椭圆焦点三角形圆周角最大问题
椭圆焦点三角形(解析版)

微专题:椭圆的焦点三角形初探一.学习目标:掌握椭圆的焦点三角形及常见结论. 二.概念梳理:焦点三角形主要结论:椭圆定义可知:21F PF ∆中, (1). c F F a PF PF 2||,2||||2121==+. (2). 焦点三角形的周长为.22c a L +=①已知F 1,F 2是椭圆12222=+by a x )0(>>b a 的左、右焦点,过F 1的直线交椭圆于A ,B 两点,△ABF 2的周长是________.②椭圆12222=+by a x )0(>>b a 的左焦点为F ,直线x =m 与椭圆交于点A ,B ,△F AB的周长的最大值是a 4如图所示,设椭圆右焦点为F 1,AB 与x 轴交于点H ,则|AF |=2a -|AF 1|,△ABF 的周长为2|AF |+2|AH |=2(2a -|AF 1|+|AH |),∵△AF 1H 为直角三角形,∴|AF 1|>|AH |,当且仅当|AF 1|=|AH |,即F 1与H 重合时,△AFB 的周长最大,即最大周长为2(|AF |+|AF 1|)=4a ,(3).21221cos 12||||PF F b PF PF ∠+=. (4). 焦点三角形的面积为:2tan sin ||||212122121PF F b PF F PF PF S ∠=∠=. ①设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,P 是椭圆C 上的一个动点,则当P 为短轴端点时,12F PF ∠最大.②.S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;(5). 假设焦点21F PF ∆的内切圆半径为r ,则r c a S )(+=.(6).焦半径公式:设),(00y x P 是椭圆上一点,那么01||ex a PF +=,02||ex a PF -=,推导:根据两点间距离公式:2201)(||y c x PF ++=,由于)0(,1220220>>=+b a by a x 代入两点间距离公式可得)1()(||2202201ax b c x PF -++=,整理化简即可得01||ex a PF +=. 同理可证得02||ex a PF -=.①[]22222,a b x e a ∈-=②焦半径的取值范围:ca PF c a +≤≤-1.③ 特别地:过焦点且垂直于长轴的弦叫通经,其长度为a b 22,ab PF 2=(7)设),(00y x P 是椭圆上一点,那么2022221x e c b PF PF +-=⋅→→,由于],0[220a x ∈,故我们有2022221x e c b PF PF +-=⋅→→[]222,b c b -∈(8)若约定椭圆12222=+by a x )0(>>b a ,21F F 、分别为左、右焦点;顶点),(00y x P 在第一象限;γβαβα=∠>=∠=∠212112),(,PF F F PF F PF ,则对于椭圆,离心率βαβαβαγsin sin )sin(sin sin sin 22++=+===a c a c e(9).焦点直角三角形:底角为90︒,有四个(四个全等,P 点为通径端点。
椭圆焦点三角形的结论

椭圆焦点三角形的重要结论 已知椭圆)0(1:22
22>>=+b a b
y a x C ,P 为椭圆上一点,θ=∠21PF F . 结论1:21PF F ∆的周长为c a 22+
结论2:P PF F y c b PF PF S ===∆2tan sin 2122121θθ
结论3:当点P 位于短轴端点时,(1)顶角21PF F ∠最大;(2)21PF F S ∆也取得最大值bc
结论4:θ
cos 122
21+=⋅b PF PF 结论5:21PF PF ⋅的取值范围:
(1)因为22
21212a PF PF PF PF =⎪⎪⎭
⎫ ⎝⎛+≤⋅(当且仅当a PF PF ==21,即点P 位于短轴端点时等号成立.)所以21PF PF ⋅的最大值为2a . (2)因为22
21cos 12b b PF PF ≥+=⋅θ
(当且仅当 0=θ,1cos =θ,即点P 位于长轴端点时等号成立).所以21PF PF ⋅的最小值为2b .
