高等数学微分方程试题及答案.docx
微分方程单元测试题(含答案)

微分方程单元测试题(含答案)题目一已知微分方程 $\frac{dy}{dx} = 2x$,求出这个微分方程的通解。
答案:根据微分方程的定义,我们可以利用变量分离法来求解这个微分方程。
首先我们将 $\frac{dy}{dx} = 2x$ 两边同时乘以 $dx$ 和$\frac{1}{2x}$,得到 $\frac{dy}{2x} = dx$。
然后我们进行积分,得到 $\int \frac{dy}{2x} = \int dx$。
将积分限写入,得到 $\int\frac{dy}{2x} = \int_{y_0}^y dx$(这里 $y$ 是变量 $x$ 的函数)。
对于左边的积分,我们可以用换元法来进行计算,令 $u = 2x$,则$du = 2dx$。
将其代入积分式中,得到 $\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| + C_1 = \ln|u|^{1/2} + C_1$ (其中 $C_1$ 是常数)。
对于右边的积分,我们可以直接计算得到 $x + C_2$(其中$C_2$ 是常数)。
将左右两边的积分结果合并,得到 $\ln|u|^{1/2} + C_1 = x + C_2$,进一步化简得到 $\ln|2x|^{1/2} = x + C_3$,其中$C_3 = C_2 - C_1$ 是常数。
对等式两边同时取指数函数,得到$|2x|^{1/2} = e^{x + C_3}$,再进一步化简得到 $|2x|^{1/2} = e^{x}e^{C_3}$。
最后取绝对值,得到 $2x = \pm e^{x} e^{C_3}$,进一步化简得到 $x = \pm \frac{e^{x} e^{C_3}}{2}$。
因此,微分方程的通解为 $x = \pm \frac{e^{x} e^{C_3}}{2}$,其中 $C_3$ 是常数。
题目二已知微分方程 $\frac{dy}{dx} + y = 3x$,求出这个微分方程的特解。
微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。
2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。
3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。
4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。
答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。
由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。
2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。
对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。
因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。
由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。
3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。
4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。
对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。
因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。
微分方程习题及答案

微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解. (1)yx y y x C y xy x -=¢-=+-2)2(,22(2)ò¢=¢¢=+y 0222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C ,,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x ,处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -=¢-;(2)0tan sec tan sec 22=×+×xdy y ydx x ;(3)23xy xy dxdy =-;(4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解(1)0,02==¢=-x y x y ey ;(2)21,12==+¢=x y y y y x3. 求下列微分方程的通解求下列微分方程的通解(1))1(ln+=¢x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x yxydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=¢;(2))ln (ln y x y y y x +=+¢(3)11+-=¢yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?B A P(x ,y ) §3 一阶线性方程与贝努利方程1.求下列微分方程的通解.求下列微分方程的通解(1)2x xy y =-¢; (2)0cos 2)1(2=-+¢-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -=¢; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解.求下列微分方程的特解(1)0 ,sec tan 0==-¢=x y x x y y ; (2)1|,sin 0==+¢=x y x xx yy3.一.一曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程. 4.设可导函数)(x j 满足方程满足方程ò+=+ x0 1sin )(2cos )(x tdt t x x j j ,求)(x j . 5.设有一个由电阻W =10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系. 6.求下列贝努利方程的通解.求下列贝努利方程的通解(1) 62y x x y y =+¢(2)x y x y y tan cos 4+=¢(3)0ln 2=-+y x x dy dxy (4)2121xy x xy y +-=¢§4 可降阶的高阶方程 1.求下列方程通解。
微分方程练习题基础篇答案.docx

常微分方程基础练习题答案求下列方程的通解dydyx 2Ce 2, C 为任意常数1.xy 分离变量xdx , ydxydy x dx , y Ce1 x22.xydx 1 x 2 dy 0 分离变量1 , C 任意常数yx 2dy 1 3.xy y ln y 0 分离变量dx , y Ce xy ln yx4.( xy 22y y)dy 0 分离变量 ydyxdx2)(12) Cx)dx ( xy 21 x2,(1yx15.dy(2 x y 5)2令 u2x y 5 则du2 dy , du2 dx , 1 arctan ux C 1 dxdxdx u 2 2 2dy x y dy 1 yy , dy u xdu,代入得 2x ,令 u 1 u du 1dx6.x ,原方程变为dxdxy1 y x dxdx 1 u 2xx2arctan u uln xC , uy x回代得通解2arctany xln xyxCdyy y 2y dudx 7.xy y x2y 20 dxxxx1 u 2x1 ,令 u,代入得arctanu ln x C, uy 回代得通解 arctan yln x y Cx xx8.xdyy lny,方程变形为dyyln y,令 u y du dx eCx 1,yxeCx 1,, udx xdx x x x u(ln u 1)x9. dy2xdx2 xdxdx C) Cex22xy 4x ,一阶线性公式法 y e( 4 xe2dx 10.dyy2x 21 ( 2x 2e1dx C) x 3Cxdxdxdx x11.