专题11直角三角形的应用与解直角三角形(解析版)
专题11.8 三角形内角和定理及其应用(拓展提高)(解析版)

专题11.8 三角形内角和定理及其应用(拓展提高)一、单选题1.若一个三角形的三个内角的度数之比为1:3:4,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形【答案】B【分析】设三个内角分别为k 、3k 、4k ,然后利用三角形的内角和等于180°列方程求出k ,再求解即可.【详解】解:设三个内角分别为k 、3k 、4k ,由题意得,k +3k +4k =180°,解得k =22.5°,所以,三个内角分别为22.5°、67.5°、90°,所以,这个三角形是直角三角形.故选:B .【点睛】本题考查了三角形的内角和定理,三角形的形状的判定,利用“设k 法”求解更简便. 2.如图,点A 和点B 恰好分别在GH 和EF 上,GH ∥EF 且BA 平分∠DBE ,若∠C =90°,∠CAD =32°,则∠BAD 的度数为( )A .28°B .29°C .30°D .31°【答案】B【分析】根据三角形的内角和定理,平行线的性质以及角平分线的定义即可得到结论.【详解】解:90C ∠=︒,32CAD ∠=︒,903258ADC ∴∠=︒-︒=︒, //EF GH ,58DBE ADC ∴∠=∠=︒, BA 平分DBE ∠,1292ABE DBE ∴∠=∠=︒, 直线//EF 直线GH ,29BAD ABE ∴∠=∠=︒,故选:B . 【点睛】本题主要考查了平行线的性质,角平分线的定义以及三角形内角和定理,解题时注意:两直线平行,内错角相等.3.如图,将一块含有45°角的直角三角板的直角顶点放在矩形板的一边上,若135∠=,那么2∠的度数是( ).A .80°B .90°C .100°D .110°【答案】C 【分析】根据平行线的性质,得31∠=∠;结合题意,根据三角形内角和的性质,得4∠;再根据对顶角相等的性质计算,即可得到答案.【详解】如下图根据题意得:3135∠=∠=︒∴4180345100∠=︒-∠-︒=︒∵24∠∠=∴2100∠=︒故选:C .【点睛】本题考查了对顶角、三角形内角和、平行线的知识;解题的关键是熟练掌握平行线、三角形内角和的性质,从而完成求解.4.如图,在△ABC 中,∠BAC =80°,BE 、CF 分别是∠ABC 、∠ACB 平分线,则∠BOC 的度数是( )A .130°B .60°C .80°D .120°【答案】A 【分析】根据三角形的内角和定理和角平分线的定义求出∠OBC +∠OCB 的度数,再根据三角形的内角和等于180°,即可求出∠BOC 的度数.【详解】解:∵∠BAC =80°,∴∠ABC +∠ACB =180°﹣∠BAC =180°﹣80°=100°,∵BE 、CF 分别是∠ABC 、∠ACB 平分线,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12(∠ABC +∠ACB )=12×100°=50°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣50°=130°.故选:A .【点睛】本题主要利用三角形的内角和定理和角平分线的定义,熟练掌握定理和概念是解题的关键. 5.如图,延长ABC ∆的边AC 到点E ,过点E 作//DE BC ,BG 平分ABC ∠,EF 平分AED ∠交BG 的反向延长线于点F ,已知34A F ∠=∠,则A ∠的大小为( )A .75︒B .74︒C .72︒D .70︒【答案】C 【分析】过点F 作FM ∥BC ,结合平行线的判定和性质以及角平分线的定义可得11=2GBC ABC ∠∠=∠,112=3=22AED ACB ∠∠∠=∠,然后结合三角形内角和定理可得()11+2=1802A ∠∠︒-∠,然后根据题意列方程求解.【详解】解:过点F 作FM ∥BC∵//DE BC ,∴////FM DE BC又∵BG 平分ABC ∠,EF 平分AED ∠ ∴11=2GBC ABC ∠∠=∠,112=3=22AED ACB ∠∠∠=∠ ∴()1111+2=+180222ABC ACB A ∠∠∠∠=︒-∠ 由题意可得:()34412A GFE ∠=∠=∠+∠∴312=4A ∠+∠∠,()3118042A A ∠=︒-∠,解得:72A ∠=︒ 故选:C .【点睛】本题考查平行线的判定和性质,三角形内角和定理和角平分线的定义以及一元一次方程的应用,掌握相关的性质定理正确推理计算是解题关键.6.如图,,AB BC AE ⊥平分BAD ∠交BC 于点E ,AE DE ⊥,1290∠+∠=︒,M ,N 分别是,BA CD 延长线上的点,EAM ∠和EDN ∠的平分线交于点F .下列结论:①//AB CD ;②180AEB ADC ∠+∠=︒;③DE 平分ADC ∠;④F ∠为定值.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠F AD+∠FDA=135°-90°=45°,∴∠F=180°-(∠F AD+∠FDA)=180-45°=135°,故④正确.故选:C.【点睛】本题主要考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的计算,熟知三角形的内角和等于180°是解答此题的关键.二、填空题7.将一副三角板如图放置,若//AB CD ,则∠=CFE ________度.【答案】75【分析】根据两直线平行,同旁内角互补及三角板的特征进行做题.【详解】因为//AB CD ,∠B=60°,所以∠BCD=180°-60°=120°;因为两角重叠,则∠ACE=90°+45°-120°=15°,∠=CFE 90°-15°=75°.故CFE ∠的度数是75度.故答案为:75.【点睛】本题考查了平行线的性质,三角板的知识,是基础题,熟记性质是解题的关键.8.如图,已知//AB CD ,AC 与BD 交于点E ,BD CD ⊥于点D ,若150∠=︒,则2∠=______.【答案】140°【分析】首先根据对顶角相等即可求出∠CED 的度数,再根据三角形的内角和即可求得∠ECD 的度数,根据平行线的性质即可求出∠CAB 的度数,再根据补角的性质即可求解;【详解】∵ ∠1=50°,∴∠CED =50°,∵ 三角形内角和为180°,BD ⊥CD ,∴∠ECD =180°-90°-50°=40°,∵ AB ∥CD ,∴∠EAB =40°,∴∠2=180°-40°=140°,故答案为:140°.【点睛】本题考查了平行线的性质,以及三角形的内角和定理,正确掌握知识点是解题的关键; 9.如图,ABC 中30A ∠=︒,E 是AC 边上的点,先将 ABE △沿着BE 翻折,翻折后ABE △的AB 边交AC 于点 D ,又将BCD △沿着BD 翻折,C 点恰好落在BE 上,此时 84CDB ∠=︒,则ABC 中ABC ∠=_______ .