焦点三角形的性质

合集下载

专题椭圆的焦点三角形

专题椭圆的焦点三角形

专题椭圆的焦点三角形椭圆是一个引人注目、充满神秘感的几何图形,它具有许多令人惊叹的性质。

其中一个特殊的性质是焦点三角形。

本文将探讨专题椭圆的焦点三角形的特点和性质。

一、焦点三角形的定义在椭圆上取一点P,并绘制两条经过焦点的直线,分别交椭圆于两点A和B。

连接点P与A、B,即构成焦点三角形PAB。

二、椭圆焦点三角形的性质1. 焦点三角形是等腰三角形由于A和B分别是椭圆上的焦点,根据椭圆的对称性可知,AP和BP的长度相等,因此焦点三角形PAB是一个等腰三角形。

2. 焦点三角形的顶角等于椭圆的离心率角设椭圆的离心率为e,椭圆焦点距离为c,焦点三角形的两边长度为a和b。

根据梅涅劳斯定理可得到焦点三角形的顶角P的余弦值为:cosP = c / e从中可以看出,焦点三角形的顶角大小与椭圆的离心率成正比。

3. 焦点三角形的周长与椭圆周长的比值为e焦点三角形的周长可以表示为:周长PAB = a + b + c而椭圆的周长为:周长椭圆 = 4 * a * E(e)其中,E(e)为椭圆的椭圆积分。

归一化后,椭圆积分可以表示为E(e) = ∫[0, π/2] √[1 - e^2 sin^2Θ] dΘ。

将焦点三角形的周长除以椭圆的周长,可得到焦点三角形周长与椭圆周长比值的公式:焦点三角形周长 / 椭圆周长 = (a + b + c) / (4 * a * E(e))由此可见,焦点三角形的周长与椭圆周长的比值等于椭圆的离心率。

三、示例分析以一椭圆为例,离心率为0.6,焦点距离为5。

可根据数学计算求出椭圆参数及相关数据。

假设焦点三角形的两边长度分别为2和3,则焦点三角形的顶角P的余弦值为:cosP = 5 / 0.6 = 8.33根据arccos函数的反函数关系,可以得出焦点三角形的顶角P的角度为约31.79°。

进一步计算焦点三角形的周长与椭圆周长的比值为:焦点三角形周长 / 椭圆周长= (2 + 3 + 5) / (4 * 12.953) ≈ 0.288因此,对于该椭圆来说,焦点三角形的周长是椭圆周长的0.288倍。

椭圆的性质二 焦点三角形的性质

椭圆的性质二    焦点三角形的性质

||PF|2 |PF|1
a
ex
(a
ex)
2ex
2
4 5
x

5
x
0

∴0<|F2N|<8,∴0<|OM|<4.
若 P 在椭圆的右半部分时,同样可得出 0<|OM|<4,故选:B.
方法二 极限法,当 P 在左端点时,|OM|=4,在 P 上顶点时,|OM|=0,∴0<|OM|<4.
三 课后练习:
1.(2019·郑州第二次质量预测)已知椭圆 C:ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2,离心率为23,
x2
令椭圆方程为
a2
y2 b2
1(a b 0)
则由椭圆的定义有 | PF1 | | PF2 | 2a , | F1F2 | 2c ,

| PF1 | | PF2 |
| F1F2 | 2c
sin PF2F1 sin PF1F2 sin F1PF2
又 ∵ PF1F2 5PF2F1 , ∴ PF1F2 750 , PF2F1 150 ,
4.(2019
南昌模拟)P
为椭圆 x2 +y2=1 25 9
上一点,F1,F2
分别是椭圆的左、右焦点,过
P
点作
PH⊥F1F2

点 H,若 PF1⊥PF2,则|PH|=( )
A.25
B.8
4
3
C.8
D.9
4
解析:选 D 由椭圆 x2 +y2=1 得 a2=25,b2=9, 25 9
则 c= a2-b2= 25-9=4,∴|F1F2|=2c=8.由椭圆的定义可得|PF1|+|PF2|=2a=10,
A. (0, 3 ] 2

椭圆中焦点三角形的性质(含答案)

椭圆中焦点三角形的性质(含答案)

焦点三角形习题之勘阻及广创作性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为ab 22性质二:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan 221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ 由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F .同理可证,在椭圆12222=+b x a y (a >b >0)中,公式仍然成立.性质三:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ 性质三证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:.2112221)2(222222222122e a c a r r c a -=--=-+-≥命题得证。