( x 21)y2xy 4x 2,方程变形为 y2xy 4x 21 (43C)2x 2一阶线性公式法 y1 x2 xx 11312.( y 2 6x)dy2y0,方程变形为dx3 x1 y 一阶线性公式法 y 1 y2 Cy 3dxdy y2213. y 3xy xy2,方程变形为 1 dy3x1x 伯努利方程,令 z y 1,dzy 2dy代入方程得y 2 dxydxdxdz 3xz x 一阶线性公式法再将 z 回代得 13 x 2Ce2dxy1314.dy1 y1(1 2x) y 4 ,方程变形为 1 dy1 1 1 (1 2x) 伯努利方程,令 dx 33 y4 dx3 y 33zy 3, dz3y 4dy代入方程得 dzz 2x 1,一阶线性公式法再将z 回代得dx dxdx1 Ce x2x 1y 315.y5y 6 y 0 ,特征方程为 r 2 5r 6 0 ,特征根为 r 12, r 23 ,通解y C 1e 2x C 2e 3x16.16y 24y 9y0,特征方程为 16r224r 9 0 ,特征根为 r 1,23 ,通解43 xy(C 1 C 2 x)e 417.yy0 ,特征方程为 r 2 r 0 ,特征根为 r 1 0, r 2 1 ,通解 y C 1 C 2e x18.y4y5y 0 ,特征方程为 r 2 4r 5 0 ,特征根为 r 1 2 i, r 2 2 i ,通解y e 2 x (C 1 cos x C 2 sin x)19.( x 2 y)dx xdy0 ,全微分方程 x 2 dx ( ydxxdy)0 ,d x 3d( xy) 0 ,通解x 3xy C3320.( x 3 y)dx ( xy)dy 0 ,全 微 分 方程x 3dx ( ydx xdy ) ydy,d x 4d( xy)d y 20 ,通解 x 4xyy 2C424221.( x 2 y 2 )dx (2 xy y)dy 0 全微分方程 x 2dx( y 2 dx 2xydy ) ydy 0,d x3d ( xy 2) dy 20 ,通解x 3xy 2y 2 C3 2 3222.(x cosy cosx) y ysin x sin y 0 ,全微分方程( xcos ydy sin ydx) (cos xdyysin xdx)0, d( x sin y) d( y cosx) 0 ,通解xsin y y cosx C23.(3 x 2 y)dx (2 x 2 y x)dyC ,3x 2 dx 2x 2 ydyydx xdy 0 ,积分因子1x 2 ,方程变为 3dx 2ydyydx xdy 0 , d3x dy 2dy0 ,通解 3x y 2y Cx 2xx24.xdxydy( x2y 2)dx,积分因子1,方程变为xdx ydydx 0 ,2y 2x 2y 2xd[ 1ln( x2y 2)]dx 0 通解1ln( x 2 y 2 ) x C2225.( x 2 y 2y)dx xdy 0 , ( x 2 y 2 )dx ydx xdy 0 ,积分因子1,方程变为x 2y 2 dxydxxdy0 , dxxx Cx 2y 2d arctan0,通解 x arctanyy26. y e3xsin x ,可降阶 y( n)f (x) 型,逐次积分得通解 y1e 3 x sin x C 1x C 2927. y1 y2 , 可 降 阶 令 p( x)y , 原 方 程 化 为 p1 p2 可分离变量型,得yp tan( xC 1 ) ,积分得通解 y ln cos(x C 1 ) C 228.yyx ,可降阶 yf (x, y ) 型,令 p(x) y ,原方程化为 ppx ,一阶线性非齐次公式法得 y pC 1e x x 1 ,积分得通解 y C 1e x1 x2 x C 2229. y y 3y ,可降阶 yf ( y, y ) 型,令 p( y) y , y pdp,原方程化为 pdpp 3pdydy即 p[dp(1 p 2)]0 , p0 是 方 程 的 一 个 解 , 由dp(1 p 2 ) 0 得dydyarctan p y C 1 即 yp tan( y C 1) ,通解为 y arcsin e x C 2C 1xf (x) e xP m ( x) 型,1是特征方程230.y 2 y y 4xe ,二阶常系数非齐次2 10的重根,对应齐次方程的通解为 Y(C 1C 2 x)e x ,设特解为 y *x 2 (ax b)e x ,代入方程得 (6ax 2b)ex4xe x,得 a2, b 0 ,故原方程的特解为 y *2x 3e x ,原方程通33解为 y (C1C2 x)e x 2x3e x 331.y a y ex ,二阶常系数非齐次 f ( x)e m特征方程ra0 ,特征值为1,2ai2x P(x) 型,22r,对应齐次方程的通解为YC1 cosax C2 sin ax , 1 不是特征根,设原方程特解为y*Ae x Ae x a2 Ae x e x,得 A12则 y*e x2 ,原方程通解为,代入方程得1a 1 ay C1 cosax C2 sin axe x 1a232.y y x cosx ,对应齐次方程的通解为Y C1 cos x C2 sin x ,设y y x 的一个特解为y1Ax B 代入此方程得A1,B 0 ,故y1x ;设y y cosx 的一个特解为 y2Ex cos x Dx sin x 代入此方程得E0, D1,故y21xsin x ;原方程22通解为Y C cosx C sin x x1xsin x 12233.y 6 y9 y e x cos x ,特征方程r26r90 ,特征值为 r1,23,对应齐次方程的通解为Y C1e3x C2 xe3x,1i 不是特征根,原方程特解设为y*e x (a cos x b sin x)代入方程得a3, b4,则 y*e x (3cos x4sin x)25252525,原方程通解为Y C e3x C xe3x e x (3cosx 4sin x)12252534.已知y1e3 x xe2 x , y2e x xe2x , y3xe2 x是某二阶常系数非齐次线性方程的三个解,则该方程的通解y()答案: y C1e x C2 e3 x xe2 x,y1y3e 3x , y2y3e x是对应齐次方程两个线性无关的解35.函数 yC 1e x C 2 e 2x xe x 满足的一个微分方程是()( A) yy 2y 3xe x( B) y y 2 y 3e x(C ) yy 2 y 3xe x( D ) yy 2 y 3e x解析:特征根为 1 1,22,则特征方程为(1)( 2) 0 即22 0 ,故对应齐次方程为 y y 2 y0 ; y *xe x为原方程的一个特解,1,为单根,故原方程右端非齐次项应具有xf ( x) Ce 的形式。
高等数学题库常微分方程

高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。
2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。
3、通解为xce y =(c 为任意常数)的微分方程是___________。
4、满足条件()()=+?dx x f x f x2的微分方程是__________。
5、 y y x 4='得通解为__________。
6、1+=y dxdy的满足初始条件()10=y 的特解为__________。
7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。
8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。
二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。
高中数学微分方程练习题及参考答案2023

高中数学微分方程练习题及参考答案2023一、填空题1.微分方程 $y'=x^2$ 的通解为 $y=$_____________。
2.微分方程 $y'-2y=\cos x$ 的通解为 $y=$_____________。
3.微分方程 $y''-3y'+2y=0$ 的通解为 $y=$_____________。
4.微分方程 $y''+y=e^x$ 的通解为 $y=$_____________。
5.微分方程 $(x-1)y'-y=3$ 的通解为 $y=$_____________。