(3)],[2221a b PF PF ∈⋅(焦点三角形中],(2221a b PF PF ∈⋅) 结论6:椭圆的离心率β
αβαsin sin )sin(222121++=+===PF PF F F a c a c e 结论6:如果椭圆上存在点P 使得θ=∠21PF F ,则离心率2cos 122θ
-≥e ,即)1,2[sin θ
∈e
另外:如果椭圆上存在点P 使得θ=∠21PA A ,则离心率2cot 122θ
-≥e ,即
)1,2cot 1[2
θ-∈e。
椭圆中的几种最值

椭 圆 最 值类型1:焦点三角形角度最值-------最大角法(求离心率问题) 1. 已知椭圆C :22221(0)x y a b ab+=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使12F Q F Q ⊥,求椭圆离心率的最小值__________; {22}2.2. 21F F 、为椭圆()012222>>=+b a bya x的左、右焦点,如果椭圆上存在点P ,使︒=∠9021PF F ,离心率e 的取值范围是______. (思考:将角度改成150){⎪⎪⎭⎫⎢⎣⎡122,}3. 若B A ,为椭圆)0(12222>>=+b a by ax 的长轴两端点,Q 为椭圆上一点,使120=∠AQB ,此椭圆离心率的最小值是__________。
{136<≤e }类型2:一动点两定点最值 ①||1||MF eMP +:最小值为M 到对应准线的距离-----运用第二定义,转点距到线距突破②︱MP ︱+︱MF 2︱:最大值2a+︱PF 1︱,最小值2a –︱PF 1︱---运用第一定义,变加为减突破 1. 若椭圆13422=+yx内有一点()1,1P ,F 为右焦点,椭圆上的点M 使得||2||MF MP +的值最小,则点M 的坐标为 ;(思考:将题中的2去掉会怎样呢?) 26(,1)32. 已知11216,)3,2(22=+-yxF A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标3 点M 为椭圆1162522=+yx的上一点,1F 、2F 为左右焦点;且)2,1(A 求||35||1MF MA +的最小值 (提升:||||||||1||''1AMMMMA MF eMA=+=+ 第二定义)4. 定点(2, 1)A ,1F 为椭圆22: 12516xyC +=的左焦点,点P 为C 上,则13||5||PA PF +的最小值5. P(-2,3),F 2为椭圆1162522=+yx的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最值(提示:||2||||2|||||PF |2a-1121PF a MF MP a MF MP +≤-+=+≤ (第一定义法 ) 最大值12,最小值86. P(-2,6),F 2为椭圆1162522=+yx的右焦点,点M 在椭圆上,求︱MP ︱+︱MF 2︱最值.最大值10+37,最小值617.21,F F 是双曲线1322=-yx 的左、右焦点,M (6,6)为双曲线内部的一点,P 为双曲线右支上的一点,求:(1)的最小值;(2)的最小值。
椭圆专题三 椭圆中焦点三角形问题(含答案)

椭圆专题三 椭圆中“焦点三角形”班级__________ 姓名:__________证明结论:1.焦点三角形的面积:如果焦距所对的角的大小为θ,那么此焦点三角形的面积大小为2tan 2b θ,特别地,当PF 1⊥PF 2时12F PF ∆的面积为2b 。
证明结论:2. 12,F F 是椭圆22221x y a b+=(a >b >0)的两个焦点,P 是椭圆上的一点,对于焦点三角形12F PF ∆,当P 为短轴端点时,12F PF ∠最大。
1.设F 1,F 2是椭圆14922=+y x 的两个焦点,P 是椭圆上的点,且|PF 1|:|PF 2|=2:1,则三角形∆PF 1F 2的面积等于____4____.2.设F 1、F 2为椭圆14922=+y x 的两个焦点,P 为上一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则||||21PF PF 的值为 72或 2 . 3.椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),满足→MF 1·→MF 2 =0的点M 总在椭圆内部,则e 的取值范围为0,2⎛ ⎝⎭ .4.