初三中考数学 平面直角坐标系与函数的概念
2014年中考数学一轮复习课件:函数概念与平面直角坐标系

用 坐 标 表 示 平 移
某 点 的 对 称 点 的 坐 标
关于 x轴 关于 y轴
点P (x,y)关于x轴 对称的点P1的坐标 (x,-y) 为________ 点P(x,y)关于y轴 对称的点P2的坐标 (-x,y) 为________ 点P(x,y)关于原点 对称的点P3的坐标 (-x,-y) 为________ 规律可简记为:谁 对称谁不变,另一 个变号,原点对称 都变号
一般地,对于一个函数,如果以自变量与 因变量的每对对应值分别作为点的横坐标、 纵坐标,那么平面直角坐标系内由这些点 组成的图形,就是这个函数的图象
画法步骤
(1)列表
(2)描点
(3)连线
题型分类 深度剖析
类型一 坐标系中点坐标的特征
例1(2013遂宁)将点 A (3,2)沿x轴向左平移 4个单位长度得到点 A′ ,点 A′关于y轴对称 的点的坐标是 ( C ) A.(-3,2) B.(-1,2) C.( 1,2) D.(1,-2)
(1)使解析式有意义 (2)使实际问题有意义
防错提醒
函数不是数,它是指某一变化 过程中的两个变量之间的关系
考点7 函数的表示方法
用指导
表示函数时,要根据具体情况选择适 当的方法,有时为了全面认识问题, 可同时使用几种方法
考点8 函数图象的概念及画法
概念
【解析】把点 A (3,2)沿x轴向左平移4个单位 ,得到点 A′ (-1,2),点 A′关于y轴对称的 点的坐标(1,2).
【归纳总结】坐标系中点平移,向右平移横坐 标为加,向左平移横坐标为减.点关于什么轴 对称,什么坐标不变,关于原点对称,横纵坐 标都变号.
跟踪练习1 (怀化)如图 ,若在象棋盘上建立直角坐 标系,使“帅” 位 于 点 (-1,-2).“马”位于点 (2,-2),则“兵”位于点 变式题1图 ( C) A.(-1,1) B.(-2,-1) C.(-3,1) D.(1,-2) 【解析】∵在象棋盘上建立直角坐标系,使“帅 ”位于点(-1,-2) ,“马”位于点(2,-2) ,∴可得出原点位置在棋子“炮”的位置,∴则 “兵”位于点(-3,1) .
2025年中考数学总复习第一部分考点梳理第9课时平面直角坐标系

考点2
点的坐标变换[8年1考]
例6:在平面直角坐标系中,矩形的三个顶点的坐标分别是
(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是
[2023福州一中一模4分]( B )
A.(2,2)
B.(3,2)
C.(3,3)
D.(2,3)
考点1
考点2
【变式题】在平面直角坐标系xOy中,▱ABCD的对角线交于点
解:因为点A在第二象限的角平分线上,所以-2+a+3=0,
解得a=-1,故a的值为-1.
1
2
3
(2)当点B到x轴的距离是它到y轴距离的2倍时,求点B的坐标.
解:因为点B到x轴的距离是它到y轴距离的2倍,所以|b-3|
=2|b|.当b-3=2b时,b=-3,
所以点B的坐标为(-3,-6);当b-3=-2b时,b=1,所以
2
(4)已知线段AB平行于x轴,且点A(-5,-10),B(7,y),则y
-10
=______.
2
(5)点B(2,-3)到x轴的距离为___,到y轴的距离为___;
3
5
(6)P(1,2),Q(-1,1)两点之间的距离为___,线段PQ的中点
3
0,
2
坐标是_________.
(一)
(二)
(二)点的坐标变换
1.点的平移变换(如图)
(一)
(二)
2.点的对称变换(如图)
(一)
(二)
2.已知点P(-1,2).
(1)点P先向右平移3个单位长度,再向下平移2个单位长度,得
(2,0)
到的点的坐标是_______;
(-1,-2)
(2)点P关于x轴的对称点的坐标是__________;
中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。
中考数学复习系列课件

中考新突破 ·数学(陕西)
知识要点 · 归纳
根据xy=3判断出x,y是同号,根据x+y=-5判断出x,y均是负数,从而确定 点所在的象限.
