2018年全国高中数学联赛江西省预赛试题及解答

合集下载

2018年全国高中数学联合竞赛试题及解答.(B卷)

2018年全国高中数学联合竞赛试题及解答.(B卷)

a 2018年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。

2018B 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是奇数的概率为 ◆答案:101 ★解析:由def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=。

2018B 4、在平面直角坐标系xOy 中,直线l 通过原点,)1,3(=n 是l 的一个法向量.已知数列{}n a 满足:对任意正整数n ,点),(1n n a a +均在l 上.若62=a ,则54321a a a a a 的值为 ◆答案: 32-★解析:易知直线l 的方程为x y 3-=,因此对任意正整数n ,有n n a a 311-=+,故{}n a 是以31-为a 公比的等比数列.于是23123-=-=a a ,由等比数列的性质知325354321-==a a a a a a2018B 5、设βα,满足3)3tan(-=+πα,5)6tan(=-πβ,则)tan(βα-的值为◆答案: 47-★解析:由两角差的正切公式可知7463tan =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+πβπα,即可得47)tan(-=-βα2018B 6、设抛物线x y C 2:2=的准线与x 轴交于点A ,过点)0,1(-B 作一直线l 与抛物线C 相切于点K ,过点A 作l 的平行线,与抛物线C 交于点N M ,,则KMN ∆的面积为为 ◆答案:21★解析:设直线l 与MN 的斜率为k ,:l 11-=y k x ,:MN 211-=y k x 分别联立抛物线方程得到:0222=+-y k y (*),和0122=+-y ky (**) 对(*)由0=∆得22±=k ;对(**)得2442=-=-k y y NM所以2121=-⋅⋅=-==∆∆∆∆N M KBAN BAM BMN KMN y y AB S S S S2018B 7、设)(x f 是定义在R 上的以2为周期的偶函数,在区间[]2,1上严格递减,且满足1)(=πf ,0)2(=πf ,则不等式组⎩⎨⎧≤≤≤≤1)(010x f x 的解集为◆答案:[]ππ--4,62★解析:由)(x f 为偶函数及在区间[]2,1上严格递减知,)(x f 在[]1,2--上递增,结合周期性知,)(x f 在[]1,0上递增,又1)()4(==-ππf f ,0)2()62(==-ππf f ,所以不等式等价于)4()()62(ππ-≤≤-f x f f ,又14620<-<-<ππ,即不等式的解集为a[]ππ--4,622018B 8、已知复数321,,z z z 满足1321===z z z ,r z z z =++321,其中r 是给定的实数,则133221z z z z z z ++的实部是 (用含有r 的式子表示) ◆答案: 232-r★解析:记133221z z z z z z w ++=,由复数的模的性质可知:111z z =,221z z =,331z z =,因此 133221z z z z z z w ++=。

2018年全国高中数学联合竞赛一试参考答案(A卷)

2018年全国高中数学联合竞赛一试参考答案(A卷)