椭圆x 2 a 2 +y 2 b 2=1(a>b >0)的两焦点为 F 1(-c,0)、F 2(c,0),P 为右准线L 上一点,F 1P 的 垂直平分线恰过F 2点,则e 的取值范围为⎣5.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 )1,1 . 6.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( B ) A.54 B.53 C. 52 D. 51 7.已知长方形ABCD ,4AB =,3BC =,则以A B 、为焦点,且过C D 、两点的椭圆的离心率为 12 .8.椭圆x 2 a 2 +y 2 b 2=1(a>b>0)的两焦点为F 1、F 2,点P 在椭圆上,使△OPF 1为正三角形,求椭1 .9.椭圆x 2 a 2 +y 2 b 2=1(a>b>0)的两焦点为F 1、F 2,AB 为椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB,椭圆离心率为5 . 10.椭圆x 2 a 2 +y 2 b 2=1(a>b>0),斜率为1,且过椭圆右焦点F 的直线交椭圆于A 、B 两点,→OA +→OB 与→ a =(3,-1)共线,则椭圆的离心率e 为3 . 11.椭圆x 2 a 2 +y 2 b 2=1(a>b>0)的两焦点为F 1(-c ,0)、F 2(c,0),P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2 =5∠PF 2F 1,则椭圆的离心率e 为 3. 12.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则12F PF ∠的大小为___23π___.13.已知动点P 与两个定点12(F F 距离之和为定值,且12cos F PF ∠的最小值为19-,则动点P 的轨迹方程为___22194x y +=____.。
浅析椭圆中与焦点三角形有关的求最值问题

浅析椭圆中与焦点三角形有关的求最值问题作者:梁纪威来源:《新课程·中学》2014年第08期摘要:就与焦半径有关的最值问题进行简单的探讨。
先给出焦半径的概念并推导其最值,接着引出焦半径的乘积、平方和、立方和、焦点三角形面积的最值等问题,使前后问题一脉相承,有较强的衔接性。
关键词:焦半径;焦点三角形;最值本文着重讨论椭圆中与焦点三角形有关的最值问题。
所谓焦点三角形是指椭圆上一点P (不与长轴的两个端点重合)与两个焦点F1F2构成的△PF1F2。
分析:只需要借助两点间的距离公式,再运用函数求最值的思想方法来研究这个问题就可以了.故当x0=-a即点P与椭圆的左端点A1重合时,PF1min=a-c;当x0=a即点P与椭圆的右端点A2重合时,PF1max=a+c.由PF1=a+ex0,结合椭圆的定义PF1+PF2=2a可得PF2=a-ex0,这两个公式叫做椭圆的焦半径公式,可以简记为“左加右减”,即点P到左焦点的距离为a+ex0,到右焦点的距离为a-ex0.如果再把上面的问题进行升级,可得到如下问题:变式1:PF1·PF2有最大值吗?如果有,请求出;如果没有,请说明理由.分析:由于PF1+PF2=2a,结合均值定理,PF1·PF2有最大值.变式2:PF1·PF2有最小值吗?如果有,请求出;如果没有,请说明理由.趁热打铁,我们还可以得到以下变式:变式3:PF12+PF22有最值吗?如果有,请求出;如果没有,请说明理由。
变式4:△PF1F2有最值吗?如果有,请求出;如果没有,请说明理由。
详细解题过程略。
对于初学者甚至高三的学生,圆锥曲线是他们最难理解、掌握的内容之一.作为教师,不妨从最基本最常见的类型入手,引导学生逐步掌握基本技能和运算技巧,在做题的时候就可以达到事半功倍的效果.参考文献:李建明.圆的性质在圆锥曲线中的推广[J].数学教学,2007(6):18-20.作者简介:梁纪威,男,1985年10月出生,本科,就职学校:陕西省靖边中学,研究方向;教育教学方法技巧。
高考数学复习专题15解析几何椭圆的焦点三角形考点剖析【含答案】

1 椭圆的焦点三角形
主标题:椭圆的焦点三角形 副标题:为学生详细的分析椭圆的焦点三角形的高考考点、命题方向以及规律总结。
关键词:椭圆,椭圆的焦点三角形
难度:3
重要程度:4
考点剖析:1.明白什么是椭圆的焦点三角形;
2.会解决有关椭圆的焦点三角形的问题; 命题方向:
1.从考查内容看,椭圆的焦点三角形是高考的重点,也是高考考查的热点.
