人教版七年级数学下册 统计专题复习
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查复习试题(含答案) (76)

人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查复习题(含答案)某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按,,,A B C D四个等级进行统计(说明:A级:90分~100分;B 级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是_________;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?【答案】(1)50;(2)36°;(3)作图见解析;(4)100名.【解析】【分析】(1)根据条形统计图和扇形统计图的对应关系,用条形统计图中某一类的频数除以扇形统计图中该类所占百分比即可解决.(2)用单位1减掉A、B、C所占的百分比,得出D项所占的百分比,然后与360°相乘即可解决.(3)用总数减去A 、B 、C 的频数,得出D 项的频数,然后画出条形统计图即可.(4)用七年级所有学生乘A 项所占的百分比,即可解决.【详解】(1)10÷20%=50;(2)()360146%24%20%36010%36︒⨯---=︒⨯=︒;(3)D 项的人数:50-10-23-12=5.补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A 级学生人数约为100名.【点睛】本题考查了条形图和扇形统计图结合题型,解决本题的关键是正确理解题意,熟练掌握扇形统计图和条形图的各类量的对应关系.52.某校初三有2000名学生,为了解初三学生的体能,从人数相等的甲、乙两个班进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个班各随机抽取20名学生.进行了体能测试,测试成绩(百分制)如下:甲:78,86,74,81,75,76,87,70,75,90,75,79, 81,70, 74, 80 ,86, 69 ,83, 77.乙:93,73,88,81,72,81,94,83,77,83,80,81,70,81,73,78,82,80,70,40.整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体能优秀,70~79分为体能良好,60~69分为体能合格,60分以下为体能不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:问题解决:(1)表中a= ,b= ,c ;(2)估计一下该校初三体能优秀的人数有多少人?(3)通过以上数据的分析,你认为哪个班的学生的体能水平更高,并说明理由.【答案】1)80.5,75,60%;(2)1000人;(3)甲班好,见解析;或乙班好,见解析【解析】【分析】(1)由题意将每组数据整理排序,依据中位数、众数的意义、以及优秀率的求法,进行计算即可得到答案;(2)根据题意用学校校初三的总人数乘以该校初三体能优秀的学生所占的百分比即可;(3)根据题意可以通过平均、中位数、众数、优秀率中两个方面进行分析判断即可.【详解】解:(1)把这些数从小到大排列,则中位数a=80.5,∵75出现了3次,出现的次数最多,∴b=75,12100%60%20c=⨯=,所以答案为:80.5,75,60%.(2)由题意可知该校初三体能优秀的人数有812200010002020+⨯=+(人). 答:该校初三体能优秀的人有1000人.(3)甲班好.∵甲班平均数78.3,乙班平均数78,78.3>78∵甲班好或者乙班好∵乙班优秀率60%,甲班优秀率40%60%>40%∵乙班好.【点睛】 本题考查平均数、中位数、众数、优秀率的意义和求法等知识,注意体会各个统计量反映数据的特点,同时体会和应用样本估计总体的统计思想.53.为调查本校学生对“关灯一小时”有关情况的了解程度.学校政教处随机抽取部分同学进行了调查,将调查结果分为:“A —不太了解、B —基本了解、C —了解较多、D —非常了解”四个等级,依据相关数据绘制成如下两幅统计图.(1)这次调查抽取了多少名学生?(2)根据两个统计图提供的信息,补全这两个统计图;(3)若该校有 3000 名学生,请你估计全校对“关灯一小时”非常了解的学生有多少名?【答案】(1)这次调查抽取了50名学生;(2)图见解析;(3)对“关灯一小时”非常了解的学生有600名.【解析】【分析】(1)由A 的百分比及人数进一步计算出答案即可;(2)先求出B 的人数为,从而得出D 的人数,然后进一步计算出图中缺失的信息来补全图形即可;(3)用对“关灯一小时”非常了解的学生占的百分比乘以总人数即可.【详解】(1)510%50÷=(名),答:这次调查抽取了50名学生;(2)B 的人数为:5030%15⨯=(名),D 的人数为:505152010---=(名),C 所占的百分比为:()2050100%40%÷⨯=,D 所占的百分比为:()1050100%20%÷⨯=,∴补全的图形如下所示:⨯=(名),(3)300020%600答:对“关灯一小时”非常了解的学生有600名.【点睛】本题主要考查了数据的统计与分析的综合运用,熟练掌握相关方法是解题关键.54.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A表示“全部能分类”,B表示“基本能分类”,C表示“略知一二”,D表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是人,扇形图中D部分所对应的圆心角的度数为;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.【答案】(1)见解析,50,36°;(2)1800人;(3)该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及【解析】【分析】(1)用A类的人数除以相应的百分比即可求出总数,用D类的人数除以总数再乘以360°即可求出扇形图中D部分所对应的圆心角的度数,用总人数减去A,C,D三类的人数即可求出B类的人数,即可补全条形统计图;(2)先求出样本中C类所占的百分比,然后用总人数3000乘以这个百分比即可;(3)根据数据反映的信息,建议合理即可.