例1.若P是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求△21PF F 的面积. 例1.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ 记.||,||2211r PF r PF ==点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ 配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点, 21||||2121=⋅PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33 解:设θ=∠21PF F ,则21||||cos 2121=⋅=PF PF θ,.60︒=∴θ.3330tan 92tan221=︒==∴∆θb S PF F 故选答案A.191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A. 59 B. 779C. 49 D. 49或779解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长492=a b ;若P 是直角顶点,设点P 到x 轴的距离为h ,则945tan 92tan221=︒==∆θb S PF F ,又,7)2(2121h h c S PF F =⋅⋅=∆ 97=∴h ,.779=h 故选D.1. 椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )A. 20B. 22C. 28D. 24解:24,90221=︒==∠b PF F θ,∴2445tan 242tan221=︒==∆θb S PFF .故选D.2. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )A. 0B. 1C. 3D. 6解:设θ=∠21PF F , 12tan2tan221===∆θθb S PFF ,∴︒=︒=90,452θθ,021=⋅PF PF .故选A.3. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为( )A. 0B. 2C. 4D. 2-解:3,1,2===c b a ,设θ=∠21PF F , 2tan2tan221θθ==∆b S PFF ,∴当△21PF F 的面积最大时,θ为最大,这时点P 为椭圆短轴的端点,︒=120θ,∴2120cos cos ||||22121-=︒=⋅=⋅a PF PF PF PF θ.故答案选D. 4.已知椭圆1222=+y ax (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为( ) A .1 B .31C .34D .32解:︒==∠6021θPF F ,1=b ,3330tan 2tan221=︒==∆θb S PFF ,又 ||||43sin ||||21212121PF PF PF PF S PFF ⋅=⋅=∆θ, ∴33||||4321=⋅PF PF ,从而34||||21=⋅PF PF .故答案选C.5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上,直线1PF 与2PF 倾斜角的差为︒=∠9021PF F ,△21PF F 的面积是20,且c/a=√5/3,求椭圆的尺度方程.解:设θ=∠21PF F ,则︒=90θ. 2045tan 2tan22221==︒==∆b b b S PFF θ,又 3522=-==a b a ac e ,∴95122=-ab ,即952012=-a. 解得:452=a .∴所求椭圆的尺度方程为1204522=+y x 或1204522=+x y . 专题2:离心率求法:1.若椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为()A.22B.32C.53D.631.解析:选 A.如图所示,四边形B 1F 2B 2F 1为正方形,则△B 2OF 2为等腰直角三角形, ∴c a =22. 2.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是() A.45B.35C.25D.15b =a +c ,又b 2=a 2-c 2,∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).3.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________. 3.解析:依题意,得b =3,a -c =1.又a 2=b 2+c 2,解得a =5,c =4,∴椭圆的离心率为e =c a =45.答案:454.已知A 为椭圆x 2a 2+y 2b2=1(a >b >0)上的一个动点,直线AB 、AC 分别过焦点F 1、F 2,且与椭圆交于B 、C 两点,若当AC 垂直于x 轴时,恰好有|AF 1|∶|AF 2|=3∶1,求该椭圆的离心率.4.解:设|AF 2|=m ,则|AF 1|=3m ,∴2a =|AF 1|+|AF 2|=4m . 又在Rt△AF 1F 2中,|F 1F 2|=|AF 1|2-|AF 2|2=22m .∴e =2c 2a =|F 1F 2|2a =22m 4m =22.5.如图所示,F 1、F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.5. 解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c .则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt△MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53.法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则M (c ,23b ).代入椭圆方程,得c 2a 2+4b29b2=1,所以c 2a 2=59,所以c a =53,即e =53.椭圆中焦点三角形的性质及应用(答案)性质二离心率求法:。

焦点三角形的美妙性质

焦点三角形的美妙性质

焦点三角形的美妙性质四川省万源市第三中学紫静邮编:636350 一、定义:椭圆或双曲线上任意一点和两个焦点的连线所形成的三角形,叫做焦点三角形。

二、性质:焦点三角形有以下一系列美妙性质:1.椭圆x2a2+y2b2= 1 的焦点三角形的面积S = b2tan θ2,双曲线x2a2-y2b2= 1 的焦点三角形的面积S = b2cot θ2,其中,θ = ∠F1PF2,P是椭圆或双曲线上任意一点,F1、F2是对应曲线的焦点。