2.从考查形式看,对椭圆的焦点三角形的考查常以选择题、填空题的形式出现,属中档题. 知识梳理
(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a ,得到a 、c 的关系. 规律总结: (1)对△F 1PF 2的处理方法⎩⎪⎨⎪⎧ 定义式的平方余弦定理
面积公式⇔
⎩⎪⎨⎪⎧ PF 1|+|PF 22=a 24c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θS △=12|PF 1||PF 2|sin θ。
椭圆中与焦点三角形有关的问题
椭圆中与焦点三角形有关的问题一、内容和内容解析本节课起源于两个常见习题,在焦点三角形中很典型,教者试图利用课堂有限的四十分钟引导学生做一些探究,体会发现的乐趣。
规律在大纲中指的是定律、定理、法则等,一般在书上以黑体字出现,是前人研究的成果。
而在知识形成和解题教学中,引导学生多角度挖掘知识,充分发挥典型题的探索价值往往能够使学生发现许多书本上没有的规律。
让学生自主参与教学全过程,不仅培养了学生的自主学习能力。
而且培养了学生的创新精神和实践能力,使他们体会到做学问的快乐。
费赖登塔力曾经说过:“学一个活动的最好方法是做。
”学生的学习只有通过自身的操作活动和再现创造性的做才可能是有效的。
通过引发创新思维的问题,让学生学会自主学习。
培养他们的独立思考能力,这是培养创造能力的重要手段。
学生具有了这种能力.就会不断获取新知识,创造就有了根基。
二、目标和目标解析1.知识上,能一起探究焦点三角形的有用结论,能理解、会应用,体会到一些有用的结论将会为解析几何的解题带来帮助;2.行动上,笔不离手,认识到有效的计算是解答解析几何问题的必备。
三、教学问题诊断分析从学生的认知基础和认知结构看,第一,在高一学生虽然对已经学习了三角知识和基本不等式,但是对于利用三角和基本不等式处理关联的知识掌握参差不齐,甚至大部分学生没有这种意识;第二,如何把一个素未谋面的具体问题利用坐标法转化为熟悉的问题来解决这是一个关键,由于学生积累的经验还不够,这也是一个教学难点。
第二,学生会感到结论太多,学过会忘记。
从教师这方面看,首先这部分内容教材中出现不多,但其实是各类考试的热点,经久不衰,题型灵活多样。
鉴于知识储备及学生的差异,高效的组织教学将是一个突出的问题;其次学生虽然已对于简单的焦点三角形有所认识,但不可能从根本上去理解,在完成探究任务的同时,还要结合一些典型案例的处理,使学生经历较完整的自主发现的全过程,在过程中让学生体会坐标法的基本思想,对教师驾驭课堂、灵活应变能力提出了较高的要求。
2016年高考数学复习 专题15 解析几何 椭圆的焦点三角形考点剖析
1 椭圆的焦点三角形
主标题:椭圆的焦点三角形 副标题:为学生详细的分析椭圆的焦点三角形的高考考点、命题方向以及规律总结。
关键词:椭圆,椭圆的焦点三角形
难度:3
重要程度:4
考点剖析:1.明白什么是椭圆的焦点三角形;
2.会解决有关椭圆的焦点三角形的问题; 命题方向:
1.从考查内容看,椭圆的焦点三角形是高考的重点,也是高考考查的热点.
2.从考查形式看,对椭圆的焦点三角形的考查常以选择题、填空题的形式出现,属中档题. 知识梳理
(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a ,得到a 、c 的关系. 规律总结: (1)对△F 1PF 2的处理方法⎩⎪⎨⎪⎧ 定义式的平方余弦定理
面积公式⇔
⎩⎪⎨⎪⎧ |PF 1|+|PF 2| 2= 2a 24c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θS △=12|PF 1||PF 2|sin θ。
高中数学:椭圆相关角度的最值问题
高中数学:椭圆相关角度的最值问题圆锥曲线中的最值问题主要包括长度最值、角度最值及面积最值等。
例题:如图1,已知椭圆的中心在坐标原点,焦点在x轴上,长轴的长为4,左准线与x轴的交点为M,。
(1)求椭圆的方程;(2)若直线,P为上的动点,使最大的点P记为Q,求点Q的坐标(用m表示)。
图1解:(1)设椭圆方程为半焦距为c,则由题意,得解得故椭圆方程为(2)设当时,当时,所以只需求的最大值即可。
直线的斜率直线的斜率所以当且仅当时,最大。
所以最大值点Q的坐标为显然,第二问是考查和椭圆有关的角度最值问题,可联想椭圆中的两种特殊情况。
特殊情况(1)已知椭圆的两个焦点分别为,点P为左准线上任意一点,求的最大值。
图2解:如图2,设准线交x轴于点M则又所以(其中)于是(当且仅当时等号成立)故的最大值为此时点P的坐标为同理,当点P在右准线时的最大值不变,最小值均为0另外由可得,当椭圆的离心率e一定时,的最大值为定值;若给出的值时,可由求出椭圆的离心率e的范围。
(2)已知椭圆的两个顶点分别为,点P为左准线上任意一点,求的最大值。
图3可用与问题(1)类似的方法求解(如图3):(当且仅当时等号成立。
)证明过程请自己完成。
推广及本质两种特殊情况分别研究了椭圆准线上任意一点P到两焦点、两顶点所得张角的最值问题,而例题是将准线推广到非准线位置,通过问题(1)的解决方法不难看出这类问题其实就是一个平面几何中的最值问题,如图4,A、B是直线同侧两定点,且直线,点P为直线上一动点,则∠APB有最大值。