二、选择题1.微分方程 $y''-y'-12y=0$ 的解正确的选项是A. $y=c_1e^{4x}+c_2e^{-3x}$B. $y=c_1e^{3x}+c_2e^{-4x}$C. $y=c_1\sinh3x+c_2\cosh4x$D. $y=c_1\sinh4x+c_2\cosh3x$2.对于微分方程 $y''-2y'+y=x^3\mathrm{e}^{2x}$,以下选项正确的是A. 特解应为多项式 $Ax^3+Bx^2+Cx+D$B. 对于其特解应有 $A=0$C. 对于其特解应有 $B=0$D. 对于其特解应有 $B\neq0$3.微分方程 $y''-y'-2y=0$,其中 $y_1(x)=e^{2x}$,$y_2(x)=?$,正确的选项是A. $y_2(x)=e^{-x}$B. $y_2(x)=e^{x}$C. $y_2(x)=e^{-2x}$D. $y_2(x)=\mathrm{e}^{-2x}-4x\mathrm{e}^{-2x}$三、解答题1.求微分方程 $y'+\frac{1}{x}y=2\sin\ln x$ 的通解。
2.求微分方程 $y'-y=x\mathrm{e}^x$ 的通解。
(完整版)微分方程试题及部分应用题答案整理版

第十章微分方程习题一.填空题:(33)1-1-40、微分方程4233''4''')'(x y x y y 的阶数是 . 1-2-41、微分方程0'2'2xy yy xy 的阶数是 . 1-3-42、微分方程0d d d d 22sxs x s的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(的阶数是 .1-5-44、微分方程xyxy2d d 满足条件1|'0xy 的特解是 .1-6-45、微分方程0d d yxy的通解是 .1-7-46、方程y e y x'的通解是 . 1-8-47、方程y y y ln '的通解是 .1-9-48、方程04'4''y y y 的通解是 . 1-10-49、方程04'4''y y y 的通解是 . 1-11-50、方程013'4''yy y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y ''的通解为 . 1-14-53、微分方程x e y xsin ''2的通解为 .1-15-54、若0d ),(dx ),(yy x Q y x P 是全微分方程, 则Q P,应满足 .1-16-55、与积分方程xy x f yx x d ),(0等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22yxy xx y xy 化为齐次方程是 .1-18-57、通解为21221,(C C e C eC yxx 为任意常数)的微分方程为 .1-19-58、方程yx e y 2'满足条件0xy 的特解是 .1-19-59、方程0dy1dx2x xy 化为可分离变量方程是1-20-60、方程xy y 2'的通解是1-21-61、方程x yxyxy xyd d d d 22化为齐次方程是1-22-62、若t ycos 是微分方程09''yy 的解, 则.1-23-63、若ktCe Q 满足Qdt dQ03.0, 则k.1-24-64、y y 2'的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x 1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、圆222r yx 满足的微分方程是1-27-67、ax ae y满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q yx P x的通解是 .1-29-69、已知特征方程的两个根3,221r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y是微分方程y xy 2'的解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与之和.1-32-72、二阶常系数齐次线性微分方程0'''qypy y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22dyxy xdxy xy写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dxdy 的通解是 ( )A.2x yB.25x y C.2Cx yD.Cxy 2-2-57、微分方程0dy 1dx 2x xy 的通解是 ( ) A.21x eyB.21x CeyC.x C yarcsin D.21xC y 2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2x y xB. 0dy dx x yC.0dy)(1dx)1(xy y xy D.dydx)(22xy y x2-4-59、下列函数组中,线性无关的是 ( ) A.xxe e 32, B.x x 2sin ,2cos C. x x x sin cos ,2sin D.2ln ,ln xx 2-5-60、方程03'2''y y y 的通解是 ( )A.xxe C eC y 321 B. xxeC eC y 321 C.xx eC eC y 321 D.xxeC e C y3212-6-61、方程0''y y 的通解是 ( ) A.x C ysin B.x C ycos C.x C xycos sin D.xC xC ycos sin 212-7-62、下列方程中是可分离变量的方程是( )A.xyyx 33dxdy B.dy 2dx)3(2xy y exC.234dxdy xyyx D.yx xyy321dxdy 2-8-63、微分方程0cot 'x y y 的通解是 ( ) A.x C ycos B.x C ysin C.x C ytan D.xC ycsc2-9-64、已知微分方程0''pyy 的通解为)(212x C C e yx,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'yy 的通解是 ( )A.C x y2sin B.C eyx24 C.xCe y2 D.xCey 2-11-66、方程xy2dx dy的通解是 ( )A.C ex2B.Cxe2C.2CxeD.2)(C x e2-12-67、xe y ''的通解为y( )A.xe B.xe C.21C xC exD.21C x C ex2-13-68、微分方程xe21dxdy满足1xy 的特解为 ( )A.1221xeyB.3221x ey C.C ey x212 D.212121xey2-14-69、微分方程0ydy-dx 3x 的通解是 ( ) A.Cyx2422B.Cyx2422C.2422yxD.12422yx2-15-70、微分方程0ydy-dx 3x 的通解是 ( )A.222yxB.933yxC.133yxD.13333yx2-16-71、过点,0()2的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32xyB.52xy C.53xey D.5xCe y 2-17-72、齐次方程x yxy tandx dy化为可分离变量的方程, 应作变换 ( )A.2ux yB.22x u yC.ux yD.33xu y2-18-73、设方程)()('x Q y x P y 有两个不同的解21,y y ,若21y y 也是方程的解,则( ) A.B.0 C. 1 D.,为任意常数2-19-74、方程dx 2dx dy y x x 的通解是 ( ) A.x Cxy2B. x xC y2sin C.C xy 2cos D.Cxy 22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.xyxy 2'B .xxyy sin 'C .xyy' D.xyy 2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y xy' B.y xy'C.x yy' D.xy y'2-22-77、方程2)3(,0'y yy 的解是 ( )A.xey 32 B.xey 32 C.32x ey D.32x ey 2-23-78、微分方程x y y ln '的通解是 ( ) A.xx eyln B. xx Ceyln C.xx x ey ln D.xx x Cey ln 2-24-79、下列哪个不是方程y y 4''的解 ( )A. xey22 B.xe y2 C.xey 2 D.xey 22-25-80、方程0sin '''653)4(yy y y x xyy的阶是 ( )A. 6B. 5C. 4D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2,则这条曲线是( )A.