【解答】∵xy=3,∴x和y同号.又∵x+y=-5,∴x和y均为负数,∴点(x,y) 在第三象限.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
18
练习1 在平面直角坐标系内,AB∥x轴,AB=5,点A的坐标为(1,3),则点B的
2.函数的三种表示方法:解析式法、○27 __列__表__法__、图象法.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
9
3.确定函数自变量的取值范围
函数表达 式的形式
整式
自变量的取值范围 全体实数
举例
y=x+1 的自变量的取值范围为○28 __全__体__实__数__
坐标为
(C)
A.(-4,3)
B.(6,3)
C.(-4,3)或(6,3)
D.(1,-2)或(1,8)
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
19
考点 2 确定函数自变量的取值范围
例2 函数 y= 2-x+x+1 3中,自变量 x 的取值范围是
(B)
A.x≤2
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
13
知识点三 分析判断函数图象 1.判断实际问题的函数图象 (1)找起点:结合题干中所给自变量及因变量的取值范围,在对应的图象中找对 应点; (2)找特殊点:即交点或转折点,说明图象在此点处将发生变化; (3)判断图象趋势:判断出函数的增减性,图象的倾斜方向等; (4)看是否与坐标轴相交:即此时另外一个量为0.
中考数学常考易错点-平面直角坐标系及函数的图象

平面直角坐标系及函数的图象易错清单1.能确定较复杂函数的自变量取值范围吗?【例1】(山东济宁)函数中的自变量x的取值范围是().A. x≥0B. x≠-1C. x>0D. x≥0且x≠-1【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【答案】根据题意,得x≥0且x+1≠0,解得x≥0.故选A.【误区纠错】本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2.能利用直角坐标系探讨点的坐标的变化规律.【例2】(山东泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点,B(0,4),则点B2014的横坐标为.【解析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【答案】∵,BO=4,故答案为10070.【误区纠错】此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.由特殊总结一般性.3.借助函数图象描述问题中两个变量之间的关系.【例3】(山东烟台)如图,点P是ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是().【解析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【答案】点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.【误区纠错】本题主要考查了动点问题的函数图象.注意分段考虑.名师点拨1.会画出直角坐标系,能标识点在平面直角坐标系的位置.2.能根据点的坐标的正、负性确定点的对称性及所在象限.3.理解函数的意义,会解释并区分常量与变量,能列简单的函数关系,会进行描点法画函数的图象.4.能列举函数的三种表示方法.5.会求出函数中自变量的取值范围,如保证分母不为零,使二次根式有意义等.6.能利用代入法求函数的值.7.能利用函数变化规律进行准确猜想、判断.提分策略1.函数的概念及函数自变量的取值范围.函数自变量的取值范围一般从三个方面考虑:(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.【解析】根据二次根式的意义,被开方数不能为负数,据此求解.【答案】 C2.函数解析式的求法.具体地说求函数的解析式和列一元一次方程解实际问题基本相似,即弄清题意和题目中的数量关系,找到能够表示所求问题含义的一个相等的关系,根据这个相等的数量关系,列出所需的代数式,从而列出两个变量之间的关系式.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【答案】(1)从纸箱厂定制购买纸箱费用y1=4x.蔬菜加工厂自己加工纸箱费用y2=2.4x+16000.(2)y2-y1=(2.4x+16000)-4x=16000-1.6x,由y1=y2,得16 000-1.6x=0,解得x=10000.∴当x<10000时,y1<y2.选择方案一,从纸箱厂定制购买纸箱所需的费用低.∴当x>10000时,y1>y2.选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.∴当x=10000时,y1=y2.两种方案都可以,两种方案所需的费用相同.3.坐标系中的图形的平移与旋转.求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在的象限.【例3】在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A'的坐标是.4.运用函数的图象特征解决问题.(1)由函数图象的定义可知图象上任意一点P(x,y)中的坐标值x,y是解析式方程的一个解,反之,以解析式方程的任意一解为坐标的点一定在函数的图形上.(2)注意方程与函数的结合,抓住“方程(方程的解)——点的坐标——函数图象与性质”这个网,结合数学知识,用数形结合法来解题.【例4】小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时分,此时小刚离家1100米,所以点B的坐标是(20,1100).