使∠APB最大的点P有何几何意义呢?由于点A、B是定点,为定直线,我们不妨利用几何画板研究过三点A、B、P的圆,当点P在直线上运动时,过三点A、B、P的圆O与直线的关系是相交或相切,当圆O与直线相交时,(如图5),上总存在点Q在圆内且使∠AQB>∠APB;当且仅当圆O与直线相切时(如图6),直线上除切点外,其余点均在圆O 外,由同弧上的圆周角与圆外角的大小关系可知,此时∠APB最大,切点即为所求。
椭圆中的常见最值问题
For personal use only in study and research; not for commercial use椭圆中的常见最值问题1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。
例1、椭圆192522=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的最大值时,P 点的坐标是 。
P (0,3)或(0,-3)例2、已知椭圆方程12222=+by a x (222,0c b a b a +=>>)p 为椭圆上一点,21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。
分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。
例3、已知)1,1(A ,1F 、2F 是椭圆15922=+y x 的左右焦点,P 为椭圆上一动点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。
||||2PF PA -的最小值是 ,此时P 点坐标为 。
3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。
例4、已知)1,1(A ,1F 是椭圆15922=+y x 的左焦点,P 为椭圆上一动点,则||||1PF PA +的最小值是 ,此时P 点坐标为 。
||||1PF PA +的最大值是 ,此时P 点坐标为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆焦点三角形圆周角最大的证明
已知椭圆()22
22:10x y E a b a b +=>>两焦点()()12,0,,0F c F c -,同时点
P 椭圆()22
22:10x y E a b a b
+=>>上一动点。
通常我们把以
12,,P F F 为顶点的三角形称为焦点三角形(如右图)
若我们记12F PF θ∠=,则θ何时最大呢?
法一:不妨设12
,PF m PF n ==,于是2
2
2
2221212
12
4cos 22PF PF F F m n c PF PF mn
θ+-+-==⋅
我们知道:当,0a b >
)2a b a b +≤≤=当且仅当时取等号,
故而当,0a b >时,有()2
22
22a b a b
ab a b ++⎛⎫≤≤
= ⎪⎝⎭
当且仅当时取等号 故()22
22222222
2
2424244222cos 122222m n m n m n c c c m n c mn mn mn m n θ++⎛⎫⎛⎫+⋅-⋅-⋅- ⎪ ⎪+-⎝⎭⎝⎭==≥≥+⎛⎫
⋅ ⎪⎝⎭
我们我们注意到2m n a +=(为定值),所以
()2
2
22222
24242cos 12222m n c a c c a a m n θ+⎛⎫⋅- ⎪-⎛⎫⎝⎭≥==- ⎪⎝⎭+⎛⎫
⋅ ⎪⎝⎭
为定值 我们注意到()1式,有二次使用不等式,但这两次取等的条件都是m n =(即点P 在短轴的端点()12,B B 处取等),故()2
min
cos 12c a θ⎛⎫
=- ⎪⎝⎭
,又
()0,θπ∈,且函数cos y x =在()0,π上为减函数。
故
cos θ最小时,θ恰有最大值。
故点P 在短轴的端点()
12,B B 处,θ最大。
法二:我们仍然设12,PF m PF n ==,于是
2m n a += 于是()()2
222
421a m n m n mn
=+=++
又据余弦定理得
222
1212122cos F F PF PF PF PF θ=+-
即()222
42cos 2c m n mn θ
=+-
由()()12-得出()()2
2
421cos a c mn θ-=+,故()2
21cos b mn θ=+,故2
21cos b mn θ
=+
于是12
22
22(2sin cos )
1sin 22sin tan 21cos 212cos 12PF F b b S mn b θθ
θθθθθ∆⋅===
=+⎛
⎫+- ⎪
⎝
⎭, 因为()0,θπ∈,
0,22θ
π⎛⎫
∈ ⎪⎝⎭
,我们易得122tan 2PF F S b θ∆=是θ的增函数。
故而我们有结论1:θ越大,12PF F S ∆越大;12PF F S ∆越大,θ越大。
但12121
2
PF F P P S F F y c y ∆=
=,显然P y 越大,12PF F S ∆越大。
我们易于观察到当点P 在短轴的端点()12,B B 处时,P y 最大,于是12PF F S ∆最大。
于是结合结论1有:当点P 在短轴的端点()12,B B 处时,θ最大。