祝君金榜题名2018 年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 设集合 A 1, 2, 3,, 99, B2x xA, Cx 2x A,则 BC 的元素个数为.答案:24 .1399解:由条件知,B C,2, 4, 6, , 198,1, , 2, ,2, 4, 6, , 48222故 B C 的元素个数为 24 .2. 设点 P 到平面 的距离为 3 ,点Q 在平面 上,使得直线 PQ 与 所成角不小于30且不大于60,则这样的点Q 所构成的区域的面积为.答案:8 .OP3解:设点 P 在平面上的射影为O .由条件知,tan OQP, 3 , OQ3即OQ[1, 3],故所求的区域面积为.318223. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a , b , c , d , e , f ,则 abc + def 是偶数的 概率为.答案:9 10.解:先考虑abc + def 为奇数的情况,此时abc , def 一奇一偶,若abc 为奇数,则a , b , c 为1, 3, 5的排列,进而d , e , f 为2, 4, 6的排列,这样有3!×3! = 36 种情况,由对称性可知,使abc + def 为奇数的情况数为36×2 = 72 种.从而abc + def 为偶 72 72 9 数的概率为1− = 1− = . 6! 720 10xy22ab4. 在平面直角坐标系 xOy 中,椭圆C :1(a b 0)的左、右焦点22分别是 F 、F ,椭圆C 的弦 ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已12知线段 PU , PS , PV , PT 的长分别为1, 2, 3, 6 ,则 PF F的面积为 .1 2答案: 15 .解:由对称性,不妨设 P (x , y ) 在第一象限,则由条件知PP1 1x PT PS y PV PU,2,1PP221祝君金榜题名即 P (2,1).进而由 1, 2xPU PS得U (2, 2), S (4, 1) ,代入椭圆C 的方程知 P1 1 1 14 4 161 2 20,25,解得 a b .abab22221从而15SF Fyaby .22PF F1 2PP21 25. 设 f (x ) 是定义在 R 上的以 2 为周期的偶函数,在区间[0, 1]上严格递减,1 x 2,且满足 f ()1, f (2) 2 ,则不等式组的解集为.1 f (x ) 2答案:[2, 82].解:由 f (x ) 为偶函数及在[0, 1]上严格递减知, f (x ) 在[1, 0] 上严格递增, 再结合 f (x ) 以 2 为周期可知,[1, 2]是 f (x ) 的严格递增区间.注意到f f ff f ,(2) ( ) 1, (8 2 )( 2 ) (2 ) 2 所以1f (x ) 2 f (2) f (x ) f (82) ,而1282 2 ,故原不等式组成立当且仅当 x[2, 82].6. 设复数 z 满足 z 1,使得关于 x 的方程 zxzx 有实根,则这样 22 2 0的复数 z 的和为.3答案:. 2解:设 z ab i (a , b R , a 2 b 21) .将原方程改为(a b i)x 22(ab i)x 2 0,分离实部与虚部后等价于axax ,①22 2 0bxbx . ②22 0若b 0,则 a,但当 a1时,①无实数解,从而 a 1,此时存在实21数 x1 3 满足①、②,故 z1满足条件.若b 0,则由②知 x{0, 2},但显然 x 0 不满足①,故只能是 x 2 ,代 115 1 15i入①解得 .a,进而b,相应有z4441 15i1 15i3 综上,满足条件的所有复数 z 之和为1.4427. 设O 为ABC 的外心,若 AO AB 2AC ,则sinBAC 的值为 .故10 答案: .4 解:不失一般性,设ABC 的外接圆半径 R 2 .由条件知,2AC AOAB BO,①1AC BO .122祝君金榜题名取 AC 的中点 M ,则OM AC ,结合①知OM BO ,且 B 与 A 位于直线MC1 OM 的同侧.于是cos BOC cos (90 MOC ) sin MOCOC4.在BOC 中,由余弦定理得BC OBOCOB OC BOC,222cos10BC10进而在ABC 中,由正弦定理得.sin BAC 2R48. 设整数数列 1, 2, , 10 10 3 1, 282 5 a a a 满足 a a a aa ,且aaa i,iii1 {1, 2 },1, 2, , 9则这样的数列的个数为.答案:80. 解:设baai ,则有 1{1, 2}( 1, 2, , 9)iii2aaabbb ,①1101129bbbaaaabbb . ②2345285567用t 表示b 2, b 3, b 4 中值为 2 的项数.由②知,t 也是 5, 6, 7b b b 中值为 2 的项数,2, 3,, 70 2 1 2 2 2 3 2 3333取定 2, 3, ,78, 9b b b 后,任意指定b b 的值,有 22 4 种方式. 