知隐函数为方程的通解。(10分)
7、
(3分)
(7分)
即
所以 是方程的通解。(10分)
8、
因
(4分)
(8分)
故 是初值问题的解。(10分)
9、
对已知隐函数方程两边关于 求导得:
(2分)
上式再对 求导得
(1)(4分)
(1)式关于x求导得
23、设 是方程 的两个互异的解,求证:对于该方程中的任何一个解 ,恒等式 永远成立,其中 为常数。
24、证明: 为方程 的解的充分必要条件是, 可微且满足方程 。
(完整word)高等数学:常微分方程的基础知识和典型例题

常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 微分方程§12-1 微分方程的基本概念一、判断题1.y=ce x 2(c 的任意常数)是y '=2x 的特解。
( )2.y=(y '')3是二阶微分方程。
( )3.微分方程的通解包含了所有特解。
( )4.若微分方程的解中含有任意常数,则这个解称为通解。
( )5.微分方程的通解中任意常数的个数等于微分方程的阶数。
( )二、填空题1. 微分方程.(7x-6y)dx+dy=0的阶数是 。
2. 函数y=3sinx-4cosx 微分方程的解。
3. 积分曲线y=(c 1+c 2x)e x 2中满足yx=0=0, y 'x=0=1的曲线是 。
三、选择题1.下列方程中 是常微分方程(A )、x 2+y 2=a 2 (B)、 y+0)(arctan =x e dx d (C)、22x a ∂∂+22ya ∂∂=0 (D )、y ''=x 2+y 2 2.下列方程中 是二阶微分方程(A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx3.微分方程22dxy d +w 2y=0的通解是 其中c.c 1.c 2均为任意常数 (A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx4. C 是任意常数,则微分方程y '=323y 的一个特解是(A )y-=(x+2)3 (B)y=x 3+1 (C) y=(x+c)3 (D)y=c(x+1)3四、试求以下述函数为通解的微分方程。
1.22C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数)五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。
用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。
12-2可分离变量的微分方程一、求下列微分方程的通解1.sec2.tacydx+sec2ytanxdy=02.(x+xy2)dx-(x2y+y)dy=03.(e x+y-e x)dx+(e x+y-e y)dy=04.y'=cos(x-y).(提示令.x-y=z)二、求下列微分方程满足所给初始条件的特解π1.cosydx+(1+e-x)sinydy=0. y x=0=42.1.1sec 232-==+=πx y xdx dy y x三 、设f(x)=x+⎰x0f(u)du,f(x)是可微函数,求f(x)四、求一曲线的方程,曲线通过点(0.1),且曲线上任一点处的切线垂直于此点与原点的连线。
五、船从初速v 0=6米/秒而开始运动,5秒后速度减至一半。
已知阻力与速度成正比,试求船速随时间变化的规律。
12-3 齐次方程一、求下列齐次方程的通解1 y x '-xsin 0=x y2 (x+ycos )x y dx-xcos xy dy=0二 求下列齐次方程满足所给初始条件的特解1.xy ax dy =x 2+y 2 y x=e =2e 2.x 2dy+(xy-y 2)dx=0y x=1=1三、求方程:(x+y+1)dx=(x-y+1)dy 的通解四、设有连结点O(0,0)和A (1,1)一段向上凸的曲线孤A O ⋂对于A O ⋂上任一点P (x ,y ),曲线孤与P O ⋂直线段OP -所围图形的面积为x 2,求曲线孤A O ⋂的方程。
12.4 一阶线性微分方程一、求下列微分方程的通解1.x y '+y=xe x2.y '+ytanx=sin2x3.y '+x x y x sin 1= 4.y e y x y dx dy 3+=二、求下列微分方程满足初始条件的特解1.y 'cosy+siny =x y40π==x 2.(2x+1)e y y '2e y =4 y 00==x三、已知f(π),曲线积分b a ⎰[]dy x f dx xy x f x )()(sin +-与路径无关,求函数f(x).四、质量为M 0克的雨滴在下落过程中,由于不断蒸发,使雨滴的质量以每秒m 克的速率减少,且所受空气阻力和下落速度成正比,若开始下落时雨滴速度为零,试求雨滴下落的速度与时间的关系。
