wittig反应

合集下载

Wittig Reaction

Wittig Reaction

谢谢!
• Georg Wittig (June 16, 1897 – August 26, 1987) was a German chemist who reported a method for synthesis of alkenes(烯烃) from aldehydes and ketones ( 醛和 酮)using compounds called phosphonium ylides in the Wittig reaction. He shared the Nobel Prize in Chemistry with Herbert C. Brown in 1979.
3.水相中的Wittig 反应
近年来,人们对在水相中的有机合成反应越来越关注, 而水相中的Wittig 反应就是一个典型的例子。在水相Wittig 反应的报道中,人们总是在研究可溶于水的反应原料,比 如先是发现了可溶于水的甲醛能在水相中发生Wittig 反应; 而后来通过改造Ylide,使之成为水溶性原料,发现它还能 与除甲醛外的不溶于水的芳香醛发生Wittig 反应。在2000 年报道了用机械碾磨固相合成磷Ylide 以及首次在无溶剂的 条件下发生的Wittig 反应。指出,通过机械碾磨方法破坏 了磷化合物的晶格及其无晶体形相的形成。在不同的固相 之间,通过微晶体的无机碱,发生了一个磷盐的去质子化 过程。而发生的Wittig 反应后的结果也和传统的Wittig 反 应不同。如果稳定磷Ylide 发生的是E/Z 反应,则E 式产物 占优的;而固相碾磨的Wittig 反应得到的结果却是E/Z_摩 尔比例约等于1,不过这却是一种全新的方法。经典的 Wittig 反应直到现在也一直被人们研究着并发展着。
• Wittig‘s contributions also include the preparation of phenyllithium(苯基 锂)and the discovery of the 1,2Wittig rearrangement and the 2,3Wittig rearrangement.

wittig

wittig

10-甲基硬脂酸的合成(90)
亚油酸:Z,Z-9,12-十八碳二烯酸酯(101)
油酸是人体不能合成,或是合成的量远不能满足需要的脂肪酸,叫做必需脂肪酸。 亚油酸是公认的一种必需脂肪酸。由于亚油酸能降低血液胆固醇,预防动脉粥样硬化 而倍受重视。研究发现,胆固醇必须与亚油酸结合后,才能在体内进行正常的运转和 代谢。如果缺乏亚油酸,胆固醇就会与一些饱和脂肪酸结合,发生代谢障碍,在血管 壁上沉积下来,逐步形成动脉粥样硬化,引发心脑血管疾病季膦盐中与磷相连的烷基至少要有一个H,因 此不能用叔卤代烃来制备; 2) 所用碱的强弱是非常关键的,这主要取决于R' 来决定, 如果R'是吸电子基团,会使内膦盐的酸性 增强, 选择较弱的碱就可脱去HX,否则需强碱。 3) 磷叶立德对水等质子性溶剂非常敏感, 加热也 易分解。因此, 制备时必须防潮, 一般要在非质子 溶剂如THF, DMF, DMSO及醚等中进行反应, 且不能 加热。
Wittig反应的优点与缺点
(1)一般只能与醛反应, 与酮反应非常缓 慢, 甚至不反应; (2)在非极性溶剂中反应缓慢;
目前已有许多关于该反应改进方法的报道, 如使 用相转移催化方法,提高温度或压力、加入添加剂、 微波辐射或光照射、声波、使用硅胶或离子溶剂, 另 外, 在水中或电池中进行Wittig反应的报道也非常多。
Wittg反应在合成天然产物中的应用
Wittig反应在天然产物合成中发挥了巨大的作用.主要 体现在以下几个方面: 1.合成长链不饱和脂肪酸 2.合成前列腺素 3.合成香料 4.合成昆虫信息素 5.合成类葫萝卜素等
Wittg反应在合成天然产物中的应用
一、长链不饱和脂肪酸 长链不饱和脂肪酸是动物、高等植物脂类的基本组成部 分,碳原子数一般在12-28之间。具有一个或多个双键,动物 脂类主要含顺式不饱和羧酸。