最后由①知,应取 1 {1,2} b 的取法是b使得bbb 为偶数,这样的1291唯一的,并且确定了整数 1, 2, , 9a 的值,进而数列b bb 唯一对应一个满足条件的 1数列 1, 2, ,10a a a . 综上可知,满足条件的数列的个数为 204 80.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)已知定义在 R 上的函数 f (x ) 为log x 1 , 0 x9, f (x )34 x , x 9.设 a , b , c 是三个互不相同的实数,满足 f (a ) f (b ) f (c ) ,求 abc 的取值范围.解:不妨假设ab c .由于 f (x ) 在(0, 3] 上严格递减,在[3, 9] 上严格递增,在[9,) 上严格递减,且 f (3) 0, f (9)1,故结合图像可知a,b (3, 9),c (9,),(0, 3)并且 f (a ) f (b ) f (c ) (0, 1) . …………………4 分由 f (a ) f (b ) 得1log a log b1,33即 39log alog b 2,因此 ab.于是 abc 9c . …………………8 分233又3祝君金榜题名0 f (c ) 4 c 1, …………………12 分故c (9, 16) .进而 abc 9c (81, 144) .所以, abc 的取值范围是(81, 144) .…………………16 分r注:对任意的 r (81, 144) ,取c = ,则c ∈ ,从而 0 90 (9,16)f (c )∈(0,1).过点(c , f (c ))作平行于 x 轴的直线l ,则l 与 f (x )的图像另有两个交点(a , f (a )) ,(b , f (b )) (其中a (0, 3), b (3, 9) ),满足 f (a ) f (b ) f (c ) ,并且ab 9 ,从 而abc = r .10.(本题满分 20 分)已知实数列 1, 2,3,a a a满足:对任意正整数 n ,有 a S a ,其中 (2 ) 1 S 表示数列的前 n 项和.证明: n n n n(1) 对任意正整数 n ,有 2an ;n(2) 对任意正整数 n ,有a a.11n n证明:(1) 约定S.由条件知,对任意正整数 n ,有 1(2) ( )(),aSaSSSSSS22nnnnn 1nn 1nn 1从而22Sn Sn ,即 Sn (当 n 0 时亦成立). …………………5 分nn显然,11 2aSSnnn . …………………10 分nnn(2) 仅需考虑 a a 同号的情况.不失一般性,可设 a a 均为正(否则, ,nn 1nn 1将数列各项同时变为相反数,仍满足条件),则SSSn ,故必有n 1nn 1S n Sn ,,1nn 1此时an nan n , 1,1nn 1从而a an n n nn n n n .n n1(1)(1) (1)(1) 1…………………20 分11.(本题满分 20 分)在平面直角坐标系 xOy 中,设 AB 是抛物线 y 24x 的过点 F (1, 0) 的弦,AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平分APB ,求 PF 的所有可能值.AyB y Py1 ,,2 ,,3,1, 2, 3yyy222解:设,由条件知 y y y 两两不等且非零.1234 4 4设直线 AB 的方程为 x ty 1,与抛物线方程联立可得 yty ,故24 4 0y y. ①1 24注意到AOB 的外接圆过点O ,可设该圆的方程为 xydx ey ,与 22yyd 24x 联立得,y y y y这四个不1yey 0 .该四次方程有 1, 2,3, 0241644祝君金榜题名同的实根,故由韦达定理得y y y,从而1 2 3 0 0y yy.②3 ( 1 2 )…………………5 分PA FA y因PF平分APB,由角平分线定理知,PB FB y,结合①、②,有122y y2 23 1 2(y y)22 3 1 2 2 2y PA 4 42 (y y) y16(2y y)1 2 1 1 212 2 2y PB y y y y y y y2 2 2 2 2 2( ) 16(2 )2 3 2 2 1 2 2 2 1(y y)3 24 4(y8) 16(4y y16) y64y1922 2 2 2 4 22 1 2 2 1 ,………………10 分(y8) 16(4y y16) y64y1922 2 2 2 4 21 2 1 1 2即16 64 12 22192 12 2664 22 12192 22y y y y y y y y,故(y y)(y y y y192) 0 .2 2 4 2 24 1 2 1 1 22当 2 2 3 0y y时,y y,故y,此时P与O重合,与条件不符.1 2 2 1当14 122224192 0y y y y时,注意到①,有(y y) 192(y y) 208.…………………15 分2 2 22 1 2 1 2因12 22 4 13 8 2 1 2 1 2 4 13 1, 2y y y y,故满足①以及y y的实数2 2y y存在,对应可得满足条件的点A, B.此时,结合①、②知PF.y3 1 (y1 y2 ) 4 y1 y2 4 208 4 13 12 2 2 24 4 4 4…………………20 分5。