【答案】81.【分析】在图(1)的ABC 中,根据三角形内角和定理,可求得150B C ∠+∠=︒;结合折叠的性质和图(2)(3)可知: 3B CBD ∠=∠,即可在CBD 中,得到另一个关于 B C ∠∠、度数的等量关系式,联立两式即可求得 B 的度数.【详解】解:在ABC 中,30A ∠=︒,则150B C ∠+∠=︒①;根据折叠的性质知:3B CBD ∠=∠,BCD C ∠=∠;在CBD 中,则有:18084CBD BCD ∠+∠=︒-︒, 即:9136B C ∠+∠=︒ ②; ①-②,得:2543B ∠=︒,解得81B ∠=︒故答案为:81.【点睛】本题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.10.如图,在Rt ABC ∆中,90B ∠=︒,60A ∠=︒,将三角形沿EF 对折,使点C 与边AB 上的D 点重合.若2EFD AED ∠=∠,则AED ∠的度数为____________.【答案】40°【分析】设∠EFD =2∠AED =2x ,由折叠性质可知,∠EDF =∠C =90°-∠A =90°-60°=30°,∠DEF =∠CEF ,由三角形内角和定理得出∠CEF =150°-2x ,再由∠DEF +∠CEF +∠AED =180°,列出方程即可求出∠AED =40°.【详解】解:设∠EFD =2∠AED =2x .由折叠性质可知,∠EDF =∠C =90°-∠A =90°-60°=30°,∠DEF =∠CEF ,在△DEF 中,∠DEF =180°-∠EDF -∠EFD =180°-30°-2x =150°-2x , ∴∠CEF =150°-2x ,∵∠DEF +∠CEF +∠AED =180°,∴150°-2x +150°-2x +x =180°,解得x =40°,即∠AED =40°,故答案为40°.【点睛】本题考查了折叠问题,熟练利用三角形的内角和定理是解题的关键.11.如图,一位跑酷运动员准备以连续两次“跳跃”结束一次跑酷表演,即在水平面AB 上跑至B 点,向上跃起至最高点P ,然后落在点C 处,继续在水平面CD 上跃起落在点D ,若ABK ∠和KCD ∠的平分线的反向延长线刚好交于最高点P ,88BKC ∠=︒,则P ∠=_______度.【答案】46【分析】延长PB ,PC 交KM 于点E ,点F ,利用角平分线的定义及平行线的性质可得13=2ABE ABK ∠∠=∠,14=2DCF DCK ∠∠=∠,1+180ABK ∠∠=︒,2+180DCK ∠∠=︒,求得268ABK DCK ∠+∠=︒,从而得到()13+4=1342ABK DCK ∠∠∠+∠=︒,然后结合三角形内角和定理求解. 【详解】解:延长PB ,PC 交KM 于点E ,点F由题意可得:AB ∥CD ∥KM ,PE 平分∠ABK ,PF 平分∠DCK∴13=2ABE ABK ∠∠=∠,14=2DCF DCK ∠∠=∠ 1+180ABK ∠∠=︒,2+180DCK ∠∠=︒又∵∠BKC =88°∴1+2+180BKC ∠∠∠=︒180180180ABK DCK BKC ︒-∠+︒-∠+∠=︒,即268ABK DCK ∠+∠=︒∴()13+4=1342ABK DCK ∠∠∠+∠=︒ ∴()1803446P ∠=︒-∠+∠=︒故答案为:46.【点睛】本题考查三角形内角和定理,平行线的性质及角平分线的定义,理解相关性质定理正确推理计算是解题关键.12.如图,EFG 的三个顶点E ,G 和F 分别在平行线AB ,CD 上,FH 平分EFG ,交线段EG 于点H ,若36AEF ∠=︒,57BEG ∠=︒,则EHF ∠的大小为________.【答案】75°.【分析】首先根据∠AEF =36°,∠BEG =57°,求出∠FEH 的大小;然后根据AB ∥CD ,求出∠EFG 的大小,再根据FH 平分∠EFG ,求出∠EFH 的大小;最后根据三角形内角和定理,求出∠EHF 的大小为多少即可.【详解】解:∵∠AEF =36°,∠BEG =57°∴∠FEH =180°-∠AEF -∠BEG =87°∵ //AB CD∴∠EFG =∠AEF =36°∵FH 平分∠EFG∴∠EFH =12∠EFG =18° ∴∠EHF =180°-∠FEH -∠EFH =75°故答案为:75.︒【点睛】此题主要考查了三角形内角和定理的应用,角平分线的性质和应用,以及平行线的性质和应用,要熟练掌握.13.如图,BF 平分ABD ∠,CE 平分ACD ∠,BF 与CE 交于G ,若120BDC ∠=︒,90BGC ∠=︒,则A ∠的度数为________.【答案】60°【分析】根据三角形内角和定理可求得∠DBC +∠DCB 的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC +∠ACB 的度数,从而求得∠A 的度数.【详解】解:连接BC .∵∠BDC =120°,∴∠DBC +∠DCB =180°-120°=60°,∵∠BGC =90°,∴∠GBC +∠GCB =180°-90°=90°,∵BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,∴∠GBD +∠GCD =12∠ABD +12∠ACD =30°, ∴∠ABD +∠ACD =60°,∴∠ABC +∠ACB =120°,∴∠A =180°-120°=60°.故答案为:60°.【点睛】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键. 14.如图,在ABC 中,30B ,90BAC ︒∠=,点P 是BC 的动点(不与点B ,C 重合),AI 、CI 分别是PAC ∠和PCA ∠的角平分线,AIC ∠的取值范围为m AIC n <∠<,则m =_______,n =________.【答案】105°150° 【分析】根据三角形内角和等于180°及角平分线定义即可表示出∠AIC ,从而得到m ,n 的值即可.【详解】解:设∠BAP=α,则∠APC=α+30°,∵∠BAC=90°,∴∠PCA=60°,∠PAC=90°-α, ∵AI 、CI 分别平分∠PAC ,∠PCA ,∴∠IAC=12∠PAC ,∠ICA=12∠PCA ,∴∠AIC=180°-(∠IAC+∠ICA ) =180°-12(∠PAC+∠PCA ) =180°-12(90°-α+60°) =12α+105°, ∵0<α<90°,∴105°<12α+105°<150°,即105°<∠AIC <150°, ∴m=105°,n=150°.故答案为:105°,150°.【点睛】本题考查了角平分线的定义,不等式的性质,熟练掌握角平分线的定义是解题的关键.三、解答题15.如图,BD 是ABC ∠的平分线,//DE CB ,交AB 于点E ,150BED ∠=︒,60BDC ∠=︒,求A ∠的度数.