椭圆 B.抛物线 C.双曲线 D. 圆2-27-82、下列可分离变量的方程是 ( )A.xyy x dxdy33B.2)3(2xydy dxy exC. xy yx dxdy D.yx xyy dxdy 3212-28-83、微分方程0cot 'xy y 的通解是 ( )A.x C ycos B.x C ysin C.x C ytan D.xC y csc 2-29-84、已知微分方程0''pyy 的通解为)(212x C C e yx ,则p 的值( )A. 1B. 0C.21D.41三.计算题:(59)3-1-52、0d tan sec d tan sec 22y x y x y x 3-2-53、0ln 'yy xy 3-3-54、0d sec )2(d tan 32yy e x y e x x3-4-55、yx y y x xy22222')1(3-5-56、yx eye x dxdy3-6-57、0)1()1(xdy y ydxx3-7-58、x x y yy x d sin cos d sin cos ,4|0xy 3-8-59、0)0(,02')1(22y xy y x3-9-60、1)(,ln 2'e y x y y 3-10-61、x x y y y x d sin cos d sin cos ,4|0xy 3-11-62、0y)dx -(x dy)(y x3-12-63、)ln (ln dx d x y y y x 3-13-64、0)2(22dyx dx xy y3-14-65、xy x y xy tan'3-15-66、xyx y x y xy ln)('3-16-67、dxdy xydxdy xy223-17-68、x y yx y', 2|1x y 3-18-69、x y xy y', ey ex|3-19-70、2|,'122xy y xyxy3-20-71、xx yxy sin 1', 1|xy 3-21-72、xex y xy 43'3-22-73、342'xxyy 3-23-74、xyxy ln 11'3-24-75、xeyxxy x21'3-25-76、x xy y sec tan ', 0|0xy 3-26-77、xx yxy sin 1', 1|xy 3-27-78、22112'xy xx y ,|0xy 3-28-79、x x yxy ln ', ey ex|3-29-80、22d dyx xexy x3-30-81、)sin (cos d dy2x xy yx3-31-82、5d dyxyy x3-32-83、02d dy4xyxy x3-33-84、4)21(3131d dy yx yx3-34-85、xyxy x 2d dy23-35-86、xy y '''3-36-87、01)'(''2y yy 3-37-88、01''3y y 3-38-89、y y 3'', 1|0xy , 2|'0xy 3-39-90、223''yy ,1|3xy ,1|'3xy 3-40-91、02''yy 3-41-92、013'4''y y y 3-42-93、0'2''y y y 3-43-94、04'5''y y y 3-44-95、04'3''y y y , 0|0xy , 5|'0xy 3-45-96、029'4''y y y , 0|0x y ,15|'0xy 3-46-97、0'4''4y y y , 2|0x y , 0|'0x y 3-47-98、0'4''4y y y , 2|0xy , 0|'0xy 3-48-99、013'4''y y y , 0|0x y , 3|'0x y 3-49-100、04'4''y y y , 0|0x y , 1|'0xy 3-50-101、xey y y 2'''23-51-102、x eyy xcos ''3-52-103、xex y y y 3)1(9'6''3-53-104、'''22xy y ye3-54-105、123'2''x y y y 3-55-106、''sin 20y yx, 1|xy , 1|xy 3-56-107、52'3''yy y , 1|0xy , 2|'0xy 3-57-108、xe y y y 29'10'',76|0x y ,733|'0x y 3-58-109、xxe yy 4'', 0|0xy , 1|'0xy 3-59-110、xxeyy y 26'5''四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知xxxy t t y tt 03231d )(12, 求函数)(x y 4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x2.4-4-14、试求x y ''的经过点)1;0(M 且在此点与直线12x y相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x 满足xx t t t x x 01d sin )(2cos )(, 求)(x .4-8-10、已知某商品需求量Q 对价格p 的弹性为22pEpEQ, 最大需求量为1000Q, 求需求函数)(p f Q.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为02v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dL L Ak x,(其中0,0Ak), 若不做广告, 即0x时纯利润为0L , 且A L 0, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101,投资额)(t I 是国民收入增长率t d dy的31. 设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w 证明: )(x w 满足方程0)('wx p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x的3个相异特解,证明1213y y y y 为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).解. 设)(t i i, 由回路电压定律tE dtdi LRisin 0, 即tLE LR dtdisin 0]sin [)(0C dt teLE et i t dtLRLR =]sin [0C dt te LE et t LR LR =)cos sin (2220t L t R LRE CetLR将0|0ti 代入通解得222LRLE C)cos sin ()(2220t L t R LeLRE t i t LR488.设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系解:.物体重力为mg w, 阻力为kv R , 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dtdv m ,从而得线性方程gv mk dtdv ,|0tv tmkdtdtCeg km C dt gee v km m k ][, 将0|0tv 代入通解得gkm C)1(t mk eg km v, 再积分得122C gekm gtkm Stmk,将0|0t S 代入求得gkm C 221)1(22t mkeg km gtkm S 489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x yt v y 1'0, 又弧OP 的长度为x tv dxy 0022'1,从以上两式消去t v 0得''121''')1(2y y y y x , 即2'121'')1(y y x 根据题意, 初始条件为0)0(y , 0)0('y 令p y', 原方程化为2121')1(pp x , 它是可分离变量得方程,解得21)1(112x C pp , 即21)1('1'12x C y y 将0)0('y 代入上式得11C , 故21)1('1'2x y y 而21)1(''1'1'122x y y y y , 得2121)1()1(21'x x y 积分得22321)1(31)1(C x x y, 将0)0(y 代入上式得322C ,所以鱼雷的航行曲线为32)1(31)1(2321x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dLL A k x ,(其中0,0Ak ), 若不做广告, 即0x时纯利润为0L , 且AL 0, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL,|L L x, 解可分离变量得微分方程, 得通解kxCeAL , 将00|L L x 代入通解, 得AL C 0, 所以纯利润L 与广告费x 之间的函数关系为kxeA LAx L )()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy的31.