2018年全国高中数学联赛一试A卷试题及参考答案评分标准

2018年全国高中数学联赛一试A卷试题及参考答案评分标准

1,
3 2
,
2,,99 2 Nhomakorabea2,
4,
6,,
48

故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为

答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ
数 x 1 3 满足①、②,故 z 1满足条件.
若 b 0 ,则由②知 x {0, 2} ,但显然 x 0 不满足①,故只能是 x 2 ,代
入①解得 a 1 ,进而 b 15 ,相应有 z 1 15 i .
4
4
4
综上,满足条件的所有复数 z 之和为1 1 15 i 1 15 i 3 .
2
取 AC 的中点 M ,则 OM AC ,结合①知 OM BO ,且 B 与 A 位于直线 OM 的同侧.于是 cosBOC cos (90 MOC) sin MOC MC 1 .
OC 4
在 BOC 中,由余弦定理得 BC OB2 OC2 2OBOC cosBOC 10 ,

答案: 15 .
解:由对称性,不妨设 P(xP, yP ) 在第一象限,则由条件知
xP

1 PT
2

PS 2,
yP
1 PV
2

PU
1,
1
即 P(2, 1) .进而由 xP PU 1, PS 2 得U (2, 2), S(4, 1) ,代入椭圆 C 的方程知
4

2018年全国高中数学联赛试题

2018年全国高中数学联赛试题
⒛18年全国高中数学联合竞赛一试试题 (A卷 )
-、 填空题 :本大题共 8小 题 ,每 小题 8分 ,满 分 “ 分。
1。 设集合 /=[,2,3,… ,991,B=仫 豸u∈ /l,c=伽 |2丌 ∈彳卜 贝刂B∩ C的 元
素个数为_⊥____·
不小2于.设30°点且`不到大平于面ωα°的,则距 离这为样雨的点,点口所g在构成平的面区α域上
。=.函 数尸撬圣甲IO,ll工 熟耨浒减,
⒍ 设复数z满 足|亻 F殉呷 关弑
纟'’;`i
⒎ 设o裨鲫 BC呼唾 锷 昶 舒 豇 2刃 ,酪应 硭 的值为___
亻 鞲 .解答应 写投文 字说明 、证明过

∷ 篚R+上 的雾熬/←)为
嚣静 丬’ ⒎ ~{严 百 ∶ I需
`
F∶f玉
设曰,D,ε 是三个互不相同的实数,满足/@)=/(D)=/(c),求 汕c的 取值范围。
切I囚 在 /B边 ˇL的 切点,σ 为 彳J与 BCJ的 交点,Ⅳ 在线段 EF~⒈ ,满 足 ⅣB⊥ 彳B。
证明:希 BⅣ 哀E″ ,则 DF⊥ JC.(笞 饿时泔将 国画在笛卷纸上 冫
m分 三 、(本 履满分
冫设″,七 ,胛 是 正整数’黻 虍n,L.″ ≤泖 《∶茔 二上‰
r

设 刀是{l。 2,… 9阴 }f向 ″瓦子集。讠iΙ 明:

rT″
ˉ^. Ⅱ
证 明 : (包 +lX仇 +l)… 《饥+l) 《 ~B+l
(FJl+l)(rJ2+l)… 《rJ″ +l) 彳 +l
二 、(本预满分 +0分 冫如图,AHBC∶ 为锐角Ι角彤 ,/B《 彳(J,〃 为 B(Γ 边

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。

则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。

若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)