【答案】∠A =45°【分析】首先根据平行线的性质求出∠ABC 的度数,再根据角平分线的性质求出∠CBD 的度数,最后利用三角形内角和定理求出∠A 的度数即可.【详解】解:∵DE ∥CB ,∴∠BED +∠ABC =180°,∵∠BED =150°,∴∠ABC =30°,∵BD 是∠ABC 的平分线,∴1152CBD ABC ∠=∠=︒, ∵∠BDC =60°,∴∠C =105°,∴∠A =180°-∠ABC -∠C =45°.【点睛】本题主要考查了三角形内角和定理以及平行线的性质,熟练掌握相关定理,正确识图,求得∠C 的度数是解题关键.16.如图,在ABC 中,AE 平分∠BAC ,AD 是BC 边上的高.(1)在图中将图形补充完整;(2)当∠B =28°,∠C =72°时,求∠DAE 的度数;(3)∠DAE 与∠C ﹣∠B 有怎样的数量关系?写出结论并加以证明.【答案】(1)见解析;(2)22°;(3)1()2DAE C B ∠=∠-∠,证明见解析 【分析】(1)根据题意画出图形即可; (2)在ABC ∆中,利用三角形内角和定理可求出BAC ∠的度数,结合角平分线的定义可求出CAE ∠的度数,由AD 是BC 边上的高,可求出CAD ∠的度数,再结合DAE CAE CAD ∠=∠-∠即可求出结论; (3)根据题意可以用B 和C ∠表示出CAD ∠和CAE ∠,从而可以得到DAE ∠与C B ∠-∠的关系.【详解】解:(1)如图,(2)在ABC ∆中,28B ∠=︒,72C ∠=︒,18080BAC B C ∴∠=︒-∠-∠=︒,AE ∵平分BAC ∠,1402CAE BAC ∴∠=∠=︒, AD 是BC 边上的高,AD BC ∴⊥,9018CAD C ∴∠=︒-∠=︒,401822DAE CAE CAD ∴∠=∠-∠=︒-︒=︒.(3)1()2DAE C B ∠=∠-∠, 理由:在ABC ∆中,AD ,AE 分别是ABC ∆的高和角平分线, 180CAB B C ∴∠=︒-∠-∠,90CAD C ∠=︒-∠,1(180)2CAE B C ∠=︒-∠-∠, 11(180)(90)()22DAE B C C C B ∴∠=︒-∠-∠-︒-∠=∠-∠. 【点睛】本题考查三角形内角和定理,熟练掌握角的平分线的性质、直角三角形的性质是解题的关键. 17.如图,在ABC 中,BE 是ABC 角平分线,点D 是AB 上的一点,且满足DEB DBE ∠=∠.(1)DE 与BC 平行吗?请说明理由;(2)若50C ∠=︒,45A ∠=︒,求DEB ∠的度数.【答案】(1)//,DE BC 理由见解析;(2)42.5.︒【分析】(1)根据角平分线的定义可得∠DBE =∠EBC ,从而求出∠DEB =∠EBC ,再利用内错角相等,两直线平行即可证明;(2)根据两直线平行,同位角相等可得∠ABC =∠ADE ,再利用三角形的内角和等于180°列式计算即可得到答案.【详解】解:(1)DE ∥BC理由如下:∵BE 是△ABC 的角平分线∴∠DBE =∠EBC∵∠DEB =∠DBE∴∠DEB =∠EBC∴ DE ∥BC ;(2)在△ABC 中,∠A +∠ABC +∠C =180°∴∠ABC =180°-∠A-∠C =85°∵BE 是△ABC 的角平分线∴∠DBE =∠EBC =42.5°∴∠DEB =∠EBC =42.5°【点睛】本题考查了三角形内角和定理,平行线的判定与性质,准确识别图形是解题的关键.18.阅读下列材料,并完成相应任务. 三角形的内角和小学时候我们就知道三角形内角和是180度,学习了平行线之后,可以证明三角形内角和是180度,证明方法如下:如图1,已知:三角形ABC .求证180ABC ACB BAC ∠+∠+∠=︒证法一:如图2,过点A 作直线//DE BC ,∵//DE BC∴ABC DAB ∠=∠,ACB CAE ∠=∠∵180DAB BAC CAE ∠+∠+∠=︒∴180ABC ACB BAC ∠+∠+∠=︒,即三角形内角和是180︒证法二:如图3,延长BC 至M ,过点C 作//CN AB …证法一的思路是用平行线的性质得到ABC DAB ∠=∠,ACB CAE ∠=∠,将三角形内角和问题转化为一个平角,进而得到三角形内角和是180︒,这种方法主要体现的数学思想是转化思想,请运用这一思想将证法二补充完整.【答案】见解析【分析】根据平行线的性质得到∠A =∠ACN ,∠B =∠NCM ,由平角的定义得到∠ACB +∠ACN +∠NCM =180°,等量代换即可得到结论.【详解】解:证明:∵CN ∥AB∴∠A =∠ACN ,∠B =∠NCM ,∵∠ACB +∠ACN +∠NCM =180°,∴∠ACB +∠BAC+∠ABC =180°.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.19.如图,MN //PQ ,点A ,B 分别在直线MN ,PQ 上,若射线AN 绕点A 逆时针旋转至AM 后立即回转,射线BP 绕点B 顺时针旋转至BQ 后立即回转,两射线分别绕点A ,点B 不停地旋转,若射线AN 转动的速度是a ︒/秒,射线BP 转动的速度是b ︒/秒,且a ,b 满足方程组32527a b a b -=⎧⎨+=⎩.(1)求a ,b 的值;(2)若射线AN 和射线BP 同时旋转,至少旋转多少秒时,射线AN 和射线BP 互相垂直?【答案】(1)3a =,2b =;(2)至少旋转18秒时,射线AN 与射线BP 互相垂直.【分析】(1)解二元一次方程组,即可求得a 和b 的值;(2)设至少旋转x 秒时,射线AN 和射线BP 互相垂直,根据直角三角形两锐角互余和平行线的性质可得2x °+3x °=90°,求解即可.【详解】解:(1)32527a b a b -=⎧⎨+=⎩①②, ①+②得:412a =,解得3a =,将3a =代入②得327b +=,解得2b =,所以原方程组的解为:32a b =⎧⎨=⎩, 即3a =,2b =;(2)设至少旋转x 秒时,射线AN 和射线BP 互相垂直,记旋转后的两条射线交于点C ,连接AB ,如图,则∠BCA =90°,由已知得∠PBC=2x°,∠NAC=3x°,∵MN//PQ,∴∠PBA+∠BAN=180°,∵∠BCA=90°,∴∠ABC+∠BAC=90°,∴∠PBC+∠NAC=90°,∴2x°+3x°=90°,x=,解得18答:至少旋转18秒时,射线AN与射线BP互相垂直.【点睛】本题考查平行线的性质,直角三角形两锐角互余,解二元一次方程组.(1)中掌握解二元一次方程组的方法并能灵活运用是解题关键;(2)能根据平行线的性质和直角三角形两锐角互余列出方程是解题关键.∠交CD于20.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分AEF ∠=∠.点M,且FEM FME(1)猜想直线AB与直线CD有怎样的位置关系?说明你的理由;∠交CD于点H,过点H作(2)若点G为直线CD上一动点(不与点M,F重合),EH平分FEG∠=.