【详解】÷=(人),解:(1)调查的总人数为510%50扇形图中D部分所对应的圆心角的度数为536036⨯︒=︒,50---=(人)B类的人数是50530510条形统计图如下:(2)3030001800⨯=(人)50答:根据样本估计总体,该社区中C类约有1800人(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及.【点睛】本题主要考查条形统计图和扇形统计图,能够从图中获取有用信息并用样本估计整体是解题的关键.55.为了丰富学生的课余生活,宣传我县的旅游景点,某校将举行“我为松桃旅游代言”的活动,现随机抽取了部分学生进行主题为“你想去的景点是”的问卷调查,要求学生只能去“A(正大苗王成),B(寨英古镇),C(盘石黔东草海),D(乌罗潜龙洞)”四个景点选择一项,根据调查结果,绘制了如下两幅不完整的统计图.回答下列问题:⑴本次共调查了多少名学生;⑵请把条形统计图补充完整;⑶该学校共有3000名学生,试估计该校最想去盘石黔东草海的学生人数.【答案】⑴本次调查的学生的人数为60人;⑵补全条形图见解析;⑶估计该校最想去该校去盘石黔东草海的学生人数约为1150人.【解析】【分析】(1)用A的人数15除以所占比例25%即可得出总人数;(2)总人数减去A、B、D的人数即可得出C的人数;(3)用C的人数除以本次调查的总人数60,再乘以学校总人数即可.【详解】解:(1)由题意知,本次调查的学生的人数为:÷=人1525%60()(2)60-15-10-12=23(人)补全条形图如图:(3)由题意可知;233000=1150⨯(人)60答:估计该校最想去该校去盘石黔东草海的学生人数约为1150人.【点睛】本题考查的知识点是条形统计图以及扇形统计图,解此题的关键是能够从图中找出相关的信息.56.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)请补全条形统计图(图2);(2)在扇形统计图中,“篮球”部分所对应的圆心角是____________度?(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【答案】(1)见解析;(2)144;(3)16【解析】【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用360°乘以喜欢篮球人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【详解】(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50-8-20-6-2=14(人),补全条形统计图如下:(2)“篮球”部分所对应的圆心角=360×40%=144°;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率:21.126【点睛】本题考查了条形统计图和扇形统计图的综合运用以及列表法与树状图法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.57.我校对八年级学生的学习态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图①的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生;(2)通过计算达到C级的有多少人?并补全条形图.(3)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标指的是学习兴趣达到A级和B级)?【答案】(1)共调查了200名学生;(2)达到C级的有30人,图见解析;(3)大约有68000名学生学习态度达标【解析】【分析】(1)从两个统计图中可以得到B组的有120人,占调查人数的60%,可求出调查人数,(2)求出C组人数,即可补全条形统计图,(3)样本估计总体,用样本中A、B两组的百分比估计总体的百分比,进而求出人数即可.【详解】解:(1)120÷60%=200人,答:本次抽样调查中,共调查了200名学生,(2)200×15%=30人,200﹣120﹣50=30人,补全条形统计图如图所示:=68000人,(3)80000×50120200答:全校80000名八年级学生中大约有68000名学生学习态度达标.【点睛】本题主要考查了条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量之间的关系是解决问题的关键.58.七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.【答案】(1)200;(2)见解析,36°;(3)120【解析】【分析】(1)从两个统计图可得,“小说”的有80人,占调查人数的40%,可求出调查人数;(2)求出“科普常识”人数,即可补全条形统计图:)样本中,“其它”的占调,因此圆心角占360°的,10%,可求出度数;查人数的20200(3)样本估计总体,样本中“科普常识”占30%,估计总体400人的30%是喜欢“科普常识”的人数.【详解】(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:=36°,360°×20200(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.59.为增加学生的阅读兴趣,学校新购进一批图书.为了解学生对图书类别的喜欢情况,学校随机抽取部分学生进行了问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题:(1)此次共调查了多少人;(2)通过计算补全条形统计图;(3)若该校共有学生3600人,请估计这所学校喜欢科学类图书的学生人数.【答案】(1)总共被调查的人数为200人;(2)补全条形统计图见解析;(3)估计这所学校喜欢科学类图书的学生人数为576人.【解析】【分析】(1)从两个统计图中可得文学的人数为78人占调查人数的39%,可求调查人数,(2)求出“历史”的人数,再求出“科学”的人数,即可补全条形统计图,(3)样本估计总体,求出样本中“科学”占的百分比即为总体中“科学”所占比,从而可求出人数,【详解】解:(1)总共被调查的人数为3978200÷=(人)100答:次共调查了200人;(2)被调查的学生中,喜欢历史的人数为33⨯=(人),20066100---=,∴喜欢科学的人数为20078662432补全条形统计图如图所示:(3)该校共3600人,估计这所学校喜欢科学类图书的学生人数为323600576⨯=(人)200答:该校3600名学生中喜欢“科学”类书的大约有576人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据是解决问题的关键,理清统计图中的各个数据之间的关系是前提.60.