Wittig反应

Wittig反应

魏悌锡G.Wittig1897-?德国化学家魏悌锡(G.Witting,1897-)德国化学家。

1897年9月16日生于柏林,他曾在土宾根(Tubingen)大学读书。

第一次世界大战使他辍学从军,战后他继续求学。

1923年他毕业于马尔堡(Marburg)大学,1926年获该校博士学位。

他曾在许多大学任教。

1956年被聘为海德尔堡(Heidelburg)大学教授。

由于他对磷有机化合物在有机合成方面应用的出色研究工作,获得了1979年诺贝尔奖金。

Wittig反应是指Wittig试剂与醛酮反应得到烯烃的一类重要反应。

如Wittig在1953年报告了下列反应:Wittig反应使醛、酮变成烯面目为之一新,这是获得诺贝尔奖金三个反应中有名的一个反应。

Wittig反应关键是制备Wittig试剂,那么什么是Wittig试剂,它又是怎样制备的呢?周期表的第三周期元素磷与碳结合,碳带负电荷,磷带正电荷彼此相邻,这种邻两性离子,类似于内盐结构。

如PH3PCH2,这种中性化合物叫叶立德(ylide),ylide这个字是由两个西文字中取来的。

Yl是有机基团的字尾,ide是盐的字尾,如甲基Methyl,氯化物为Chloride。

上面的化合物中有一个有机基团,有一个具有很强的类似盐的极性,所以就得到这个名字。

而叶立德如 ,也可以写成另一种形式:PH3=CH2,这种形式叫叶林(ylene),ene是烯的字尾。

因此所谓Wittig试剂可用如下的共振式表示:通过研究三甲基亚甲基磷[(CH3)P=CH2]的NMR以后倾向于认为碳为SP2杂化,磷为SP3杂化更符合偶极的ylide结构。

而ylene对结构只有较小贡献。

因此,用ylide(叶立德)表示Wittig试剂是比较准确的。

实际上进行与醛、酮的反应时也是通过ylide而发生的目录1wittig反应wittig反应Wittig 反应羰基用膦叶立德变为烯烃,称Wittig 反应(叶立德反应)。

wittig反应介绍

wittig反应介绍

Wittig反应介绍李曼琳中国药科大学0940120目录1 前言 (2)2 Wittig试剂的制备 (3)3 Wittig反应机理[5] (4)4 Wittig反应的立体选择性 (6)5 Wittig反应在有机合成中的应用[4] (8)6 Wittig反应的改进 (11)7 总结 (14)参考文献 (16)Wittig反应介绍李曼琳0940120摘要:Wittig反应是合成烯烃最为普遍的反应,该反应产率较高,条件温和,具有高度的位置选择性。

本文就Wittig反应的机理、Wittig试剂的制备,反应立体选择性、反应的应用及改进作了介绍。

关键词:Wittig反应,Wittig-Horner反应,氮杂Wittig反应,机理,立体选择,应用1 前言1953年德国科学家Wittig发现二苯甲酮和亚甲基三苯基膦作用得到接近定量产率的1,1-二苯基乙烯和三苯氧磷[1],这个发现引起了有机合成化学工作者的高度重视,并把它称之为Wittig反应。

本反应是很重要的制备烯烃方法,Wittig也因此在1979年获得诺贝尔化学奖。

在Wittig 等人不断地实践中,人们认识到多种亚甲基化三苯膦都可以同多种醛、酮发生反应得到烯。

近年来发现许多具有d空轨道的杂原子亦能与它相连的碳负离子发生p-n共扼而趋于稳定[1],这类具有新型结构的化合物被称为叶立德(Ylid)。

典型的反应是有Wittig反应是有亚甲基化三苯基膦与醛或酮的反应[2]:根据R的不同,可将磷叶立德分为三类:当R为强吸电子基时(如一COOCH3, -CN等),为稳定的叶立德;当R为烷基时,为活泼的叶立德;当R为烯基或芳基时,为中等活度的叶立德。