∠=,EGFβ⊥于点N,设EHNαHN EMβ=︒,求α的度数;①如图2,当点G在射线FD上运动时,若56②当点G 在直线CD 上运动时,请直接写出α和β的数量关系.【答案】(1)AB ∥CD ,理由见解析过程;(2)28°;(3)α=12β或α=90°-12β 【分析】(1)结论://AB CD .只要证明AEM EM D ∠=∠即可.(2)①依据平行线的性质可得124AEG ∠=︒,再根据EH 平分FEG ∠,EM 平分AEF ∠,即可得到1622HEN AEG ∠=∠=︒,再根据HN ME ⊥,即可得到Rt EHN ∆中,906228EHN ∠=︒-︒=︒;②分两种情况进行讨论:当点G 在点F 的右侧时,12αβ=,当点G 在点F 的左侧时,1902βα︒=-.【详解】解:(1)结论://AB CD .理由:如图1中,EM 平分AEF ∠交CD 于点M ,AEM M EF ∴∠=∠,FEM FM E ∠=∠.AEM FM E ∴∠=∠,//AB CD ∴.(2)①如图2中,//AB CD ,56BEG EGF β∴∠=∠==︒,124AEG ∴∠=︒,AEM EM F ∠=∠,HEF HEG ∠=∠,1622HEN MEF HEF AEG ∴∠=∠+∠=∠=︒,HN EM ⊥,90HNE ∴∠=︒,9028EHN HEN α∴=∠=︒-∠=︒.②结论:12αβ=或1902βα︒=-.理由:①当点G 在F 的右侧时,可得12αβ=. //AB CD ,BEG EGF β∴∠=∠=,180AEG β∴∠=︒-,AEM EM F ∠=∠,HEF HEG ∠=∠,119022HEN MEF HEF AEG β∴∠=∠+∠=∠=︒-,HN EM ⊥,90HNE ∴∠=︒,1902EHN HEN αβ∴=∠=︒-∠=.②当点G 在F 的左侧时,可得1902βα︒=-.理由://AB CD ,AEG EGF β∴∠=∠=,又EH 平分FEG ∠,EM 平分AEF ∠,12HEF FEG ∴∠=∠,12MEF AEF ∠=∠,M EH M EF H EF ∴∠=∠-∠1()2AEF FEG =∠-∠12AEG =∠1 2β=,又HN ME⊥,Rt EHN∴△中,90EHN MEH∠=︒-∠,即1902βα︒=-.【点睛】本题考查三角形的内角和定理,熟练掌握三角形内角和,平行线的性质,角平分线的定义等知识是解题的关键.。
中考总复习解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
解直角三角形应用(航海)分解课件

目录
• 航海与直角三角形 • 解直角三角形的基本方法 • 航海中的方向与距离计算 • 航海中的定位技术 • 解直角三角形在航海中的应用实例
01
航海与直角三角形
航海与直角三角形的关系
航海中,船只的位置、航向和速 度通常需要精确测量,直角三角 形是解决这些问题的关键工具。
03
航海中的方向与距离计算
方向计算
01
02
03
真航向
船的实际航行方向,用真 北为基准量测的角度表示 。
航迹向
船的航迹方向,即船头对 航迹中点的连线方向,用 真北为基准量测的角度表 示。
风向
风吹来的方向,用真北为 基准量测的角度表示。
距离计算
船速
船在单位时间内所行驶的 距离,通常用节来表示。
航程
船从起始点到终点的直线 距离,通常用海里来表示 。
风速
风吹来的速度,通常用节 来表示。
航速与航程
顺风航速
无风情况下的航程
船顺风行驶时的速度,通常用节来表 示。
船在没有风的情况下行驶的距离,通 常用海里来表示。
逆风航速
船逆风行驶时的速度,通常用节来表 示。
04
航海中的定位技术
卫星定位系统
全球定位系统(GPS):通过 接收来自多颗卫星的信号,确 定船舶的位置、速度和时间。
全球导航卫星系统( GLONASS):由俄罗斯运行 ,提供与GPS类似的定位服务 。
伽利略定位系统(Galileo): 由欧盟开发,提供高精度的定 位服务。
雷达定位
雷达测距
通过向目标发射电磁波并测量回 波时间,计算船舶与目标之间的
距离。
雷达扫描
使用多普勒效应确定船舶相对于目 标的方位和速度。
(完整版)专题11三角形综合问题(精练)-2019年中考数学高频考点突破(解析版)

一、选择题(10×3=30分)1.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有(C)A.1个B.2个C.3个D.4个【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个.2.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )A.BE=DF B.BF=DE C.AE=CF D.∠1=∠23.(2018·广西梧州·3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.4.(2018·辽宁大连·3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α解:由题意可得:∠CBD=α,∠ACB=∠EDB.∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°.∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α.故选C.5.(2018•聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.6.(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【考点】KX:三角形中位线定理;KH:等腰三角形的性质..【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.7.(2017山东滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.[来&源:%中国@教*育#出版网]在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,8.(2018•杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【解答】解:∵如图,在△ABC中,DE∥BC,9.(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,10.(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①② D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确二、填空题(6×4=24分).11.如图22-7,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是__ _(只需写一个,不添加辅助线).