以下同证明:由椭圆定义可知:|PF1| + |PF2|= 2a,|F1F2 |= 2c,a2 = b2+c2,由余弦定理有:4c2 =(2c)2 = |F1F2|2 = |PF1|2 + |PF2|2– 2|PF1||PF2|cosθ= (|PF1| + |PF2|)2-2|PF1||PF2|-2|PF1||PF2|cosθ∴2|PF1||PF2|(1 + cosθ) = 4a2- 4c2 = 4(a2-c2) = 4b2∴ |PF1||PF2| = 2b21+cosθ,∴焦点三角形的面积S = 12|PF1||PF2|sinθ = b2sinθ1+cosθ= b2tanθ2(∵sinθ1+cosθ= tanθ2)对双曲线,则有:|PF1|-|PF2| =±2a,|F1F2 |= 2c,a2+b2= c2,由余弦定理有:4c2 =(2c)2 = |F1F2|2 = |PF1|2 + |PF2|2– 2|PF1||PF2|cosθ= (|PF1|-|PF2|)2+2|PF1||PF2|-2|PF1||PF2|cosθ= (±2a)2+2|PF1||PF2|(1-cosθ) = 4a2+2|PF1||PF2|(1-cosθ)∴2|PF1||PF2|(1-cosθ) = 4c2-4a2= 4(c2-a2) = 4b2∴ |PF1||PF2| = 2b21-cosθ,∴焦点三角形的面积S = 12|PF1||PF2|sinθ = b2sinθ1-cosθ= b2cotθ2(∵sinθ1+cosθ= cotθ2)2.对椭圆x2a2+y2b2= 1 ,设l是其焦点三角形的过点P的外角平分线.....,过F1或F2作l的垂线,则垂足的轨迹是以原点为圆心,a为半径的圆;对双曲线x2a2-y2b2= 1 ,设l是其焦点三角形的过点P的内角平分线.....,过F1或F2作l的垂线,则垂足的轨迹是以原点为圆心,a 为半径的圆。

椭圆中焦点三角形的性质及应用探究

椭圆中焦点三角形的性质及应用探究

2 . 故 答 案 为 D.
2 、f 2
所以 l P F . 1 『 P F 。 I = ( 『 P F 『 +『 P F 。 I ) -4 c
2 ( 1 +C O S 0 )
4n 2— 4c 2 b
性质 四: 已 知 椭 圆 方 程 为 + 一 l ( n> 6> o) ・ 两 焦 点 分 别 为 F , Fz , 设 焦 点 三 角 形 PF F 中 F PF 一 0, 则
( 异 于 长 轴 的 端 点) ,则 称
△F PF 为 椭 圆 的 焦 点 三
证明 : 设 P( 。 , Y 。 ) , 由焦 半 径公 式可 知 : l P F l 一口+
e o , l PF1 口一e 1 . T o .
角形 .
性质一 : 过椭圆焦点 的所 有弦 中通 径 ( 垂 直于焦 点的 弦 ) 最短。 通 径 为 .
y a



刚一
一 4 b

一 一
例 1 设 椭 圆x z

一1 ( c £ >6 >0 ) 的右 焦点 为 F , 右 准
( 1 P F I +l P F : { ) 。 一2 I P F I I P F l 一4 c 2 l P F I l P F
6 z t a n 要一 t a n , 所 以 当 △ F P F 的 面 积 最 大 时 , 0 为 最 大 ,
这 时 点 P 为 椭 圆 短 轴 的端 点 , 0 —1 2 0 。 .
所 以P Fl ・PF 2 一l P Fl I・f P F z J C O S 0 一Ⅱ C O S 1 2 0 。 一
c o s 8 ≥1 —2 e 。 .

椭圆中焦点三角形的性质及应用

椭圆中焦点三角形的性质及应用

椭圆中焦点三角形的性质及应用
又,故满足:故为直角三角形、说明:考查定义、利用已知、发挥联想,从而解题成功、性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。

性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。

证明:设,由焦半径公式可知:,在中, = 性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为性质四:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得:
命题得证。

(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。

简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质五:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。

由正弦定理得:由等比定理得:而,∴。

已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且∠PF1F2=120,求tanF1PF2.解:(1)由题设2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴椭圆的方程为=1.(2)设∠F1PF2=θ,则∠PF2F1=60-θ椭圆的离心率则,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.
第 1 页共 1 页。