为了解某校七年级学生对A(极限挑战);B(奔跑吧),C(王牌对王牌);D(向往的生活)四个点数节目的喜爱情况,某调查组从该校七年级学生中随机抽取了位m学生进行调查统计(要求每位选出并且只能选一个自己喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2).根据以上信息,回答下列问题:(1)m=_____________,n=________________;(2)在图1中,喜爱(奔跑吧)节目所对应的扇形的圆心角的度数是___________;(3)请根据以上信息补全图2的条形统计图;(4)已知该校七年级共有540名学生,那么他们当中最喜爱(王牌对王牌)这个节目的学生有多少人?【答案】(1)0060,20;(2)144°;(3)见解析;(4)他们喜欢(王牌对王牌)这个节目的学生约有108人.【解析】【分析】(1)从两个统计图中可以得到“D《向往的生活》”有6人,占调查人数的10%,可求出调查人数,即m的值,进而可求出“B”的人数,计算出“C”组所占的百分比;(2)“B”组占40%,因此圆心角占360°的40%;(3)补齐“B”组的条形即可;(4)C组占调查人数的1260,因此估计总体中,540人的1260喜欢《王牌对王牌》节目.【详解】(1)m=6÷10%=60,B的人数为:60×40%=24人,12÷60=20%,因此n=20.故答案为:60,20.(2)360°×40%=144°.故答案为:144°;(3)补全条形统计图如图所示:(4)5401260⨯=108人,答:他们当中最喜欢《王牌对王牌》这个节目的学生有108人.【点睛】本题考查了条形统计图、扇形统计图的意义和制作方法,从统计图中获取数据及数据之间的关系是解答本题的关键.。
第10章 数据的收集、整理与描述【过关测试】(原卷版)七年级数学下册单元复习(人教版)

第10章数据的收集、整理与描述过关测试(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)为全面掌握小区居民新冠疫苗接种情况,社区工作人员设计了以下几种调查方案:方案一:调查该小区每栋居民楼的10户家庭成员的疫苗接种情况;方案二:随机调查该小区100位居民的疫苗接种情况;方案三:对本小区所有居民的疫苗接种情况逐一调查统计.在上述方案中,能较好且准确地得到该小区居民疫苗接种情况的是()A.方案一B.方案二C.方案三D.以上都不行2.(3分)下列调查方式中,适合用普查方式的是()A.对某市学生课外作业时间的调查B.对神舟十三号载人航天飞船的零部件进行调查C.对某工厂生产的灯泡寿命的调查D.对某市空气质量的调查3.(3分)下列调查中,最适合采用抽样调查的是()A.调查一批防疫口罩的质量B.调查某校初一一班同学的视力C.为保证某种新研发的大型客机试飞成功,对其零部件进行检查D.对乘坐某班次飞机的乘客进行安检4.(3分)某校八年级共有5个班级,每个班的人数在50人左右.为了了解该校八年级学生最喜欢的体育项目,八年级(二)班的四位同学各自设计了如下的调查方案:甲:我准备给八年级每班的学习委员都发一份问卷,由学习委员代表班级填写完成.乙:我准备给八年级所有女生都发一份问卷,填写完成.丙:我准备在八年级每个班随机抽取10名同学各发一份问卷,填写完成.丁:我准备在八年级随机抽取一个班,给这个班所有的学生每人发一份问卷,填写完成.则四位同学的调查方案中,能更好地获得该校学生最喜欢的体育项目的是()A.甲B.乙C.丙D.丁5.(3分)某校为了解本校七年级500名学生的身高情况,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校七年级500名学生的身高.其中正确的说法有()A.1个B.2个C.3个D.4个6.(3分)要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析,下列说法正确的是()A.1500名学生是总体B.每名学生的心理健康评估报告是个体C.被抽取的300名学生是总体的一个样本D.300名是样本容量7.(3分)某中学就周一早上学生到校的方式问题,对八年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率是()八年级学生人数步行人数骑车人数乘公交车人数其他方式人数300751213578 A.0.1B.0.25C.0.3D.0.458.(3分)李阳同学某周中每天背得的单词分别是:16个、19个、15个、18个、22个、30个、26个,为了反映他这一周所背得的单词变化情况,制作最简捷最合适的统计图应该是()A.折线图B.条形图C.扇形图D.直方图9.(3分)为弘扬中华传统文化,某乡镇举行了一场“诗词背诵”比赛,赛后整理所有参赛选手的成绩x(单位:分)如表,则m为()10.(3分)某汽车油箱存油量()Q与汽车工作时间()t的关系如表,下列说法不正确的是()时间t(分)0102030405060⋯存油量Q(升)20191817161514⋯A.油箱中原存油20升B.汽车每分钟耗油0.1升C.汽车工作2小时,油箱中存油8升D.油箱中的油只可供汽车工作3小时11.(3分)某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A.喜欢篮球的人数为16人B.喜欢足球的人数为28人C.喜欢羽毛球的人数为10人D.被调查的学生人数为80人12.(3分)如图,是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间不小于6小时的人数是( )A.6人B.8人C.14人D.36人二、填空题(共10小题,满分30分,每小题3分)13.(3分)七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为.(填序号)14.(3分)小红要调查数学书中有无印刷错误,适合采用(填“抽样调查”或“普查”).15.(3分)某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是.(填“总体”,“样本”或“个体”)16.(3分)在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有个.17.(3分)2022年2月22日22点02分是千年难遇的时刻,数“20222222202”充分体现了数学书的对称之美,在这个数的所有数字中“2”出现的频数是.18.(3分)王老师为了解本班学生对新冠病毒防疫知识的掌握情况,对本班45名学生的新冠病毒防疫知识进行了测试,并把测试成绩分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是.19.