设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:yS101,dt dyI31, 解之得通解tCe y103, 将5|0ty 代入通解得5C, 所以国民收入函数为tey 1035492.试建立描述市场价格形成的动态过程的数学模型.解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dtdp,)0(p p , 其中0p 为0t时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kpr p f ),(, d cpp g )(, 则方程为)()(d b k p c k k dtdp ,)0(p p , 其中d c b k ,,,均为正常数, 其解为ckd b eckd b p t p tc k k )(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(p g r p f , 即dpc bpk ,则c kdb p, 从而价格函数pep p t p c k k )(0)()(,取极限:pt p t)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p 0, 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于tc k k ec kk p pdtdp)(0)()(, 所以当p p 0时, 0dtdp,)(t p 单调下降向p 靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
(完整版)微分方程试题及部分应用题答案整理版

第十章 微分方程习题一.填空题:(33)1-1-40、 微分方程4233''4''')'(x y x y y =++的阶数是 . 1-2-41、 微分方程0'2'2=+-xy yy xy 的阶数是 . 1-3-42、 微分方程0d d d d 22=++s x sx s 的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(=-+-的阶数是 . 1-5-44、微分方程xy x y2d d =满足条件1|'0==x y 的特解是 . 1-6-45、微分方程0d d =+y x y的通解是 .1-7-46、方程y e y x='的通解是 . 1-8-47、 方程y y y ln '=的通解是 . 1-9-48、方程04'4''=+-y y y 的通解是 . 1-10-49、方程04'4''=+-y y y 的通解是 . 1-11-50、方程013'4''=+-y y y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221-==r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y =''的通解为 . 1-14-53、微分方程x e y x sin ''2-=的通解为 . 1-15-54、若0d ),(dx ),(=+y y x Q y x P 是全微分方程, 则Q P ,应满足 . 1-16-55、与积分方程xy x f y x x d ),(0⎰=等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22=-++y xy x x y xy 化为齐次方程是 . 1-18-57、通解为21221,(C C e C e C y xx +=为任意常数)的微分方程为 .1-19-58、方程yx e y -=2'满足条件00==x y 的特解是 .1-19-59、方程0dy 1dx 2=-+x xy 化为可分离变量方程是1-20-60、方程xy y 2'=的通解是1-21-61、 方程x y xy x y x y d d d d 22=+化为齐次方程是1-22-62、 若t y ωcos =是微分方程09''=+y y 的解, 则=ω .1-23-63、若ktCe Q =满足Qdt dQ03.0-=, 则=k .1-24-64、y y 2'=的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x -1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、 圆222r y x =+满足的微分方程是1-27-67、 axae y =满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q y x P x =+的通解是 .1-29-69、已知特征方程的两个根3,221-==r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y =是微分方程y xy 2'=的 解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与 之和. 1-32-72、二阶常系数齐次线性微分方程0'''=++qy py y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22=---dy xy x dx y xy 写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dx dy=的通解是 ( )A.2x y = B. 25x y = C. 2Cx y = D.Cx y =2-2-57、 微分方程0dy 1dx 2=-+x xy 的通解是 ( ) A.21x ey -= B.21x Cey -= C.x C y arcsin = D. 21x C y -=2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2=--x y x B. 0dy dx =-x y C. 0dy )(1dx )1(=-++xy y xy D.0dy dx )(22=++xy y x 2-4-59、下列函数组中,线性无关的是 ( )A.x x e e 32,B.x x 2sin ,2cosC. x x x sin cos ,2sinD.2ln ,ln x x2-5-60、方程03'2''=--y y y 的通解是 ( )A.x x e C e C y 321--+=B. x x e C e C y 321+=C. x x e C e C y 321-+=D. x x e C e C y 321+=-2-6-61、方程0''=+y y 的通解是 ( ) A.x C y sin = B.x C y cos = C.x C x y cos sin += D.x C x C y cos sin 21+=2-7-62、 下列方程中是可分离变量的方程是 ( )A. xy y x -=33dx dyB.0dy 2dx )3(2=++xy y e x C. 234dx dy xy y x += D.y x xy y 321dx dy ++= 2-8-63、 微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc =2-9-64、已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'=-y y 的通解是 ( )A.C x y +=2sinB.C e y x +=24C.x Ce y 2=D. xCe y =2-11-66、方程xy 2dx dy=的通解是 ( )A.C e x +2B.Cxe+2C. 2Cx eD. 2)(C x e +2-12-67、 xe y -=''的通解为=y ( )A.x e --B. xe - C. 21C x C ex++- D. 21C x C e x ++--2-13-68、微分方程xe 21dx dy -=满足10-==x y 的特解为 ( )A.1221+-=-x ey B. 3221-=-x ey C. C ey x +-=-212 D.212121--=-xe y2-14-69、微分方程0ydy -dx 3=x 的通解是 ( )A.C y x =-2422B. C y x =+2422C. 02422=-y xD. 12422=+y x2-15-70、 微分方程0ydy -dx 3=x 的通解是 ( )A.222=+y xB. 933=+y xC. 133=+y x D. 13333=+y x2-16-71、 过点,0()2-的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32-=x yB. 52+=x yC.53-=x e yD.5-=x Ce y 2-17-72、齐次方程x yxy tandx dy =化为可分离变量的方程, 应作变换 ( ) A. 2ux y = B. 22x u y = C. ux y = D.33x u y =2-18-73、 设方程)()('x Q y x P y =+有两个不同的解21,y y ,若21y y βα+也是方程的解,则( )A.