五、 求下列伯努利方程的通解1.y ′+x y x=12y 5 2. xy ′+y-y 2lnx=012-4全微分方程一、求下列方程通解1.[cos(x+y2)+3y]dx+[2ycos(x+y2)+3x]dy=02.(xcosy+cosx)y-ysinx+siny=03.e y dx+(xe y-2y)dy=0二、利用观察法求出下列方程的积分因子,并求其通解1 ydx-xdy+y2xdx=02 y(2xy+e x)dx-e x dy=0三、[xy(x+y)-f(x)y]dx+[f(x)+x2y]dy=0为全微分方程,其中函数f(x)连续可微,f(0)=0,试求函数f(x),并求该方程的通解。
一、求下列各微分方程的通解1.y ''=xsinx 2. y ''-y '=x3.y y ''+(y ')2=y '4. y ''(1+e x )+y '=0二、求下列各微分方程满足所给初始条件的特解1.2y ''=sin2y y20π==x y '10==x2. x y ''-y 'ln y '+y 'lnx=0 y21==x y '21e x ==三、函数f(x)在x>0内二阶导函数连续且f(1)=2,以及f '(x)-0)()(21=-⎰dt t t f x x f x ,求f(x).四、一物体质量为m,以初速度V o 从一斜面上滑下,若斜面的倾角为α,摩擦系数为u,试求物体在斜面上滑动的距离与时间的函数关系。
一、选择题1.下列方程中 为线性微分方程(A )(y ')+x y '=x (B)y x y y =-'2(C) x e y xy x y =+'-''222 (D)y xy y y cos 3=-'-'' 2.已知函数y 1=221x x e +,y 1=221x x e -,y 3=e (x-2)1x 则(A )仅y 1与y 2线性相关 (B )仅y 2与y 3线性相关(C )仅y 1与y 3线性相关 (D )它们两两线性相关3.若y 1和y 2是二阶齐次线性方程,y ''+p(x)y '+4(x)y=0两个特解,c 1c 2为任意常数,则y=c 1y 1+c 2y 2(A)一定是该方程的通解 (B )是该方程的特解(C )是该方程的解 (D )不一定是方程的解4.下列函数中哪组是线性无关的(A )lnx, lnx 2 (B)1, lnx (C)x, ln2x (D)ln x , lnx 2二、证明:下列函数是微分方程的通解1y=c 1x 2+c 2x 2lnx(c 1 c 2是任意常数)是方程x 2y ''-3x y '+4y=0的通解2y=c 1e -x +c 2e x e x +2(c 1c 2是任意常数)是方程2x e y y 2='+'''的通解三、设y 1(x)y 2(x)是某个二阶线齐次线性微分方程的三个解,且y 1(x)y 2(x).y 3(x).线性无关, 证明:微分方程的通解为:)()1()()(3212211x y c c x y c x y c y --++=四、试求以y=1(1c x e x +c 2e -x )+2x e (c 1,c 2是任意常数)为通解的二阶线性微分方程。
12-9 二阶常系数齐次线性微分方程一、选择题1以y 1=cosx,y 2=sinx 为特解的方程是(A )0=-''y y (B)0=+''y y (C)0='+''y y (D)0='-''y y2.微分方程20=-'+''y y y 的通解是(A )x x e c e c y 221--=(B )221xx e c e c y -=-(C )221xx e c e c y --= (D)x x e c e c y 221+=-3.常微分方程0)(2121=+'++''y y y λλλλ,(其中21,λλ是不等的系数),在初始条件y 1x=0=00='=x y 特解是(A )y=0 (B)y=x x e c ec 2121λλ+ (C)221x y λλ= (D )221)(x y λλ+= 4.x e y 2=是微分方程06=+'+''y y p y 的一个特解,则此方程的通解是(A )x x e c ec y 3221-+= (B )x e xc c y 221)(+= (C )x x e c ec y 3221+= (D ))3cos 3sin (212x c x c e y x += 5.x x e c e c y -+=21是微分方程 的通解(A )0=+''y y (B )0=-''y y (C )0='+''y y (D )0='-''y y 二、求下列微分方程的通解1.05='-''y y 2.044=+'-''y y y3.04=+'+''y y y 4.065=+'-''y y y5.01036=+'+''-'''y y y y 5. 02)4(=''+'''-y y y三、求下列微分方程满足初始条件的特解1.0102=+'+''y y y 10==x y201==x y2.032=-+x dt dx dt x d 00==t x 10='=t x四、一质量为m 的质点由静止(t=0,v=0)开始滑入液体,下滑时液体阻力的大小与下沉速度的大小成正比(比例系数为k ),求此质点的运动规律。