(3分)一个样本有100个数据,拟绘制频数分布直方图.现已知最大数为96,最小数为53,如果设置组距为5,则可分成组.20.(3分)某校开展“庆祝中国共产党成立100周年”征文比赛(每位同学限一篇),每篇作品的成绩记为x分(60100)x,学校从中随机抽取部分学生的成绩进行统计,并将统计结果制成下边的统计表.根据统计表可得,表中m的值为.分数段频数频率90100x220.22x<m0.480907080x<300.3x<80.08607021.(3分)如图是初中七年级某班学生一周课外阅读时间的扇形统计图,已知阅读4小时以下与阅读10小时以上的人数相同,则阅读4小时以下所对应的扇形圆心角为︒.22.(3分)为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图:根据图中提供的信息,下列关于成人患者使用该药物的说法中:①首次服用该药物1单位约10分钟后,药物发挥疗效作用;②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用;③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒.所有正确的说法是.三、解答题(共5小题,满分34分)23.(6分)某学校初、高中六个年级共有3000名学生,现采用抽样调查的方法了解其视力情况,各年级学生人数如下表所示:年级七年级八年级九年级高一高二高三合计人数/名56052050050004804403000调查人数/名(1)如果按10%的比例抽样,此次抽样的样本容量是多少?(2)考虑到不同年级学生的视力差异,为了保证样本具有较好的代表性,各年级分别应调查多少人?将结果直接填写在题中所提供的数据表中.24.(6分)某中学进行了一次演讲比赛,分段统计参赛同学的成绩,结果如下(分数为整数,满分为100分)请根据表中提供的信息,解答下列问题:分数段(分)人数(人)91~100781~90671~80861~704(1)参加这次演讲比赛的同学有多少?(2)已知成绩在91~100分的同学为优秀者,那么优胜率为多少?25.(6分)一块400平方米的菜地,四种蔬菜的种植面积分布如图所示.(1)西红柿和辣椒的种植面积分别是多少平方米?(2)如果豆角每平方米的产量是12千克,因不能及时采摘导致损耗,实际共采摘豆角1368千克,求损耗了多少千克?26.(8分)为深入开展青少年毒品预防教育工作,增强学生禁毒意识,某校联合禁毒办组织开展了“2021年青少年禁毒知识竞赛”活动,并随即抽查了部分同学的成绩,整理并制作成图表如下:分数段频数频率x<300.16070x<90n70808090x<0.4x600.290100根据以上图表提供的信息,回答下列问题:(1)抽查的总人数为人,n=;(2)请补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优秀”,请你估计该校2400名学生中竞赛成绩是“优秀”的有多少名?27.(8分)观察图,回答下列问题.(1)截至12月9日22时,绍兴地区有阳性感染者例.(2)新冠肺炎的传染途径与方式非常复杂,假设阳性感染者第二天就能传染给他人,且1例阳性感染者在不知情的情况下平均每天传播使2个人感染阳性,如果不对阳性感染者进行隔离,那么截至12月12日22时,绍兴地区累计阳性感染者将会达到多少例?(3)事实上,截至12月12日,绍兴地区累计阳性感染者108例,请你说说政府采取了哪些有效的防疫措施?(请写出至少两条)。
人教版七年级数学下册统计调查 典型例题(考点)讲解+练习(含答案)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】统计调查知识讲解责编:杜少波【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3.会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.【要点梳理】要点一、统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).要点诠释:(1)“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.(2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.(3)样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.2.调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.要点诠释:(1)全面调查又叫“普查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据.(2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.要点诠释:(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如“全面调查”得到的结果准确.(3)调查方法的选择:①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.要点二、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、统计学及其相关概念1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).A.0种 B.1种 C.2种 D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中().A.2万考生是总体;B.每名考生是个体;C.个体是每名考生的成绩;D.600名考生是总体的一个样本.【答案】C.类型二、普查和抽样调查2.(2015•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况【思路点拨】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【答案】B.【解析】解:A、调查一批电视机的使用寿命情况,调查具有破坏性,适合抽样调查,故A不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;故选:B.