制备不同活度的叶立德所用碱的强度不同,活泼的叶立德必须用强碱(如苯基锂,丁基锂),而稳定的叶立德,由于季磷盐α-H酸性较大,故用C2H5OH甚至NaOH即可。

叶立德本身就是稳定的碳负离子化合物,这些碳负离子与羰基化合物的亲核加成反应,都是合成C-C键的重要方法。

wittig反应介绍

wittig反应介绍

Wittig反应介绍李曼琳中国药科大学目录1 前言 (2)2 Wittig试剂的制备 (3)3 Wittig反应机理[5] (4)4 Wittig反应的立体选择性 (6)5 Wittig反应在有机合成中的应用[4] (8)6 Wittig反应的改进 (11)7 总结 (14)参考文献 (16)Wittig反应介绍李曼琳摘要:Wittig反应是合成烯烃最为普遍的反应,该反应产率较高,条件温和,具有高度的位置选择性。

本文就Wittig反应的机理、Wittig试剂的制备,反应立体选择性、反应的应用及改进作了介绍。

关键词:Wittig反应,Wittig-Horner反应,氮杂Wittig反应,机理,立体选择,应用1 前言1953年德国科学家Wittig发现二苯甲酮和亚甲基三苯基膦作用得到接近定量产率的1,1-二苯基乙烯和三苯氧磷[1],这个发现引起了有机合成化学工作者的高度重视,并把它称之为Wittig反应。

本反应是很重要的制备烯烃方法,Wittig也因此在1979年获得诺贝尔化学奖。

在Wittig 等人不断地实践中,人们认识到多种亚甲基化三苯膦都可以同多种醛、酮发生反应得到烯。

近年来发现许多具有d空轨道的杂原子亦能与它相连的碳负离子发生p-n共扼而趋于稳定[1],这类具有新型结构的化合物被称为叶立德(Ylid)。

典型的反应是有Wittig反应是有亚甲基化三苯基膦与醛或酮的反应[2]:根据R的不同,可将磷叶立德分为三类:当R为强吸电子基时(如一COOCH3, -CN等),为稳定的叶立德;当R为烷基时,为活泼的叶立德;当R为烯基或芳基时,为中等活度的叶立德。

制备不同活度的叶立德所用碱的强度不同,活泼的叶立德必须用强碱(如苯基锂,丁基锂),而稳定的叶立德,由于季磷盐α-H酸性较大,故用C2H5OH甚至NaOH即可。

叶立德本身就是稳定的碳负离子化合物,这些碳负离子与羰基化合物的亲核加成反应,都是合成C-C键的重要方法。

wittig

wittig
三、香料物质
很多具有香味化合物的结构是:脂肪族不饱和醇、
醛、酮、羧酸 、酯(或内酯)
1、反式烯醛(反式异构体达到95%以上)
具有青香、醛香、果香、辛香、脂肪香。在未稀释之 前,香气强烈而尖刺,在稀释后有令人愉快的绿叶清香和 水果香气。
2、反式-2-烯醇:多种蔬菜、水果的香味来源。 如下制备方法:
3、多烯脂肪族醛、酮、酯
Schlosser 等认为Wittig 反应必须首先通过形 成内鏻盐,它与反应物保持着平衡关系,然后通过 形成四元杂环,最后分解成不同的烯类。
反应机理---形成“内鏻盐”结构的机理
内鎓盐已经通过下列方式捕获到:
Ú Ä l ç Î Ñ « £ Î Ð É ³ ´ ¸ Ï º ï Î LiBr Ph3P O Li
Wittig反应改进—HWE反应
Wittig反应改进—HWE反应
反应特点: 1)膦酸酯容易制得:
(EtO)3P + RX
[ (EtO)3PR ] X
O (EtO)2PR + EtX
2)膦酸酯碳负离子的亲核性大于磷叶立德,能够与
醛、酮反应,且反应条件温和。
3)磷酸根易溶于水,因此易于与产物分离。 4)反应的立体化学受取代基的电子效应、立体效应 以及溶剂的影响较小,主要以E型产物为主。
五、类胡萝卜素 应用:类胡萝卜素→维生素A→视黄醛 食用色素抑制肿瘤的辅助药物
维生素A的合成(170)
谢 谢 大 家 !
Wittig反应的优点与缺点
(1)一般只能与醛反应, 与酮反应非常缓 慢, 甚至不反应; (2)在非极性溶剂中反应缓慢;
目前已有许多关于该反应改进方法的报道, 如使 用相转移催化方法,提高温度或压力、加入添加剂、 微波辐射或光照射、声波、使用硅胶或离子溶剂, 另 外, 在水中或电池中进行Wittig反应的报道也非常多。