【解析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个边了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.12.(2018·广西贺州·3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是.13. (2018·重庆市B卷)(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.14.(2018•绵阳)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.【分析】利用三角形中线定义得到BD=2,AE=,且可判定点O为△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代换得到BO2+AO2=4,BO2+AO2=,把两式相加得到BO2+AO2=5,然后再利用勾股定理可计算出AB的长.15.(2017广西)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.16.(2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E 处,连结BE,得到四边形ABED.则BE的长是.A.4 B.C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,三、解答题(共46分).17.某产品的商标如图所示,O是线段AC,DB的交点,且AC=BD,AB=DC,嘉琪认为图中的两个三角形全等,他的思考过程是:∵AC=DB,∠AOB=∠DOC,AB=DC,∴△ABO≌△DCO.你认为嘉琪的思考过程对吗?如果正确,指出她用的是判别三角形全等的哪个条件;如果不正确,写出你的思考过程.【点拨】判定两个三角形是否满足全等条件“SAS”.【解答】解:显然嘉琪的思路是不正确的,因为由已知条件不能直接得到这两个三角形全等.可考虑连接BC,由SSS可先得△ABC和△DCB全等,由全等三角形的性质,可得到∠A=∠D,再根据∠AOB=∠DOC,AB=DC,由AAS判断得到△ABO≌△DCO.18.如图1所示,在△ABC中,AB=AC,∠BAC=90°,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角△ADF,连接CF.(1)当点D 在线段BC 上时(不与点B 重合),线段CF 和BD 的数量关系与位置关系分别是什么?请给予证明; (2)当点D 在线段BC 的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【点拨】 可证明△ACF ≌△ABD ,再利用全等三角形的性质,可得CF =BD ,CF ⊥BD.(2)(1)的结论仍然成立. ∵∠CAB =∠DAF =90°,∴∠CAB +∠CAD =∠DAF +∠CAD ,即∠CAF =∠BAD.在△ACF 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAF =∠BAD ,AF =AD ,∴△ACF ≌△ABD(SAS).∴CF =BD ,∠ACF =∠B. ∵AB =AC ,∠BAC =90°, ∴∠B =∠ACB =45°.∴∠BCF =∠ACF +∠ACB =45°+45°=90°,即CF ⊥BD. 综上,CF =BD ,且CF ⊥BD.19. (2016·山东潍坊)如图,在菱形ABCD 中,AB=2,∠BAD=60°,过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F .(1)如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:MN=AC ;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.20.(山东省菏泽市·3分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【考点】等腰三角形的性质.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△AC B和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.。
(完整版)解直角三角形总结

解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。
1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。
如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。
(2)两锐角之间的关系:A+B=90°。
(3)三条边之间的关系:。
以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。
2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。
由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。
所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。
这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。
四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。
2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。