【总结升华】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列调查适合作抽样调查的是( ).A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【思路点拨】抽样调查不可能进行全面调查的现象.【答案】A.【解析】解:要了解义乌电视台“同年哥讲新闻”栏目的收视率,显然应采用抽样调查的方式.而对于B、D选项,因为漏掉每一个个体携带H1N1病毒者或者“神七”载人飞船有一个小零件不合格,都会出现意想不到的后果,因此需要采用全面调查的方式.了解某班每个学生家庭电脑的数量,范围小,工作量小,一般也采用全面调查的方式.故选A.【总结升华】①在具体的问题情境中,要根据需要选择用全面调查还是抽样调查的方式进行调查;抽样调查得到的信息的准确度受调查对象(即样本)的数量和特点影响,故抽样时必须注意调查对象是否具有代表性和广泛性.举一反三:【变式】下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.【答案】(1)采用的是全面调查方式收集数据的;(2)、(3)是采用抽样调查方式收集数据的.类型三、数据的描述4.2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图(如图所示),请你根据这两位同学提供的信息,解答下面的问题:(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.【思路点拨】依据条形图反映出来的数量作答.【答案与解析】解:(1)因为喜欢排球的12人占抽样总人数的6%,故抽样人数为:故喜欢乒乓球的人数为:200-12-38-80-20=50(人).(2)喜欢收看羽毛球人数为:12=200(人),6%20⨯1800=180(人).200【总结升华】把小长方形对应的纵轴数相加即得到抽取的调查报告数,这也是样本数;每组所占样本的百分比乘总数即这组调查报告约有的份数.5.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):每亩生产成本110元每亩产量130千克油菜籽市场价格3元/千克种植面积500000亩请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)【思路点拨】由扇形统计图反映出来的信息知:种子占生产成本的10%,根据这一点不难解答本题.【答案与解析】解:(1)种子占成本的百分数为 1-10%-35%-45%=10%,故种植油菜每亩的种子成本为:110×10%=11(元).(2)由统计表知,每亩油菜销售总价为:130×3=390(元),故农民冬种油菜每亩获利390-110=280(元).(3)因为农民种植油菜.每亩获利280元,则500000亩油菜共获利:280×500000=8140000000=1.4×10(元).【总结升华】在扇形统计图中,各部分所占的百分比之和=1,扇形对应圆心角度数=该扇形所占百分比×360°.6.某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是A.30吨 B.31吨 C.32吨 D.33吨【答案】C.【解析】解:从折线统计图,可知1日的用水量为30吨,2日的用水量为34吨,3日的用水量为32吨,4日的用水量为37吨,5日的用水量为28吨,6日的用水量为31吨,由此可计算出这6天的平均用水量为(30+34+32+37+28+31)÷6=32(吨).【总结升华】折线图的特点:易于显示数据的变化趋势.【:统计图例4】举一反三:【变式】近年来国内生产总值增长率变化情况如图,从图上看下列结论不正确的是( ). A.1995~1999年国内生产总值增长率逐年减少B.2000年国内生产总值的年增长率开始回升C.这7年中,每年的国内生产总值不断增长D.这7年中,每年的国内生产总值有增有减【答案】D类型四、综合应用7.(2016•河南模拟)学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【思路点拨】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.【答案与解析】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:(4)1800×=480(名).×360°=48°;答:1800名学生中估计最喜爱科普类书籍的学生人数为480.【总结升华】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.【:统计图练习1】举一反三:【变式1】如果想表示我国从20002010年间国民生产总值的变化情况,最合适的是采用( ).A.条形统计图B.扇形统计图 C.折线统计图 D.以上都很合适【答案】C.【变式2】(2015•恩施州)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240B.120C.80D.40【答案】D.。
七年级下统计知识点

七年级下统计知识点在中学数学的学习中,统计学是不可或缺的一部分。
在七年级下学期,学生需要学习并掌握一定程度的统计知识。
本文将对七年级下统计知识点做个梳理,帮助学生更好地了解和掌握这一领域的知识。
1. 数据及其分类统计学的基础,就是数据,因此在开始学习统计之前,需要了解数据及其分类。
数据可以分为两种:定量数据和定性数据。
定量数据是指有具体数值的数据,如身高、体重、年龄等;而定性数据是指没有具体数值的数据,如颜色、性别、工种等。
在处理数据时,需要根据其类型选择合适的统计方法。
2. 数值的表示在表示数值时,常用的方法是用表格、图表和文字描述等。
其中,表格最为直观简洁,可以对数据进行分类、比较和统计分析。
图表则更能够体现数据的特点和规律。
常用的图表有条形图、饼图、折线图等。
文字描述也是不可缺少的一部分,能够对数据进行详细的解释和说明。
3. 统计数据的分析对于所收集到的数据,需要进行一定的分析和处理,以便更好地进行统计。
常用的分析方法包括平均数、中位数、众数等,它们能够帮助我们更好地了解数据的分布情况和趋势。
此外,还有方差、标准差等方法,用于衡量数据的离散程度和差异性。
4. 概率的计算概率是统计学的重要内容,也是一种应用非常广泛的数学方法。
在七年级下学期,学生需要学习基础的概率计算方法,包括事件、概率、样本空间等概念,以及概率加法定理和乘法定理的应用等。
这些知识对于今后在各个领域的应用都有非常重要的意义。
总之,在七年级下学期的统计学习中,学生需要重视基础知识的掌握,学会使用各种表格、图表及文字描述方法,掌握常用的统计分析工具,同时建立起基本的概率计算方法。