wittig反应顺反分离

wittig反应顺反分离

wittig反应顺反分离Wittig反应是一种有机合成中常用的方法,它可用于合成烯烃化合物。

在这个反应中,醛或酮与一个季碳化鎓产生亲核加成反应,生成一个亚磷酰亚金属酯,然后经过脱氧磷化制备相应的烯烃。

这个反应的顺反分离是非常重要的一步,它确保了所需的烯烃产物纯度和回收率。

下面我们将一步一步回答[wittig反应顺反分离]这个主题。

首先,让我们回顾一下Wittig反应的机理。

在这个反应中,醛或酮与亲电磷试剂反应生成亚磷酰亚金属酯,然后通过脱氧磷化生成烯烃。

亚磷酰亚金属酯是一个重要的中间体,因为它可以进行后续的选择性化学反应,生成所需的烯烃产物。

在Wittig反应中,反应条件的选择对于顺反分离是至关重要的。

一般而言,反应需要在干燥、无氧的条件下进行,以防止不需要的副反应。

此外,反应温度也需要控制在适当的范围内,以确保反应能够高效进行。

通常情况下,反应温度在0-100C之间选择。

第一步,要确保反应体系中的所有试剂和溶剂都是干燥和无氧的。

这可以通过常见的气相干燥或通过使用干燥剂来实现。

一旦试剂和溶剂干燥,它们可以在干燥箱中保存,并用惰性气体排气。

第二步,将亲电磷试剂和醛或酮溶解在适当的溶剂中。

通常情况下,溶剂是惰性的,并且可以与反应物和中间体形成稳定的配合物。

乙二醇二甲醚(DME)和四氢呋喃(THF)是常用的溶剂选择。

第三步,将亲电磷试剂缓慢滴加到醛或酮溶液中。

滴加速度的控制对于生成稳定的中间体至关重要,并且可以避免副反应的发生。

通常情况下,滴加速率控制在每分钟1-2滴之间。

第四步,在亲电磷试剂完全加入后,让反应混合物在预设的温度下搅拌一段时间。

反应时间的选择取决于反应物的不同和所需的产物的纯度。

通常情况下,反应时间在数小时到数天之间。

第五步,反应结束后,将反应混合物经气相层析或柱层析分离产物和未反应的反应物。

这个步骤对于顺反分离是至关重要的,因为它确保了纯度和回收率的高。

最后,通过蒸馏或结晶等方法纯化烯烃产物。

wittig反应

wittig反应

wittig反应羰基用磷叶立德变为烯烃,称Wittig 反应(叶立德反应、维蒂希反应)。

这是一个非常有价值的合成方法,用于从醛、酮直接合成烯烃。

基本介绍:本反应是由仲烃基溴(较典型)与三苯磷作用生成叶立德(Ylides,分子内两性离子),后者与醛或酮反应(Wittig 反应),给出烯烃和氧化三苯磷,反应形式这是极有价值的合成烯烃的一般方法。