点C的坐标是(50,1100),点D的坐标是(60,0),设线段CD所在直线的函数解析式是s=kt+b,将点C,D的坐标代入,得所以线段CD所在直线的函数解析式是s=-110t+6600.5.分段函数的应用自变量在不同的范围内取值时,函数y和x有不同的对应关系,这种函数称为分段函数,解决分段函数的有关问题时,关键是弄清自变量的取值范围,选择适合的解析式解决问题.【例5】如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是().【答案】 B专项训练一、选择题1.(四川中江县一模)已知点A(a,1)与点A'(-5,b)是关于原点O的对称点,则a+b的值为().A. 1B. 5C. 6D. 42. (深圳模拟)已知点A(a+2,a-1)在平面直角坐标系的第四象限内,则α的取值范围为().A. -2<a<1B. -2≤a≤1C. -1<a<1D. -1≤a≤23.(宁夏银川外国语学校模拟)已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是().4. (内蒙古赤峰模拟)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步回到家里.下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的函数关系的大致图象是().5.(2013·广东佛山模拟)在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y的值是().A. 2B. 8C. -2D. -86.(2013·湖北宜昌调研)在正方形ABCD中,点P从点C出发沿着正方形的边依次经过点D,A向终点B运动,运动的路程为x(cm),△PBC的面积为y(cm2),y随x变化的图象可能是().7. (2013·河南南阳模拟)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为().(第7题)A. m+2n=1B. m-2n=1C. 2n-m=1D. n-2m=1二、填空题8. (广西玉林模拟)在平面直角坐标系中,点(0,2)到x轴的距离是.9. (甘肃天水模拟)函数中,自变量x的取值范围10.(四川达州模拟)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).(第10题)11.(2013·北京房山区一模)如图,在平面直角坐标系中,以原点O为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A1,A2,A3,A4,…,则点A31的坐标是.(第11题)三、解答题12. (四川峨眉山二模)如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC 先向右平移4个单位,再向下平移2个单位,得到△A'B'C'.在坐标系中画出△A'B'C',并写出△A'B'C'各顶点的坐标.(第12题)13.(2013·辽宁葫芦岛一模)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A,B的坐标分别为(3,2),(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为的长为.(第13题)参考答案与解析1. D[解析]a=5,b=-1.2. A[解析]由a+2>0,a-1<0,得-2<a<1.4. C[解析]先慢步行走,再打了一会儿太极拳,最后原路跑步回到家里.只有C图能反映爷爷离家的距离y(米)与时间x(分钟)之间的函数关系6.A[解析]利用图象可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.7. B[解析]根据题意可知OC为∠AOB的平分线,点C的坐标为(m-1,2n)且在第一象限,点C到x轴、y轴距离为m-1,2n,根据角平分线上的点到角两边距离相等,可知m-1=2n,所以m-2n=1.8. 2[解析]点p(a,b)到x轴的距离是|b|,到y轴的距离是|a|.9.x≥0且x≠1[解析]根据被开方数具有非负性且分母不等于零,得x≥0且x≠1.10. (2n,1)[解析]A4 (2,0),A8(4,0),A12(6,0),∴A4n (2n,0).11.[解析]根据31÷4=7……3,得出A31在直线y=x上,在第三象限,且在第8个圆上,求出OA31=8,通过解直角三角形即可求出答案.12.图略; 各顶点坐标为A'(2,2),B'(3,-2),C'(0,-6).。
中考数学复习专题11:点的坐标、函数及其概念

专题11 点的坐标、函数及其概念?解读考点
知识点名师点晴
点的坐标及坐标特征
1.平面直角坐标系会建立合适的平面直角坐标系。
2.点的坐标的概念会正确书写点的坐标。
3.各象限内点的坐标的特征会准确判断各象限内点的坐标符号。
4.坐标轴上的点的特征能区分x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
5.两条坐标轴夹角平分线上的点
的坐标的特征
知道第一、三象限角平分线上的点的横纵坐标分别相等,第
二、四象限角平分线上的点的横纵坐标分别互为相反数。
6.和坐标轴平行的直线上点的坐
标的特征
知道平行于x轴的直线上的点的纵坐标相同,平行于y轴的
直线上的点的横坐标相同。
7.关于x轴、y轴或原点对称的点
的坐标的特征
能准确区别三种情况下点的坐标符号特征。
与点有关
的距离
8.点到坐标轴及原点的距离能准确判断点到坐标轴的距离与点的坐标的关系。
函数及其图象1.函数定义知道函数和自变量的对应关系。
2.函数的解析式能准确判断函数自变量的取值。
3.函数的三种表示方法及作图
象的步骤
知道三种表示方法的优点和相互转化,会准确作出图象。
?2年中考
【2015年题组】
1.如图,点A(﹣2,1)到y轴的距离为()A.﹣2 B.1 C.2 D.