只有这样,才能更好地应对未来的学习和工作。
2020-2021年人教版七年级下册数学期末复习:数据的收集、整理与描述(含答案)

2020-2021年人教版七年级下册数学期末复习数据的收集、整理与描述考点一调查方式的选用【例1】下列调查方式中适合的是( )A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式【分析】统计的调查方式有全面调查与抽样调查两种方式.对于两种调查方式的选择主要取决于调查对象的数量和性质,因为调查具有时间限制,有的调查还具有破坏性.【解答】C【方法归纳】全面调查适合的条件:(1)总体的数目较少,(2)研究的问题要求情况真实、准确性较高,(3)调查工作方面,没有破坏性;抽样调查适合的条件:(1)受客观条件限制,无法对所有个体进行调查,(2)调查具有破坏性.1.以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱考点二收集数据的相关概念【例2】为了解我县七年级6 000名学生的数学成绩,从中抽取了300名学生的数学成绩,以下说法正确的是( )A.6 000名学生是总体B.每个学生是个体C.300名学生是抽取的一个样本D.每个学生的数学成绩是个体【分析】我们可以根据总体、个体、样本、样本容量的概念结合具体问题解决,本题的考察对象是6 000名学生的数学成绩,而不是6 000名学生,所以选项A是错误的,同理,选项B,C 也是错误的,每个学生的数学成绩是个体,所以选项D是正确的.【解答】D【方法归纳】解决本题的关键是准确把握总体、个体、样本、样本容量的概念,弄清具体问题中总体、个体、样本所指的对象,明白它们是数据而不是载体.2. 2015年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生考点三统计图的选择与制作【例3】绵阳农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:穗长 4.5≤x<5 5≤x<5.5 5.5≤x<6 6≤x<6.5 6.5≤x<7 7≤x<7.5频数 4 8 12 13 10 3(1)在下图中画出频数分布直方图;(2)请你对这块试验田里的水稻穗长进行分析,并计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.【分析】题目已给出频数分布表,可根据表中所给数据画出频数分布直方图,再根据频数分布直方图回答(2)中的问题.【解答】(1)如图所示:(2)由(1)可知谷穗长度大部分落在5 cm至7 cm之间,其他范围较少.长度在6≤x<6.5范围内的谷穗个数最多,有13个.这块试验田里穗长在 5.5≤x<7范围内的谷穗所占百分比为(12+13+10)÷50=70%.【方法归纳】给出频数分布表求作频数分布直方图时,按照画频数分布直方图的步骤完成即可.3.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)从统计表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;(2)估计该校七年级体育测试成绩不及格的人数.考点四统计图表中信息的获取【例4】在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了__________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)结合条形统计图和扇形统计图可以看出最喜爱丙类图书的有40人,占被调查人数的20%,因此总人数=40÷20%=200(人);(2)根据总人数为200人,可以求最喜爱丁类图书的人数=200-80-65-40=15(人),最喜爱甲类图书的人数占本次被调查人数的百分比=80200×100%=40%;(3)先求出最喜爱丙类图书的总人数,然后用x表示男生人数,1.5x表示女生人数,根据男生人数与女生人数之和等于最喜爱丙类图书的总人数列出方程,求出最喜爱丙类图书的女生人数和男生人数.【解答】(1)40÷20%=200(人).(2)200-80-65-40=15(人),80200×100%=40%.(3)设最喜爱丙类图书的男生人数为x人,则女生人数为1.5x人.根据题意,得x+1.5x=1 500×20%.解得x=120.当x=120时,1.5x=180.∴最喜爱丙类图书的女生人数为180人,男生人数为120人.【方法归纳】解决此类问题的关键是牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并具备良好的分析数据的能力.4.某校为了解“阳光体育”活动的开展情况,从全校2 000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=__________,n=__________;(3)全校学生中喜欢篮球的人数大约有多少?复习测试一、选择题(每小题3分,共30分)1.下列调查中,适宜采用全面调查(普查)方式的是( )A.对全国中学生心理健康现状的调查B.对市场上的冰淇淋质量的调查C.对我市市民实施低碳生活情况的调查D.对我国首架大型民用直升机各零部件的检查2.下列调查方式合适的是( )A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,为了反映这一周销售衬衣的变化情况,应该制作的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图4.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么( )A.甲校的女生人数多B.乙校的女生人数多C.两个学校的女生人数一样多D.不能判断哪一个学校的女生人数多5.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得测试分数在80~90分数段的学生共有( )分数段60~70 70~80 80~90 90~100频率0.2 0.25 0.25A.250名B.200名C.150名D.100名6.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为( )A.9.5万件B.9万件C.9 500件D.5 000件7.为调查某校2 000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( )A.500名B.600名C.700名D.800名8.