解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11解直角三角形及其应用一、选择题1、下列计算错误的个数是( )①sin60°-sin30°=sin30°②sin 245°+cos 245°=1 ③(tan60°)2=13④tan30°=cos30sin 30oo A. 1个 B. 2个 C. 3个 D. 4个答案:C分析:根据特殊角三角函数值,可得答案.解答:A .sin60°-sin30°12≠sin30°,故A 错误; B .sin 245°+cos 245°=1,故B 正确;C .(tan60°)2=3,故C 错误;D .tan30°=3030sin cos ︒︒,故D 错误; 选C .2、如图,ABC ∆的顶点都是正方形网格中的格点,则cos CBA ∠等于( )A. 45B. 35C. 34D. 答案:A分析:过点C 作CD ⊥AB ,根据勾股定理求出BC 长,在Rt △CDB 中cos =BD CBA BC∠,即可求解.解答:过点C 作CD ⊥AB ,∴5BC ==在Rt △CDB 中 ∴4cos =5BD CBA BC ∠= 选A3、如图,一把梯子靠在垂直水平地面的墙上,梯子AB 的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC 为( )A. 3sin α米B. 3cos α米C. 3sin α米D. 3cos α米 答案:A 分析:直接利用锐角三角函数关系得出sin 3BC BC AB α==,进而得出答案. 解答:解:由题意可得:sin 3BC BC AB α==, 故()3sin BC m α=.选A4、如图,一艘船由A 港沿北偏东65°方向航行至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )km .A. 30+B. 30+C. 10+D. 答案:B分析:根据题意作BD 垂直于AC 于点D ,根据计算可得45DAB ︒∠=,60BCD ︒∠=;根据直角三角形的性质求解即可.解答:解:根据题意作BD 垂直于AC 于点D .可得AB =652045DAB ︒︒︒∠=-=204060DCB ︒︒︒∠=+=所以可得cos 4530AD AB ︒===gsin 45302BD AB ︒===tan 60BD CD ︒===因此可得30AC AD CD =+=+选B .5、如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60nmile 的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是( )A. B. 60nmile C. 120nmile D. (30+nmile 答案:D分析:过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.解答:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=CD AC,∴CD=AC•cos∠ACD=在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD,∴AB=AD+BD答:此时轮船所在的B处与灯塔P的距离是(nmile.选D.6、南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A. a sin α+a sin βB. a cos α+a cos βC. a tan α+a tan βD. tan tan a a αβ+ 答案:C分析:在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =a tan α,BD =a tan β,得出CD =BC +BD=a tan α+a tan β即可.解答:在Rt △ABD 和Rt △ABC 中,AB =a ,tan α=BC AB ,tan β=BD AB, ∴BC =a tan α,BD =a tan β,∴CD =BC +BD =a tan α+a tan β,选C .7、如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A. 12B. 2C.D. 答案:A分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可.解答:连接AC ,由网格特点和勾股定理可知,AC AB BC ==AC 2+AB 2=10,BC 2=10,∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∴tan ∠ABC =12AC AB ==. 8、如图,点(4,0)C ,(0,3)D ,(0,0)O ,在A e 上,BD 是A e 的一条弦,则sin OBD ∠=( )A. 12B. 34C. 45D. 35答案:D分析:连接CD ,可得出∠OBD =∠OCD ,根据点D (0,3),C (4,0),得OD =3,OC =4,由勾股定理得出CD =5,再在直角三角形OCD 中利用三角函数即可求出答案.解答:连接CD ,∵D (0,3),C (4,0),∴OD =3,OC =4,∵∠COD =90°,∴5CD ==,∵∠OBD =∠OCD ,∴sin∠OBD=sin∠OCD=35 ODDC,选D.9、如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B. 轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?()A. 1小时B.C. 2小时D.答案:A分析:本题考查了解直角三角形的应用.解答:如图:作BD⊥AC于D,如下图所示:易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°.∴AC=BC,∵轮船以40海里/时的速度在海面上航行,∴AC=BC=2×40=80海里,∴CD=12BC=40海里.故该船需要继续航行的时间为40÷40=1小时.选A.10、已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM的长为km ,一艘货轮从B 港口沿如图所示的BC 方向航行km 到达C 处,测得C 处位于A 观测点北偏东75°方向,则此时货轮与A 观测点之间的距离AC 的长为( )km .A. B. C.D. 答案:A分析:本题考查了解直角三角形的应用-方向角问题.解答:解:∵∠MAB =45°,BM ,∴AB km ,过点B 作BD ⊥AC ,交AC 的延长线于D ,在Rt △ADB 中,∠BAD =∠MAC -∠MAB =75°-45°=30°,tan ∠BAD =BD AD =3,∴AD ,BD 2+AD 2=AB 2,即BD 2+)2=202,∴BD =10,∴AD在Rt △BCD 中,BD 2+CD 2=BC 2,BC CD∴AC =AD -CD km ,答:此时货轮与A 观测点之间的距离AC 的长为.选A .二、填空题11、在ABC △中,()1sin cos 902B C =︒-=,则A ∠的大小是______. 答案:120°分析:根据特殊角的三角函数值即可求出∠B 、∠C 的大小,然后根据三角形的内角和即可求出A ∠的大小.解答:()1sin cos 902B C Q =︒-=, 9060C ∴︒-=︒,30B ∠=︒,30C ∴∠=︒,A ∴∠的大小是:1803030120︒-︒-︒=︒.故答案为:120︒.12、某游乐园的摩天轮(如图1)有均匀分布在圆形转轮边缘的若干个座舱,人们坐在座舱中可以俯瞰美景,图2是摩天轮的示意图.摩天轮以固定的速度绕中心O 顺时针方向转动,转一圈为18分钟.