根据中间体叶立德的稳定性可分为不稳定的叶立德的反应和稳定的叶立德的反应。

1.不稳定的叶立德的反应当 RR'CHBr 中,R 和R' 是氢原子或简单烷基,则烃基三苯基磷盐的α-H 酸性较弱,需较强的碱(常用叔丁基锂或苯基锂)才能生成叶立德,刚生成的叶立德活性很高,是类似格氏试剂那样强的亲核试剂,能迅速地在温和条件下与醛或酮起反应给出加成物,反应不可逆。

加成物可自发分解给出烯烃。

产物如有立体异构,则一般得到 E 和 Z 的混合物。

如用苯基锂制备叶立德,并且使反应在较低温度下进行,则产物以 E 异构体为主。

2.稳定的叶立德的反应当 RR'CHBr 中,R 或R' 是一个-M 基团(吸电子基团,如酯基),则烃基三苯基磷盐的去质子化可以在较弱的碱性条件下实现,并且产生的叶立德较稳定,可以分离,其活性相对较弱,一般需与亲电性较强的羰基反应。

当产物有主体异构存在时,E- 异构体通常占优。

应用:一、Wittig反应的主要用于合成各种含烯键的化合物。

(1)环外烯键化合物的合成:Wittig反应生成的烯键处于原来的羰基位置,一般不会发生异构化,可以制得能量上不利的环外双键化合物。

例:(2)共轭多烯化合物的合成:Wittig试剂与α,β-不饱和醛反应时,不发生1,4-加成,双键位置固定。

利用此特性可合成许多共轭多烯化合物。

如β-胡萝卜素的合成二、Wittig反应用于制备醛和酮:采用α-卤代醚制成Wittig试剂,然后与醛或酮反应得烯醚化合物,再经水解生成醛,提供了合成醛、酮的一个新方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习8:用魏悌希试剂合成 (CH3)2C=CHC6H5 ① (CH3)2CO + Ph3P=CHC6H5
②C6H5CHO + Ph3P=C(CH3)2
Ph3P + C6H5CH2–Br Br
Ph3P + CH3CHCH3
练习6: 2-甲基-1-丙醇、异丙醇 HO–C–C–C OH
C C–C–C
2,4-二甲基-2-戊烯 Br
–C–C=C–C C
第二十二讲——作业
一、分析可能的原料组合
1、由格利雅试剂制备醇
OH

OH -C-CH3 ②
ቤተ መጻሕፍቲ ባይዱ
-CH2CH2OH③
2、由魏悌C希3H试7剂制备烯烃

–CH=CHCH3 ②
=CHCH2CH3
二、合成 1、用乙烯、丁二烯合成 ①
C2H5 OH ②
OH
C2H5 OH
2、用乙烯、甲苯、环戊烷合成
6、魏悌希(Witting)反应
以羰基化合物和卤代烃为原料,通过魏悌希试剂,
制备结构较复杂的烯烃。
+
- 强碱性条件
(C6H5)3P + CH3X 三苯基膦
R(C4N+6NH季–HC5-)鏻43lCP(季盐–l C铵H盐3X)邻消位去两-H性和离卤子素
(C6H5)3P=CH2 三苯基亚甲基膦
+-
(C6H5)3P–CH2
C–C–C + Ph3P
C–C–C=HOPPh3+ P+PhO3=C(CH3)2 C
C–C–C=C–C CC
练习7:苯、乙烯、丙烯
3-甲基-1-苯基-2-丁烯
–MgX+ CH2–CH2 O
–C–C–OH Br
C–C–C + Ph3P
–C––CC=–CPHPhO3 +
P+PhO3==CC((CCHH33))22
-CH2CHCH2-
磷叶立德(ylide)
yl—基团;ide—盐
O + ((CC66HH55))33P+P=–CC-HH22
CH2
C==O==+ =Ph=3P==C
Ph3P + CHXRR′ 三苯基膦 (含H)卤代烃
HO-HX
魏Ph悌3P希=C试R剂R′
Ph3P+–CHX-RR′
季鏻盐
C=O + Ph3P=CRR′
C=CRR′
相关文档
最新文档