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)的人数是269.某市股票在七个月之内增长率的变化状况如图所示,从图上看出,下列结论不正确的是( )A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌10.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,可得出样本容量是( )A.15B.40C.50D.60二、填空题(每小题4分,共20分)11.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1∶2∶5∶3∶1,人数最多的一组有25人,则该班共有__________人.12.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是__________,最小的值是__________,如果组距为1.5,则应分成__________组.13.某区卫生局在2012年11月对全区初中毕业生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值是__________.等级 A B C D频数150 4百分比x 0.1814.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其他”活动的人数占总人数的__________%.15.四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图,写出一条你从图中所获得的信息:________________________________________.三、解答题(共50分)16.(7分)雅安地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为雅安灾区捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数;(2)补全条形统计图;(3)若该校九年级有800人,据此样本,请你估计该校九年级学生中捐款15元的有多少人?17.(8分)阅读对人成长的影响是很大的.希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:(1)这次随机调查了__________名学生;(2)种类频数频率科普0.15艺术78文学0.59其他8118.(10分)联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方D:随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全下面的条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?19.(12分)今年,市政府的一项实事工程就是由政府投入1 000万元资金对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1 200户家庭中的120户进行了随机抽样调查,并汇总成下表:改造情况均不改造改造水龙头改造马桶1个2个3个4个1个2个户数20 31 28 21 12 69 2(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有__________户;(2)改造后,一个水龙头一年大约可节省5吨水,一个马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?20.(13分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?参考答案变式练习1.D2.A3.(1)选择扇形统计图表示各种情况的百分比,图略.(2)450×10%=45(人).答:估计该校七年级体育测试成绩不及格的有45人.4.(1)100 图略(2)30 10(3)2 000×10%=200(人).答:全校学生中喜欢篮球的人数大约有200人.复习测试1.D2.C3.C4.D5.C6.A7.B8.D9.D 10.B11.60 12.53 47 4 13.0.05 14.2015.答案不唯一,可以从总体来说:该班有50人参与了献爱心活动,也可以具体分情况来说,捐款10元的有20人等16.(1)15÷30%=50(人).(2)图略.(3)800×1050=160(人).17.(1)300(2)45 0.26 9618.(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人),D种情况的人数为300-(150+30+90)=30(人),补全图形如图.(2)因为该校共有师生2 400人,所以随手乱扔垃圾的人约为2 400×30300=240(人).19.(1)1 000(2)抽样的120户家庭一年共可节约用水:(1×31+2×28+3×21+4×12)×5+(1×69+2×2)×15=198×5+73×15=2 085(吨),所以,该社区一年共可节约用水的吨数为2 085×1000100=20 850(吨).(3)设既要改造水龙头又要改造马桶的家庭共有x户,则只改造水龙头不改造马桶的家庭共有(92-x)户,只改造马桶不改造水龙头的家庭共有(71-x)户,根据题意列方程,得x+(92-x)+(71-x)=100,解得x=63.所以既要改造水龙头又要改造马桶的家庭共有63户.20.(1)13 正 5(2)答案不唯一:如①从直方图可以看出:居民月均用水量大部分在2.0至6.5之间;②居民月均用水量在3.5<x≤5.0范围内最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(合理即可)(3)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,占总户数的60%.。
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查考试题(含答案) (25)

