数字信号处理试题及答案
数字信号处理试卷及详细答案1

数字信号处理试卷及详细答案1数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是连续(连续还是离散?)。
2、某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
3、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
4、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2TΩ=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ω?ωωj j e H eH =,则其对应的相位函数为ωω?21)(--=N 。
8、请写出三种常用低通原型模拟滤波器巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器。
二、判断题(每题2分,共10分)1、一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做DFT 变换。
(╳)2、用双线性变换法进行设计IIR 数字滤波器时,预畸并不能消除变换中产生的所有频率点的非线性畸变。
(√)3、阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。
(╳)五、(12分)已知二阶巴特沃斯模拟低通原型滤波器的传递函数为1414.11)(2++=s s s H a 试用双线性变换法设计一个数字低通滤波器,其3dB 截止频率为πω5.0=crad ,写出数字滤波器的系统函数。
数字信号处理试卷及答案

A一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列 二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和 四种。
三、1)(-≤≥⎩⎨⎧-=n n b a n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。
数字信号处理习题与答案

==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试卷和答案

数字信号处理试卷和答案一判断1.模拟信号也可以像数字信号一样在计算机上处理,只要添加采样过程。
(w)2、已知某离散时间系统为,则该系统为线性时不变系统。
(w)3、一个信号序列,如果能做序列的傅里叶变换(dtft),也就能对其做变换。
(w)4.采用双线性变换方法设计数字滤波器时,预失真不能消除变换中所有频点的非线性失真。
(√)5、时域周期序列的离散傅里叶级数在频域也是一个周期序列(√)二填空题(每题3分,共5题)1在对模拟信号(一维信号,它是时间的函数)进行采样后,在振幅量化后,它是___________________。
2.为了在采样后恢复原始信号而不失真,采样频率必须为_u,这是奈奎斯特采样定理。
3.系统稳定的充要条件。
4、快速傅里叶变换(fft)算法基本可分为两大类,分别是:_____;_____。
5、线性移不变系统的性质有______、______和分配律。
1.离散数字2大于信号3最大频率的2倍。
系统的单位冲激响应绝对可加4。
时间提取法和频率提取法5。
汇率与三大法律问题相结合1、对一个带限为f?3khz的连续时间信号采样构成一离散信号,为了保证从此离散信号中能恢复出原信号,每秒钟理论上的最小采样数为多少?如将此离散信号恢复为原信号,则所用的增益为1,延迟为0的理想低通滤波器的截止频率该为多少?答:根据奈奎斯特采样定理,采样频率必须大于信号最大频率FS的两倍?2.3khz?在6 kHz时,每秒的理论最小样本数为6000。
如果离散信号恢复为原始信号,为了避免混淆,理想低通滤波器的截止频率为采样频率的一半,即?s3khz2.2。
有限频带信号f(T)?5.2个cos(2?f1t)?Cos(4?F1t),F1在哪里?1khz,有FS吗?5KHz脉冲函数序列?T(T)表示取样。
(1)画出f(t)及采样信号fs(t)在频率区间(?10khz,10khz)的频谱图。
(2)若由fs(t)恢复原信号,理想低通滤波器的截止频率fc。
数字信号处理考试试题及答案

数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。
2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。
3、若有限长序列x (n )的长度为N ,h(n )的长度为M ,则其卷积和的长度L为 N+M-1。
4、傅里叶变换的几种形式:连续时间、连续频率-傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率—离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。
6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x (n)一定绝对可和.7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 .8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。
9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高。
10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器.11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器。
12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等.14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。
15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。
二、选择题(20分,每空2分)1。
数字信号处理试题和答案

一. 填空题1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax 关系为: fs>=2fmax。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的 N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是 (N-1)/2 。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。
8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列用xm (n)表示,其数学表达式为xm(n)=x((n-m))N RN (n)。
13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。
(完整word版)数字信号处理习题及答案