焦点三角形二级结论

焦点三角形二级结论

焦点三角形二级结论三角形是我们初中数学学习的重点之一,而焦点三角形作为三角形的一种特殊形式,也是我们需要掌握的知识之一。

在学习焦点三角形的过程中,我们需要掌握的不仅是它的基本定义和性质,还需要了解它的二级结论,这些结论可以帮助我们更深入地理解焦点三角形的性质。

一、焦点三角形的基本定义和性质焦点三角形是指以一个三角形的三个顶点为三个焦点所构成的三角形。

它的性质有以下几点:1.焦点三角形的内角和等于180度。

证明:由于焦点三角形的三个顶点是同一个三角形的顶点,所以它们构成的三角形的内角和等于原三角形的内角和,即180度。

2.焦点三角形的外心是原三角形的垂心。

证明:设原三角形ABC的外心为O,垂心为H,焦点三角形的三个焦点为A'、B'、C',则有:∠A'OB' = 2∠ACB,∠A'CB' = 2∠ABC,∠B'CA' = 2∠BAC由于∠A'OB' + ∠A'CB' + ∠B'CA' = 360度,所以有:2∠ACB + 2∠ABC + 2∠BAC = 360度即:∠ACB + ∠ABC + ∠BAC = 180度所以O、H、A'、B'、C'五点共面,且OH垂直于A'B'C'的平面,故O是A'B'C'的垂心。

3.焦点三角形的外接圆半径等于原三角形的外接圆半径的一半。

证明:设原三角形ABC的外接圆半径为R,焦点三角形的外接圆半径为r,则有:AB = 2Rsin∠C,AC = 2Rsin∠B,BC = 2Rsin∠AA'B' = 2rsin∠C,A'C' = 2rsin∠B,B'C' = 2rsin∠A 由正弦定理可得:sin∠A'CB' = sin∠ABC,sin∠B'CA' = sin∠BAC,sin∠A'OB' = sin∠ACB所以有:A'B' = 2Rsin∠ABC/2 = Rsin∠C,A'C' = 2Rsin∠BAC/2 = Rsin ∠B,B'C' = 2Rsin∠ACB/2 = Rsin∠A故有:r = (A'B'*A'C'*B'C')/(4S) = (Rsin∠A)(Rsin∠B)(Rsin∠C)/2R^3sin∠A sin∠B sin∠C= R/2所以焦点三角形的外接圆半径等于原三角形的外接圆半径的一半。

焦点三角形的美妙性质

焦点三角形的美妙性质

焦点三角形的美妙性质焦点三角形的性质,都和焦点三角形的内外角平分线有着紧密联系,同时,又都和圆锥曲线的定义密切相关。

由椭圆和双曲线的定义的相似,我们看出,他们的性质也异常相似!在焦点三角形的统一下,他们的性质和谐地完美着!1 定义椭圆或双曲线上任意一点和两个焦点的连线所形成的三角形,叫做焦点三角形。

2 性质焦点三角形有以下一系列美妙性质:2.1 椭圆x 2 a 2 + y 2 b 2 =1的焦点三角形的面积S= b2tan θ 2 ,双曲线x 2 a 2 - y 2 b 2 =1的焦点三角形的面积S=b2cot θ 2 ,其中,θ=∠F1PF2,P是椭圆或双曲线上任意一点,F1、F2是对应曲线的焦点。

以下同证明:由椭圆定义可知:|PF1|+|PF2|=2a,|F1F2|=2c,a2=b2+c2,由余弦定理有:4c2=(2c)2=|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ=(|PF1|+|PF2|) 2 -2|PF1||PF2|-2|PF1||PF2|cosθ∴2|PF1||PF2|(1+cosθ)=4a2-4c2= 4(a2-c2)=4b 2∴|PF1||PF2|= 2b 2 1+cosθ ,∴焦点三角形的面积S= 1 2 |PF1||PF2|sinθ= b 2 sinθ 1+cosθ =b2tan θ2 (∵sinθ1+cosθ =tan θ 2 )对双曲线,则有:|PF1|-|PF2|=±2a,|F1F 2 |=2c,a2+b2=c2,由余弦定理有:4c 2 =(2c)2= |F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ= (|PF1|-|PF2|) 2 +2|PF1||PF2|-2|PF1||PF2|cosθ= (±2a) 2 +2|PF1||PF2|(1-cosθ)=4a2+2|PF1||PF2|(1-cosθ)∴2|PF1||PF2|(1-cosθ)=4c2-4a2=4(c2-a2)=4b 2∴|PF1||PF2|= 2b 2 1-cosθ ,∴焦点三角形的面积S=1 2 |PF1||PF2|sinθ=b 2 sinθ 1-cosθ =b2cot θ 2 (∵sinθ 1+cosθ =cot θ 2 )2.2 对椭圆x 2 a 2 +y 2 b 2 =1 ,设l是其焦点三角形的过点P的外角平分线,过F1或F2作l的垂线,则垂足的轨迹是以原点为圆心,a为半径的圆;对双曲线x 2 a 2 - y 2 b 2 =1,设l是其焦点三角形的过点P的内角平分线,过F1或F2作l的垂线,则垂足的轨迹是以原点为圆心,a为半径的圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆中焦点三角形的性质及应用
定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。