从小刚由登舱点P 进入摩天轮开始计时,到第12分钟时,他乘坐的座舱到达图2中的点______处(填A ,B ,C 或D ),此点距地面的高度为______m .答案:C 78分析:根据转一圈需要18分钟,到第12分钟时转了23圈,即可确定出座舱到达了哪个位置;再利用垂径定理和特殊角的锐角三角函数求点离地面的高度即可.解答:∵转一圈需要18分钟,到第12分钟时转了23圈 ∴乘坐的座舱到达图2中的点C 处如图,连接BC ,OC ,OB ,作OQ ⊥BC 于点E由图2可知圆的半径为44m ,120BOC ∠=︒即44OB OC OQ ===∵OQ ⊥BC ∴111206022EOC BOC ∠=∠=⨯︒=︒ ∴1cos6044222OE OC =︒=⨯=g ∴442222QE OQ OE =-=-= ∴点C 距地面的高度为1002278-=m故答案为C ,7813、我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,…,割的越细,圆的内接正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66p R =,计算632p Rπ≈=;圆内接正十二边形的周长1224sin15p R ︒=,计算12 3.102p Rπ≈=;请写出圆内接正二十四边形的周长24p =______,计算π≈______.(参考数据:sin150.258︒≈,sin7.50.130︒≈)答案:48R sin7.5°3.12 分析:根据圆的内接正二十四边形的每条边所对应的圆心角是15°,可知:正二十四边形的周长为:2448sin 7.5p R ︒=,进而可求出π的近似值.解答:∵圆的内接正二十四边形的每条边所对应的圆心角是15°,∴正二十四边形的周长为:2448sin 7.5p R ︒=, ∴24480.130 3.1222p R R Rπ⨯≈==, 故答案是:48R sin7.5°,3.12.14、如果α是锐角,且sin α=cos20°,那么α=______度.答案:70分析:直接利用sin A =cos (90°-∠A ),进而得出答案.解答:解:∵sin α=cos20°,∴α=90°-20°=70°.故答案为:70.15、如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34.则点B ′点的坐标为______.答案:(12,0)分析:由四边形OABC 是矩形,边长OC 为9,tan ∠OB ′C =34,利用三角函数的知识即可求得OB ′的长,继而求得答案.解答:在Rt △OB ′C 中,tan ∠OB ′C =34, ∴3'4OC OB =,即9'OB =34, 解得,OB ′=12,则点B ′点的坐标为(12,0),故答案为(12,0).16、如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为______米(结果保留根号).答案: 4分析:利用特殊三角函数值,解直角三角形,AM=MD ,再用正切函数,利用MB 求CM ,作差可求DC .解答:因为∠MAD =45°,AM =4,所以MD =4,因为AB =8,所以MB =12,因为∠MBC =30°,所以CM=MB tan30°所以CD -4.17、在直角三角形ABC 中,若2AB AC =,则cos C =______.分析:对AC 分两种情况讨论,根据三角函数即可得到答案.解答:如图所示,分两种情况讨论,AC 可以是直角边,也可以是斜边.①当AC 是斜边,设AB =x ,则AC =2x ,由勾股定理可得:BC ,则cos 22BC C AC x ===②当AC 是直角边,设AB =x ,则AC =2x ,由勾股定理可得:BC ,则cos5AC C BC ====综上所述,cos C =. 18、如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线,则图中阴影部分的面积为______2cm (结果保留根号)答案:14+分析:过顶点A 作AB ⊥大直角三角形底边,先求出CD ,然后得到小等腰直角三角形的底和高,再利用大直角三角形的面积减去小直角三角形面积即可.解答:如图:过顶点A 作AB ⊥大直角三角形底边,由题意:2cm EC AC ==∴(2CD = =2cm8=-∴大等腰直角三角形面积为10×10÷2=50cm 2cm 2∴2=5014S -=+阴影(. 19、如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 点6m的位置,在D 处测得旗杆顶端A 的仰角为53°,若测角仪的高度是1.5m ,则旗杆AB 的高度约为______m .(精确到0.1m .参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)答案:9.5分析:根据三角函数和直角三角形的性质解答即可.解答:过D 作DE ⊥AB ,∵在D 处测得旗杆顶端A 的仰角为53°,∴∠ADE =53°,∵BC =DE =6m ,∴AE =DE •tan53°≈6×1.33≈7.98m ,∴AB =AE +BE =AE +CD =7.98+1.5=9.48m ≈9.5m ,故答案为9.5三、解答题20()10012sin 4523π-⎛⎫+-- ⎪⎝⎭2.分析:代入特殊角的三角函数值,根据0指数幂、负整数指数幂及二次根式的化简计算即可得答案.解答:原式213=-2=.21、计算:2sin60°-()01π-+213-⎛⎫ ⎪⎝⎭+1-.答案:.分析:代入特殊角的三角函数值,根据0指数幂、负整数指数幂及绝对值的运算法则计算即可得答案.解答:原式=-1,=.22、先化简,再求值:2121()111x x x x --÷+-+,其中2sin 301x =+o .答案:11x -,1 分析:先根据分式的混合运算顺序和运算法则化简原式,再将x 的值化简代入计算可得. 解答:原式12[](1)(1)(1)(1)(1)--=-⋅++-+-x x x x x x x 1(1)(1)(1)x x x =⋅++-11x =-, 当12sin 301211122x =+=⨯+=+=o 时, 原式1=. 23、今年由于防控疫情,师生居家隔离线上学习,AB 和CD 是社区两栋邻楼的示意图,小华站在自家阳台的C 点,测得对面楼顶点A 的仰角为30°,地面点E 的俯角为45°.点E 在线段BD 上.测得B ,E 间距离为8.7米.楼AB 高米.求小华家阳台距地面高度CD的长(结果精确到1≈1.41≈1.73)答案:10米分析:作CH ⊥AB 于H ,得到BD =CH ,设CD =x 米,根据正切的定义和等腰直角三角形的性质分别用x 表示出HC 、ED ,然后列出方程,解方程即可.