2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)
I� f(x ) 三 2 钟 !(宵 - 2)三/(x)�/( 8-2 叶 ,
而I<π - 2 < 8-2r. < 2 , 故原不等式组成立当且仅当xE[肯 - 2, 8-2肯}. 6.设复数z满足l= I=I , 使得关于,y的方程 x' + 2:x+2 =0有实根 , 则这样

的复数z的和为 答案:
分别是F;、凡,椭l2ll c 的弦 ST 与 UV 分别 -'¥· 行于 x 剿l与y轴 , 且相交子点P. 己 知线段PU,PS ‘ PV 、 PT 的长分另lj为L 2. 3. 6 , 则 MF., 凡的朋积为 答案: -Jl5. 解: 由对称性 , 不妨设 P (,飞·,,, )'p )在第 一 象限,则由条件知
主.
解:设们在平面。上的射影为。白条件知, 立 = tanLOQP |丘♂ I ' OQ I 3
ε
i己为 a, b,c, d, e,f ,则。be ÷d吃f ;是偶数的
概率为 答案: 解:先考虑。 bc+def :为奇数的俏况,此时 abc、 d吃f 一 奇一 {间,若 abc 为奇敛,
10
则。 , b,c 为l, 3, 5 的排列 , 避而 d‘ e,f 为2,4,6的排列,这样有3!×31=36种情况, 由对称性可知 , 使 abc+def 为奇数的情况数为 36 × 2 =72 种.从而 abc+d,电f 为偶 72 72 9 =I-一一=一. 数的概率为I-一 ' 6 720 JO
1. 设织合 A= {I, 2, 3、
2018年全国高中数学联合竞赛一试(A卷) 参考答案及评分标准
,99}‘B={2xjxE A}, C={xl2xε斗 , 则B门C的元

2018年全国高中数学联合竞赛一试(含答案)

2018年全国高中数学联合竞赛一试(含答案)

则(������ + ������������)������2 + 2(������ − ������������)������ + 2 = 0,
整理得:(������������2 + 2������������ + 2) + (������������2 − 2������������)������ = 0
由图结合对称性得:
������1 = ������ − 2, ������2 = 2������ − [4 + 2(2������ − 6)] = 8 − 2������ 所以,由函数单调性,不等式1 ≤ ������(������) ≤ 2在[1,2]内
分析:������������������ + ������������������为偶数,则������������������与������������������奇偶性相同,
故当������ ≥ 2 时,
������������ = √������ ± √������ − 1 ≤ √������ + √������ − 1 < 2√������ (2) ������������与������������+1异号时结论显然成立,
当������������与������������+1同号时: 由(1)得������������ = ±√������, 不妨得:������������ = √������ − √������ − 1
6. 设复数������满足|������|=1,使得关于������ 的方程z������2 + 2������̅������ +
2 = 0有实根,则这样的复数������的和为

2018年全国高中数学联赛模拟试题与参考 答案

2018年全国高中数学联赛模拟试题与参考 答案

解得− ≥ ������> − 4.
注意:函数的定义域不能为空集。
2.已知函数������(������) = 1 −
(������>������)若������(������) = 2 ln √������ − ������(������),则������(������������)的取值范围为____________.
P
注:也可采用联立直线与圆锥曲线的方法解答,但过于繁琐,本解
答采用熟知的结论:������������ + ������������ = ������. 7.对于 ≤ ������ ≤ 1,则(1 + ������) (1 − ������)(1 − 2������) 的最大值为___________.
的等腰三角形,则三棱锥 A-BCD 的高与其外接球的直径的比值为_____________.
A
【解答】如图,易得 AE⊥BE,由等量关系,CE=ED=2,AF=BF=4,AE=BE=2√2.
由垂径定理,OF⊥AB,OE⊥CD,由对称性得 O 在 EF 上.
F
由勾股定理,OF + AF = AO = R = OC = (4 − OF)² + CE²
故������������������������ =
=
=
=
2
²
,若������������������������<0,则������������������������<0,这不可能.
∴ ������������������������>0. ������������������������ ≤ √ .
在 BDP 中由正弦定理得 1 x
sin 2 60
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档