βα=B. 0=+βαC. 1=+βαD. βα,为任意常数2-19-74、 方程dx 2dx dy y x x =+的通解是 ( )A.x Cx y +=2B. x x C y +=2sinC. C x y +=2cosD.C x y +=22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.x y xy =+2' B .x xy y sin '=+ C .x yy =' D .xy y -=2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y x y -=' B. y x y =' C. x y y -=' D. x y y ='2-22-77、方程2)3(,0'==+y y y 的解是 ( )A.x e y -=32B. x e y --=32C. 32-=x e yD. 32--=x e y2-23-78、 微分方程x y y ln '=的通解是 ( )A.x x e y ln =B. x x Ce y ln =C. x x x e y -=lnD. x x x Ce y -=ln2-24-79、下列哪个不是方程y y 4''=的解 ( )A. x e y 22=B. x e y 2=C. x e y 2-=D. x e y 2=2-25-80、方程0sin '''653)4(=-+++y y y y x xy y 的阶是 ( ) A. 6 B. 5 C. 4 D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2-,则这条曲线是( )A. 椭圆B. 抛物线C. 双曲线D. 圆2-27-82、下列可分离变量的方程是 ( )A. xy y x dx dy-=33 B.02)3(2=++xydy dx y e x C. xy yx dx dy += D.y x xy y dx dy 321++= 2-28-83、微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc = 2-29-84、 已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值( )A. 1B. 0C. 21D. 41三.计算题:(59)3-1-52、0d tan sec d tan sec 22=+y x y x y x 3-2-53、 0ln '=-y y xy3-3-54、0d sec )2(d tan 32=-+y y e x y e x x 3-4-55、y x y y x x y 22222')1(=-+- 3-5-56、 y xe y e x dx dy +-=- 3-6-57、 0)1()1(=-++xdy y ydx x3-7-58、 x x y y y x d sin cos d sin cos =,4|0π==x y3-8-59、0)0(,02')1(22==+-y xy y x 3-9-60、 1)(,ln 2'==e y x y y3-10-61、 x x y y y x d sin cos d sin cos =,4|0π==x y3-11-62、 0y)dx -(x dy )(=++y x3-12-63、 )ln (ln dx d x y y yx-=3-13-64、0)2(22=+-dy x dx xy y 3-14-65、x yx y xy tan'=-3-15-66、x yx y x y xy ++=-ln)('3-16-67、dx dy xy dx dy x y =+223-17-68、x y y x y +=', 2|1==x y3-18-69、x y x y y +=', e y e x ==|3-19-70、2|,'122=-=-=x y y x y xy3-20-71、x x y x y sin 1'=+, 1|==πx y 3-21-72、x e x y x y 43'=-3-22-73、 342'x xy y =-3-23-74、x y x y ln 11'=-3-24-75、x e y x x y x 21'=-+ 3-25-76、 x x y y sec tan '=-,|0==x y3-26-77、x x y x y sin 1'=+, 1|==πx y 3-27-78、22112'x y x xy +=+-, 0|0==x y3-28-79、x xy xy ln '=-, e y e x ==|3-29-80、 22d dyxxe xy x -+=3-30-81、)sin (cos d dy2x x y y x -=+ 3-31-82、5d dyxy y x =- 3-32-83、02d dy4=++xy xy x3-33-84、4)21(3131d dy y x y x -=+3-34-85、xy xy x 2d dy 2-= 3-35-86、x y y +='''3-36-87、01)'(''2=++y yy 3-37-88、01''3=+y y3-38-89、y y 3''=, 1|0==x y , 2|'0==x y3-39-90、223''yy =, 1|3==x y , 1|'3==x y3-40-91、02''=+y y 3-41-92、013'4''=++y y y 3-42-93、0'2''=+-y y y 3-43-94、04'5''=+-y y y 3-44-95、04'3''=--y y y ,|0==x y ,5|'0-==x y 3-45-96、029'4''=++y y y , 0|0==x y ,15|'0==x y3-46-97、0'4''4=++y y y , 2|0==x y , 0|'0==x y 3-47-98、0'4''4=++y y y ,2|0==x y ,|'0==x y 3-48-99、013'4''=+-y y y , 0|0==x y , 3|'0==x y3-49-100、04'4''=+-y y y ,|0==x y ,1|'0==x y3-50-101、xe y y y 2'''2=-+3-51-102、x e y y x cos ''+=+ 3-52-103、x e x y y y 3)1(9'6''+=+-3-53-104、'''22xy y y e --=3-54-105、123'2''+=--x y y y 3-55-106、''sin 20y y x ++=, 1|==πx y , 1|==πx y3-56-107、52'3''=+-y y y ,1|0==x y ,2|'0==x y3-57-108、xe y y y 29'10''=+-,76|0==x y ,733|'0==x y 3-58-109、xxe y y 4''=-, 0|0==x y , 1|'0==x y 3-59-110、xxe y y y 26'5''=+-四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知⎰--=+xx x y t t y t t 03231d )(12, 求函数)(x y4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x =2.4-4-14、试求x y =''的经过点)1;0(M 且在此点与直线12+=xy 相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x ϕ满足⎰+=+xx t t t x x 01d sin )(2cos )(ϕϕ, 求)(x ϕ.4-8-10、已知某商品需求量Q 对价格p 的弹性为22p Ep EQ-=, 最大需求量为1000=Q , 求需求函数)(p f Q =.