解答:解:作CH ⊥AB 于H ,则四边形HBDC 为矩形,∴BD =CH ,由题意得,∠ACH =30°,∠CED =45°,设CD =x 米,则AH =)x 米,在Rt△AHC中,HC=36 tanAHACH==∠则BD=CH=36-∴ED=368.7=27.3-在Rt△CDE中,CD=DE即=27.3x解得:10x≈答:立柱CD的高为10米.24、如图是小莉在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成37°角,线段AA1表示小红身高1.5米.当她从点A 跑动4米到达点B处时,风筝线与水平线构成60°角,此时风筝到达点E处,风筝的水平移动距离CF为8米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75.)答案:9.5米分析:在Rt△BEF、Rt△ACD中,找到相关联的量BE=AD,设AF=x,则可建立关于x的方程,解方程求得x,即可得出CD的长.解答:解:设AF=x,则BF=AB+AF=4+x,在Rt△BEF中,BE=482 cos cos60BF xxEBF+==+∠︒,∵CF =8,AC =AF +CF =8+x ,在Rt △ACD 中,AD =810 1.25cos cos37AC x x DAC +=≈+∠︒, 由题意可知:BE =AD∴82x +=10 1.25x + 解得:83x =, ∴CD =AC ·tan ∠CAD ≈(8+83)×0.75=8, 则C 1D =CD +C 1C =8+1.5=9.5答:风筝原来的高度C 1D 为9.5米.故答案为:9.5米.25、如图1,2分别是某款篮球架的实物图与示意图,已知底座BC =0.60米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD =1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE =60°,求篮框D 到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732 1.732≈ 1.414≈)答案:3.05米.分析:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论.解答:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,在Rt △ABC 中,tan ∠ACB =AB BC, ∴AB =BC •tan75°=0.60×3.732=2.2392,∴GM =AB =2.2392,在Rt △AGF 中,∵∠F AG =∠FHD =60°,sin ∠F AG =FG AF,∴sin60°=2.52FG , ∴FG =2.165,∴DM =FG +GM -DF ≈3.05米.答:篮框D 到地面的距离是3.05米.26、如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C 、D 为监测点,已知点C 、D 、B 在同一直线上,且AC ⊥BC ,CD =400米,tan ∠ADC =2,∠ABC =35°(1)求道路AB 段的长(结果精确到1米)(2)如果道路AB 的限速为60千米/时,一辆汽车通过AB 段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002答案:(1)1395米;(2)超速,理由见解答;分析:(1)根据锐角三角函数的定义即可求出答案.(2)求出汽车的实际车速即可判断.解答:解:(1)在Rt△ACD中,AC=CD•tan∠ADC=400×2=800,在Rt△ABC中,AB=ACsin ABC=8000.5736≈1395(米);(2)车速为:139590≈15.5m/s=55.8km/h<60km/h,∴该汽车没有超速.27、如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠DAC;(2)若AF=10,BC=tan∠BAD的值.答案:(1)见解答;(2)tan∠BAD=11 2.分析:(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到»AB=»AC,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=12(180°−∠BAC)=90°−12∠BAC,∠ADB=90°−∠CAD,从而得到12∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角形求得tan∠BAD的值.解答:解:(1)∵AB=AC,∴»AB=»AC,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=12(180°−∠BAC)=90°−12∠BAC,∵BD⊥AC,∴∠ADB=90°−∠DAC,∴12∠BAC=∠DAC,∴∠BAC=2∠DAC;(2)∵DF=DC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=设AE=x,CE=10-x,AB2-AE2=BC2-CE2,100-x2=80-(10-x)2,x=6∴AE=6,BE=8,CE=4,∴DE=AE CEBE⋅=648⨯=3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵12AB•DH=12BD•AE,∴DH =•11633105BD A AB E ⨯==,∴BH 445=, ∴AH =AB −BH =10−44655=, ∴tan ∠BAD =DH AH =336=112. 28、如图,学校教学楼上悬挂一块长为3m 的标语牌,即3CD m =.数学活动课上,小明和小红要测量标语牌的底部点D 到地面的距离.测角仪支架高 1.2AE BF m ==,小明在E 处测得标语牌底部点D 的仰角为31︒,小红在F 处测得标语牌顶部点C 的仰角为45︒,5=AB m ,依据他们测量的数据能否求出标语牌底部点D 到地面的距离DH 的长?若能,请计算;若不能,请说明理由(图中点A ,B ,C ,D ,E ,F ,H 在同一平面内) (参考数据:tan310.60︒≈,sin310.52︒≈,cos310.86)︒≈答案:能,点D 到地面的距离DH 的长约为13.2m .分析:延长EF 交CH 于N ,根据等腰直角三角形的性质得到CN NF =,根据正切的定义求出DN ,结合图形计算即可.解答:能,理由如下:延长EF 交CH 于N ,则90CNF ∠=︒,45CFN ∠=︒Q ,CN NF ∴=,设DN xm =,则(3)NF CN x m ==+, 5(3)8EN x x ∴=++=+,在Rt DEN ∆中,tan DNDEN EN ∠=,则tan DN EN DEN =∠g ,0.6(8)x x ∴≈+,解得,12x =,则12 1.213.2()DH DN NH m =+=+=, 答:点D 到地面的距离DH 的长约为13.2m .。