5
【答案】C.
第 1 页共48 页。
2014年中考数学一轮复习讲义:函数概念与平面直角坐标系

2014年中考数学一轮复习讲义:函数概念与平面直角坐标系【考纲要求】1.会画平面直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标.2.掌握坐标平面内点的坐标特征.3.了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.4.能确定函数自变量的取值范围,并会求函数值.【命题趋势】函数作为基础知识,在各地的中考试题中主要以填空题、选择题的形式来考查函数的基本概念、函数自变量的取值范围、函数之间的变化规律及其图象.【知识梳理】知识点一:1、平面直角坐标系:在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
3、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x点P(x,y)在第三象限0,0<<⇔y x点P(x,y)在第四象限0,0<>⇔y x4、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)5、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数6、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。
中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。
5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。
【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 函数
课时14. 平面直角坐标系与函数的概念
【课前热身】
1.函数3-=x y 的自变量x 的取值范围是 .
2.若点P(2,k-1)在第一象限,则k 的取值范围是 .
3.点A(-2,1)关于y 轴对称的点的坐标为___________;关于原点对称的点的坐标为________.
4. 如图,葡萄熟了,从葡萄架上落下来,下面图象可以大致反映葡萄下落过程中的速度v 随时间变化情况是( )
5.在平面直角坐标系中,平行四边形ABCD 顶点
A 、
B 、D 的坐标分别是(0,0),(5,0)(2,3),则
C 点
的坐标是( )
A .(3,7) B.(5,3)
C.(7,3)
D.(8,2)
【考点链接】
1. 坐标平面内的点与______________一一对应.
2. 点的位置
横坐标符号 纵坐标符号
第一象限
第二象限
第三象限 第四象限
3. x 轴上的点______坐标为0, y 轴上的点______坐标为0.
4. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________,
关于原点对称的点坐标为___________.
5. 描点法画函数图象的一般步骤是__________、__________、__________.
6. 函数的三种表示方法分别是__________、__________、__________.
7. x y =有意义,则自变量x 的取值范围是 . x
y 1=有意义,则自变量x 的取值范围是 .
【典例精析】
例1 ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,
-1),
C(1,-1).若四边形ABCD为平行四边形,那么点D的坐标是_______.(2)将点A(3,1)绕原点O顺时针旋转90°到点B,则点B•的坐标是_____.
例2 ⑴一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体
温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫
了. 图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( )
⑵汽车由长沙驶往相距400km 的广州. 如果汽车的平均速度是100km/h,
那么汽车距广州的路程s(km)与行驶时间t(h)的函数关系用图象表示应
为( )
例 3 一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,
按市场价售出一些后,又降价出售, 售出土豆千克数与他手中持有的钱线(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1) 农民自带的零钱是多少?
(2) 降价前他每千克土豆出售的价格是多少?
(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零
钱) 是26元,问他一共带了多少千克土豆.
【中考演练】
1.函数11
+=x y 中,自变量x 的取值范围是 .
2.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为 .
3.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .
4.点P (-2,3)关于x 轴的对称点的坐标是________.
5.在平面直角坐标系中,点P (-1,2)的位置在 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6.(06十堰)学校升旗仪式上,•徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )
7.点A (—3,2)关于y 轴对称的点的坐标是( )
A.(-3,-2)
B.(3,2)
C.(3,-2)
D.(2,-3)
8.若点P (1-m ,m )在第二象限,则下列关系式正确的是( )
A. 0<m<1
B. m<0
C. m>0
D. m>l
9.小强在劳动技术课中要制作一个周长为80cm 的等腰三角形,请你写出底边长y(cm)与一腰长为x(cm)的函数关系式,并求出自变量x 的取值范围.
10. 如图,点A 坐标为(-1,1),将此小船ABCD 向左平移2个单位,再向上平移3
个单位得A′B′C′D′.
(1)画出平面直角坐标系;
(2)画出平移后的小船A′B′C′D′,写出A′,B′,C′,D′各点的坐标.。