==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试卷及详细答案三套

数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、 双边序列z 变换的收敛域形状为 圆环或空集 。
3、 某序列的DFT 表达式为∑-==1)()(N n kn MWn x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。
二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理试题及答案一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、 双边序列z 变换的收敛域形状为 圆环或空集 。
3、 某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。
二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
(╳)2、 已知某离散时间系统为)35()]([)(+==n x n x T n y ,则该系统为线性时不变系统。
(╳)3、 一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做DFT 变换。
(╳)4、 用双线性变换法进行设计IIR 数字滤波器时,预畸并不能消除变换中产生的所有频率点的非线性畸变。
(√) 5、 阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。
(╳) 三、(15分)、已知某离散时间系统的差分方程为)1(2)()2(2)1(3)(-+=-+--n x n x n y n y n y系统初始状态为1)1(=-y ,2)2(=-y ,系统激励为)()3()(n u n x n =, 试求:(1)系统函数)(z H ,系统频率响应)(ωj e H 。
(2)系统的零输入响应)(n y zi 、零状态响应)(n y zs 和全响应)(n y 。
解:(1)系统函数为23223121)(22211+-+=+-+=---z z z z zzz z H系统频率响应232)()(22+-+===ωωωωωωj j j j e z j e e e e z H eH j解一:(2)对差分方程两端同时作z 变换得)(2)(])2()1()([2])1()([3)(1221z X z z X z y z y z Y z z y z Y z z Y ---+=-+-++-+-即:)(231)21(231)2(2)1(2)1(3)(211211z X z z z z z y y z y z Y ------+-+++------=上式中,第一项为零输入响应的z 域表示式,第二项为零状态响应的z 域表示式,将初始状态及激励的z 变换3)(-=z zz X 代入,得零输入响应、零状态响应的z 域表示式分别为 23223121)(22211+-+-=+---=---z z z z zzz z Y zi3232323121)(22211-⋅+-+=-⋅+-+=---z zz z z z z z z z z z Y zs 将)(),(z Y z Y zs zi 展开成部分分式之和,得2413232)(2--+-=+-+-=z z z z z z z Y zi 32152812331232)(22-+--+-=-⋅+-+=z z z z z z z z z z Y zs 即 2413)(--+-=z z z z z Y zi 321528123)(-+--+-=z zz z z z z Y zs 对上两式分别取z 反变换,得零输入响应、零状态响应分别为)(])2(43[)(k k y k zi ε-=)(])3(215)2(823[)(k k y k k zs ε+-=故系统全响应为)()()(k y k y k y zs zi +=)(])3(215)2(1229[k k k ε+-=解二、(2)系统特征方程为0232=+-λλ,特征根为:11=λ,22=λ; 故系统零输入响应形式为 k zi c c k y )2()(21+=将初始条件1)1(=-y ,2)2(=-y 带入上式得⎪⎪⎩⎪⎪⎨⎧=+=-=+=-2)41()2(1)21()1(2121c c y c c y zi zi 解之得 31=c ,42-=c , 故系统零输入响应为: k zi k y )2(43)(-= 0≥k 系统零状态响应为3232323121)()()(22211-⋅+-+=-⋅+-+==---z zz z z z z z z z z z X z H z Y zs 32152812331232)(22-+--+-=-⋅+-+=z z z z z z z z z z Y zs 即 321528123)(-+--+-=z zz z z z z Y zs对上式取z 反变换,得零状态响应为 )(])3(215)2(823[)(k k y k k zs ε+-=故系统全响应为)()()(k y k y k y zs zi +=)(])3(215)2(1229[k k k ε+-=四、回答以下问题:(1) 画出按时域抽取4=N点基FFT 2的信号流图。
(2) 利用流图计算4点序列)4,3,1,2()(=n x (3,2,1,0=n )的DFT 。
(3) 试写出利用FFT 计算IFFT 的步骤。
解:(1))0(x 1(x )2(x 3(x )0(X )1(X )2(X )3(Xkr001102W 02W 02W 12W k l001104W 04W 14W 2304W 04W 04W 24W 34W4点按时间抽取FFT 流图 加权系数 (2) ⎩⎨⎧-=-=-==+=+=112)2()0()1(532)2()0()0(00x x Q x x Q⎩⎨⎧-=-=-==+=+=341)3()1()1(541)3()1()0(11x x Q x x Q1055)0()0()0(10=+=+=Q Q X 31)1()1()1(1140⋅+-=+=j Q W Q X 055)0()0()2(1240=-=+=Q W Q X j Q W Q X 31)1()1()3(1340--=+=即: 3,2,1,0),31,0,31,10()(=--+-=k j j k X (3)1)对)(k X 取共轭,得)(k X *; 2)对)(k X *做N 点FFT ; 3)对2)中结果取共轭并除以N 。
五、(12分)已知二阶巴特沃斯模拟低通原型滤波器的传递函数为1414.11)(2++=s s s H a试用双线性变换法设计一个数字低通滤波器,其3dB 截止频率为πω5.0=c rad ,写出数字滤波器的系统函数,并用正准型结构实现之。
(要预畸,设1=T )解:(1)预畸2)25.0arctan(2)2arctan(2===ΩπωT T c c (2)反归一划4828.241)2(414.1)2(1)()(22++=++==Ω=s s ss s H s H css a(3) 双线性变换得数字滤波器4112828.2)112(44828.24)()(1121121121111211++-⋅++-=++==----+-=-+--=--z z zz s s s H z H z z s zz T s2212211716.01)21(2929.0344.2656.13)21(4------+++=+++=zz z zz z(4)用正准型结构实现(n x )(n y六、(12分)设有一FIR 数字滤波器,其单位冲激响应)(n h 如图1所示:图1试求:(1)该系统的频率响应)(ωj eH ;(2)如果记)()()(ωϕωωj j e H eH =,其中,)(ωH 为幅度函数(可以取负值),)(ωϕ为相位函数,试求)(ωH 与)(ωϕ;(3)判断该线性相位FIR 系统是何种类型的数字滤波器?(低通、高通、带通、带阻),说明你的判断依据。
(4)画出该FIR 系统的线性相位型网络结构流图。
解:(1))2,1,0,1,2()(--=n hωωωωωω4324)4()3()2()1()0()()(j j j j n nj j e h e h e h e h h en h eH ----=-++++==∑)()1(2223443ωωωωωωj j j j j j e e e e e e -------+-=--+=)]sin(2)2sin(4[)()(222222ωωωωωωωωωj j e e e e e e e j j j j j j j +=-+-=-----(2))]sin(2)2sin(4[)]sin(2)2sin(4[)()22(22ωωωωωππωω+=+=--j jj j e e e e H)sin(2)2sin(4)(ωωω+=H , ωπωϕ22)(-=(3))()sin(2)2sin(4)2sin(2)]2(2sin[4)2(ωωωωπωπωπH H -=--=-+-=- 故 当0=ω时,有)0()0()2(H H H =-=π,即)(ωH 关于0点奇对称,0)0(=H ;当πω=时,有))()(ππH H -=,即)(ωH 关于π点奇对称,0)(=πH 上述条件说明,该滤波器为一个线性相位带通滤波器。
(4)线性相位结构流图1-)(n x)(n y。