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰,又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为L , 且AL <<00, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31. 设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''=++y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w -==证明: )(x w 满足方程0)('=+w x p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x =+的3个相异特解,证明 1213y y y y --为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).解. 设)(t i i =, 由回路电压定律tE dt diLRi ωsin 0=+, 即t L E L R dt di ωsin 0=+∴⎰+⎰⎰=-]sin [)(0C dt te L E e t i t dt LR L Rω=⎰+-]sin [0C dt te L E ett L R LR ω=)cos sin (2220t L t R L R E Cet LR ωωωω-++-将|0==t i 代入通解得2220L R LE C ωω+=∴)cos sin ()(2220t L t R Le L R E t i t LR ωωωωω-++=-488. 设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 解:.物体重力为mg w =, 阻力为kv R -=, 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dt dv m-=,从而得线性方程g v m kdt dv =+, 0|0==t v∴ ⎰--+=+⎰⎰=t m kdt dt Ce g k m C dt ge e v km m k ][, 将0|0==t v 代入通解得 g k m C -=∴ )1(tm k e g k m v --=, 再积分得122C ge k m gt k m S t m k++=-,将0|0==t S 代入求得g k m C 221-=∴ )1(22-+=-t m ke g k m gt k m S489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y =, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x y t v y --=1'0, 又弧OP 的长度为⎰=-xtv dx y 0022'1,从以上两式消去tv 0得''121''')1(2y y y y x -+=--, 即2'121'')1(y y x +=-根据题意, 初始条件为0)0(=y , 0)0('=y令p y =', 原方程化为2121')1(p p x +=-, 它是可分离变量得方程,解得21)1(112--=++x C p p , 即21)1('1'12--=++x C y y 将0)0('=y 代入上式得11=C , 故21)1('1'2--=++x y y而21)1(''1'1'122--=-+=++x y y y y , 得2121)1()1(21'x x y -+-=-积分得22321)1(31)1(C x x y +-+--=, 将0)0(=y 代入上式得322=C , 所以鱼雷的航行曲线为32)1(31)1(2321+-+--=x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系 )(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为0L , 且A L <<00, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL-=,00|LL x ==, 解可分离变量得微分方程, 得通解 kx Ce A L -+=, 将00|L L x ==代入通解, 得A L C -=0, 所以纯利润L 与广告费x 之间的函数关系为kxe A L A x L --+=)()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31.设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:y S 101=, dt dy I ⋅=31, 解之得通解t Ce y 103=, 将5|0==t y 代入通解得5=C , 所以国民收入函数为te y 1035=492.试建立描述市场价格形成的动态过程的数学模型. 解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dt dp-=,0)0(pp =, 其中p 为0=t 时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kp r p f +-=),(, d cp p g +=)(, 则方程为)()(d b k p c k k dt dp-++=,0)0(pp =, 其中d c b k ,,,均为正常数, 其解为c k db ec kd b p t p t c k k +-++--=+-)(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(=-p g r p f , 即d p c b p k +=+-,则c k db p +-=, 从而价格函数p e p p t p c k k +-=+-)(0)()(,取极限: p t p t =∞→)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p =0 , 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于t c k k e c k k p p dt dp )(0)()(+-+-=, 所以当p p >0时, 0<dt dp, )(t p 单调下降向p靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章常微分方程一.变量可分离方程及其推广1.变量可分离的方程( 1)方程形式:dyP x Q y Q y0通解dyP x dx C dx Q y(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)( 2)方程形式:M1x N1 y dx M 2x N 2y dy0通解M 1xdx N 2ydy C M 2 x 0, N 1 y 0M 2x N 1y 2.变量可分离方程的推广形式dyf y( 1)齐次方程xdx令yu ,则dyu xduf ufdu dx c ln | x | c x dx dx u u x二.一阶线性方程及其推广1.一阶线性齐次方程dyP x y0 它也是变量可分离方程,通解y Ce P x dx ,(c为任意常数)dx2.一阶线性非齐次方程精品文档令 z y1把原方程化为dz1P x z 1Q x 再按照一阶线性dx非齐次方程求解。
dy1可化为dxP y x Q y y x以为自变量,.方程:P y x dydx Q y为未知函数再按照一阶线性非齐次方程求解。
三、可降阶的高阶微分方程方程类型解法及解的表达式通解 y n C 2 x n 2C n 1 x C n ynff x dx C1 x n 1xn次令 y p ,则 y p ,原方程y f x, yf x, p ——一阶方程,设其解为pg x, C1p,即y g x, C1,则原方程的通解为y g x, C1dx C2。