与焦点三角形的有关问题有意地考查了定义、三角形中的的正(余)弦定理、内角和定理、面积公式等.
一.焦点三角形的形状判定及周长、面积计算
例1 椭圆上一点P 到焦点21,F F 的距离之差为2,试判断21F PF ∆的形状.
解:由
112
162
2=+y x 椭圆定义:
3||,5||.2||||,8|||212121==∴=-=+PF PF PF PF PF PF .
又4||21=F F Θ,故满足:,||||||2
12
212
2PF F F PF =+故21F PF ∆为直角三角形. 说明:考查定义、利用已知、发挥联想,从而解题成功.
性质一:已知椭圆方程为),0(122
22>>=+b a b
y a x 两焦点分别为,,21F F 设焦点三角形
21F PF 中,21θ=∠PF F 则2
tan
221θ
b S PF F =∆。

θ
cos 2)2(212
2212
2
12PF PF PF PF F F c -+==Θ)cos 1(2)(21221θ+-+=PF PF PF PF θ
θθcos 12)cos 1(244)
cos 1(24)(2
222
22121+=
+-=+-+=
∴b c a c PF PF PF PF 2
tan cos 1sin 2122212
1θθθb b PF PF S PF F =+==∴∆ 性质二:已知椭圆方程为),0(122
22>>=+b a b
y a x 左右两焦点分别为,,21F F 设焦点三角
形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。

证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ∆中,2
12
2
121212cos PF PF F F PF PF -+=
θ2
12
21221242)(PF PF c PF PF PF PF --+=
1))((24124422122--+=--=o o ex a ex a b PF PF c a =122
222
--o
x e a b a x a ≤≤-0Θ 22
a x o
≤∴
性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为a
b 2
2
性质四:已知椭圆方程为),0(122
22>>=+b a b
y a x 两焦点分别为,,21F F 设焦点三角形
21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ
证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:
1222242)(2cos 2
12
221221221212
212221--=--+=-+=r r c a r r c r r r r r r F F r r θ
.2112221)
2
(2222
2
2222122e a c a r r c a -=--=-+-≥ 命题得证。

(2000年高考题)已知椭圆)0(122
22>>=+b a b
y a x 的两焦点分别为,,21F F 若椭圆上存在
一点,P 使得,1200
21=∠PF F 求椭圆的离心率e 的取值范围。

简解:由椭圆焦点三角形性质可知.21120cos 2
e -≥即2212
1
e -≥-
, 于是得到e 的取值范围是.1,23⎪⎪⎭

⎢⎣⎡ 性质五:已知椭圆方程为),0(122
22>>=+b a b
y a x 两焦点分别为,,21F F 设焦点三角形
21F PF ,,,1221βα=∠=∠F PF F PF 则椭圆的离心率β
αβαsin sin )
sin(++=
e 。

,,1221βα=∠=∠F PF F PF
由正弦定理得:
β
α
βαsin sin )
180sin(122
1PF PF F F o
=
=
--
由等比定理得:
β
αβαsin sin )
sin(2121++=
+PF PF F F

)sin(2)
sin(21βαβα+=
+c F F ,β
αβαsin sin 2sin sin 21+=
++a PF PF ∴β
αβαsin sin )sin(++==
a c e 。

已知椭圆的焦点是F 1(-1,0)、F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|
PF 2|的等差中项.
(1)求椭圆的方程;
(2)若点P 在第三象限,且∠PF 1F 2=120°,求tan F 1PF 2. 解:(1)由题设2|F 1F 2|=|PF 1|+|PF 2| ∴2a =4,又2c =2,∴b =3
∴椭圆的方程为3
42
2y x +=1. (2)设∠F 1PF 2=θ,则∠PF 2F 1=60°-θ
Θ椭圆的离心率2
1
=
e 则)60sin(2
3
sin )
60sin(120sin )180sin(21θθθθ-+=-+-=o o o o ,
整理得:5sin θ=3(1+cos θ)
∴53cos 1sin =
+θθ故532tan =θ,tan F 1PF 2=tan θ=113525
3153
2=-⋅
.。

相关文档
最新文档