令 y p ,把p看作y的函数,则 y dp dp dy p dpdx dy dx dy y f把 y, y 的表达式代入原方程,得dp1f y, p—一阶方程,y, y dy pdy dx P x y Q x用常数变易法可求出通解公式设其解为 p g y, C1, 即dyg y, C1,则原方程的通解为dx令 y C x e P x dx代入方程求出 C x 则得ye P x dx Q x e P x dx dx C3.伯努利方程dyQ x y0,1P x ydxdyx C2。
g y, C1.四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程y p x y q x y0( 1)二阶非齐次线性方程y p x y q x y f x( 2)1.若y1x, y2x 为二阶齐次线性方程的两个特解,则它们的线性组合C1 y1x C 2 y2x ( C1, C2为任意常数)仍为同方程的解,特别地,当y1 x y2x(为常数),也即 y1 x与 y2x线性无关时,则方程的通解为 y C1 y1 x C 2 y2 x2.若y1x,y2x为二阶非齐次线性方程的两个特解,则y1 x y2 x 为对应的二阶齐次线性方程的一个特解。
3.若y x为二阶非齐次线性方程的一个特解,而 y x为对应的二阶齐次线性方程的任意特解,则y x y x 为此二阶非齐次线性方程的一个特解。
4.若y为二阶非齐次线性方程的一个特解,而 C1 y1 x C 2 y2 x 为对应的二阶齐次线性方程的通解(C1, C 2为独立的任意常数)则y y x C1 y1x C 2 y2x 是此二阶非齐次线性方程的通解。
5.设y1x与y2x 分别是 y p x y q x y f1x与y p x y q x y f 2x 的特解,则 y1x y2 x是y p x y q x y f 1x f 2 x 的特解。
精品文档五.二阶和某些高阶常系数齐次线性方程1.二阶常系数齐次线性方程y py qy0其中 p, q 为常数,特征方程2p q 0特征方程根的三种不同情形对应方程通解的三种形式( 1)特征方程有两个不同的实根 1,2 则方程的通解为y C1e 1x C 2e 2x ( 2)特征方程有二重根12则方程的通解为y C1 C 2 x e 1x( 3)特征方程有共轭复根i ,则方程的通解为y e x C1 cos x C 2 sin x 2.n阶常系数齐次线性方程y n p1 y n1p2 y n 2p n 1 y p n y0其中 p i i1,2,, n 为常数。
相应的特征方程np1n 1n2p n p n0p21特征根与方程通解的关系同二阶情形很类似。
( 1)若特征方程有n 个不同的实根1, 2,,n 则方程通解y C1e 1x C 2 e 2x C n e n x( 2)若0 为特征方程的k 重实根k n 则方程通解中含有y= C1 C 2 x C k x k 1 e 0x( 3)若i为特征方程的 k 重共轭复根2k n,则方程通解中含有e x C1 C 2 x C k x k 1cos x D1 D 2 x D k x k 1sin x由此可见,常系数齐次线性方程的通解完全被其特征方程的根所决定,但是三次及三次以上代数方程的根不一定容易求得,因此只能讨论某些容易求特征方程的根所对应的高阶常系数齐次线性方程的通解。
.六、二阶常系数非齐次线性方程方程: y py qyf x 其中 p, q 为常数通解: yy C 1 y 1 xC 2 y 2 x其中 C 1 y 1 x C 2 y 2 x 为对应二阶常系数齐次线性方程的通解上面已经讨论。
所以关键要讨论二阶常系数非齐次线性方程的一个特解y 如何求?1. f x P n x e x 其中 P n x 为 n 次多项式,为实常数,( 1)若 不是特征根,则令yR n x e x( 2)若是特征方程单根,则令yxR x e xn( 3)若 是特征方程的重根,则令yx 2 R n x e x2. f xP n x e x sinx 或 f x P n x e x cos x其中 P n x 为 n 次多项式, , 皆为实常数( 1)若 i 不是特征根,则令 y e x R n x cos x T n x sin x ( 2)若i 是特征根,则令 yxe xR n x cosx T n x sinx例题:一、齐次方程x 2 dyxydy的通解 2.xxxdy1.求 y 21 e y dx e y 1dxdxy二、一阶线形微分方程1. ydx( y x)dy0, y(0)1. 2.求微分方程dyx y 的通解dxy 4精品文档三、伯努力方程 xy ' yx 3 y 6四、可降阶的高价微分方程1.求 (1 x) y y ln( x 1) 的通解2. 2 y' ' ( y' )2y , y(0) 2, y' (0)1五、二阶常系数齐次线形微分方程1. y (5)y (4 )2 y' ' ' 2 y' ' y' y 02. y (4) 5y' ' 10 y' 6 y 0 , y(0) 1, y' (0)0, y'' (0) 6, y' ' ' (0)14六、二阶常系数非齐次线形微分方程1.求 y2 y 3y2e x 的通解2.求方程 yy2y2cos2x 的通解3. y' ' y x 3sin 2 x 2 cos x七、作变量代换后求方程的解1.求微分方程 ( yx) 1 x2dy (1 3y 2 ) 2 的通解dx2. x( y1) sin( x y)0, y( ) 023. 1 x 2y' sin 2 y 2x sin 2y2 1 x 2e4. xy' ln x sin y cos y(1x cos y)八、综合题x( xt) f (t) dt ,其中 f ( x )连续,求 f ( x )1.设 f ( x )= x sin x -2.已知 y 1xe x e 2 x , y 2xe x e x , y 3 xe xe 2 xe x 是某二阶线性非齐次常系数微分方程的三个解,求此微分方程及其通解.3.设 F (x)f (x)g ( x), 其中 f ( x), g(x)在 ( , ) 内满足以下条件.f (x) g( x),g ( x) f ( x),且 f (0) 0, f ( x) g( x)2e x( 1)求F ( x)所满足的一阶和二阶微分方程(2)求出F (x)的表达式4.设函数 y= y( x)在,内具有二阶导数,且y0, x x y是 y= y( x)d 2 x dx 3的反函数 .(1)试将 x=x( y)所满足的微分方程y sin x0 变换dy 2dy为 y= y(x)满足的微分方程;( 2)求变换后的微分方程满足初始条件y(0)= 0,y 03的解 . 25.设(x) 是以2为周期的连续函数,(x)(x),(0)0, (2)0( 1)求微分方程dyysinx(x)e cosx的通解dx以上这些解中,有没有以 2 为周期的解?若有,求出,若无,说明理由6.已知曲线 y= f(x) ( x>0)是微分方程2y//+y/ -y=(4-6x)e -x的一条积分曲线,此曲线通过原点,且在原点处的切线斜率为0,试求:( 1)曲线 y= f(x) 到 x 轴的最大距离。
( 2)计算 f ( x)dx九、微分方程的几何和物理应用1.设函数y(x)( x 0)二阶可导,且 f ( x)0, y(0) 1, 过曲线 y y(x) 上任意一点 P( x, y) 作该曲线的切线及x 轴的垂线,上述两直线与x 轴所围成的三角形的面积记为 S , 区间 0, x上以y y( x)为曲边的曲边梯形面积记为S ,并设 2S S1212恒为 1,求此曲线y y( x)的方程。
2.设曲线L的极坐标方程为r r () , M (r ,) 为L任一点, M 0 (2,0) 为L上一定精品文档点,若极径 OM 0,OM与曲线L所围成的曲边扇形面积值等于L 上M0 M 两点间弧长值的一半,求曲线L 的方程。
3.有一在原点处与x轴相切并在第一象限的光滑曲线,P(x,y) 为曲线上的任一点。
设曲线在原点与P 点之间的弧长为S1,曲线在 P 点处的切线在P 点与切线跟 y 轴的交点之间的长度为S2,且3S12=2( x 1),求该曲线的方程。
S2x4.设函数 f( x)在1,上连续,若曲线 y=f ( x),直线 x= 1,x= t( t>1 )与 x轴围成平面图形绕x 轴旋转一周所成旋转体的体积V ( t)=t 2 f t f 1 ,试3求 y= f( x)所满足的微分方程,并求y x 22的解.95.一个半球体状的雪球,其体积融化的速率与半球面面积S成正比,比例常数K0 ,假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆开始融化的 3 小时内,融化了其体积的7,问雪堆全部融化需要多少小时。