人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查考试用题(含答案)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了______名学生,α=______b= ;(2)补全条形统计图;(3)扇形统计图中D级对应的圆心角为______度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【答案】(1)50,24%,20%;(2)图见解析;(3)28.8;(4)160.【解析】【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α,用C级的人数除以总数即可求出b;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以D级所占的百分比即可求出扇形统计图中D级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【详解】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=1250×100%=24%,b=50-12-24-450×100%=20%;(2)等级为C的人数是:50-12-24-4=10(人),补图如下:(3)扇形统计图中D级对应的圆心角为450×360°=28.8°;(4)根据题意得:2000×450=160(人),答:该校D级学生有160人.故答案为(1)50,24%,20%;(2)图见解析;(3)28.8;(4)160.【点睛】此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.42.为了配合“八荣八耻”宣传教育,针对闯红灯的现象时有发生的实际情况,八年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成8个小组,其中第①~⑥组分别负责早.中.晚三个时段闯红灯违章现象的调查,第⑦小组负责查阅有关红绿灯的交通法规,第⑧小组负责收集有关的交通标志. 数据汇总如下:部分时段车流量情况调查表回答下列问题:(1)请你写出2条交通法规.(2)早晨.中午.晚上三个时段每分钟车流量的极差是多少,这三个时段的车流总量的中位数是多少.(3)观察表中的数据及条形统计图,写出你发现的一个现象并分析其产生的原因.(4)通过分析写一条合理化建议.【答案】(1)如:红灯停.绿灯行;过马路要走人行横道线;不可酒后驾车等;(2)74;2747;(3)现象:如行人违章率最高,汽车违章率低,原因见解析;(4)建议:如广泛宣传交通法规;增加值勤警力等.【解析】【分析】本题具有一定的开放性;对于:(1)(3)(4)开放性较强,只要符合题意即可;(2)将三个时段的车流总量由小到大排列1449、2747、3669,则中位数为2747;极差是指一组据中最大数据与最小数据的差.【详解】(1)如:红灯停.绿灯行;过马路要走人行横道线;不可酒后驾车等.(2)三个时段每分钟车流量的极差=122-48=74,这三个时段的车流总量的中位数是2747;(3)现象:如行人违章率最高,汽车违章率低,原因是汽车驾驶员是经过专门培训过的,行人存在图方便的心理等.(4)建议:如广泛宣传交通法规;增加值勤警力等.(要求建议要合理)【点睛】本题考查的是条形统计图和表格的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.同时考查了对基本交通知识的掌握程度.43.白色污染(White Pollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区40户居民,记录了这些家庭2018年某个月丢弃塑料袋的数量(单位:个):29393539392733353131323234313339384038423131383139273335403829393533393938423732请根据上述数据,解答以下问题:(1)小彬按“组距为5”列出了如下的频数分布表(每组数据含最小值),请将表中空缺的部分补充完整,并补全频数直方图;(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在组的家庭最多;(填分组序号)(3)根据频数分布表,小彬又画出了右图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出C组对应的扇形圆心角的度数;(4)若小区共有1000户居民家庭,请你估计每月丢弃的塑料袋数量不小于30个家庭个数.【答案】(1)见解析(2)C(3)162°(4)900个【解析】【分析】(1)根据数据即可补全表格与直方图;(2)由图可知C组的家庭最多;(3)分别算出各组的占比,再用C组占比乘以360°即可求出圆心角度数;(4)先求出不小于30个家庭的占比,再乘以1000即可.【详解】(1)补全表格与直方图如下图:(2)由直方图可知这个月丢弃塑料袋的个数在C组的家庭最多;(3)A组占比为:4=10%,40,B组占比为:14=35%40C组占比为:18=45%,圆心角度数为360°×45%=162°,40A组占比为:4=10%,40补全扇形统计图为(4)不小于30个家庭的占比为35%+45%+10%=90%,故小区每月丢弃的塑料袋数量不小于30个家庭个数为1000×90%=900个.【点睛】此题主要考查扇形统计图的应用,解题的关键是分别求出各分组占比,再进行求解.44.某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.【答案】(1)50人,(2)12人,(3)192人.【解析】【分析】(1)根据打篮球的人数为5,且占比为10%,即可求出调查总人数;(2)根据调查总人数减去各组人数即可求出踢足球人数;(3)先求出此次调查中喜欢跳绳学生的占比,再乘以全校总人数即可.【详解】÷=(人)解:答(1)出调查总人数为510%50(2)踢足球人数50-5-20-8-5=12(人)补全条形统计图如下:÷⨯=(人)(3)我校喜欢跳绳学生有8501200192【点睛】此题主要考查扇形统计图的应用,解题的关键是根据条形统计图与扇形统计图求出调查总人数.45.某中学八年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加这次跳绳测试的共有多少人?(2)把条形统计图补充完整.(3)求“中等”部分所在扇形对应的圆心角的度数.【答案】(1)50人,(2)见解析,(3)72.【解析】【分析】(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出参加这次跳绳测试的人数;(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数【详解】解:(1)由扇形统计图和条形统计图可得:20÷40%=50(人),所以参加这次跳绳测试的共有50人.(2)优秀的人数为:50-3-7-20-10=10,条形统计图如下:=72°,(3)360°×1050所以“中等”部分所在扇形的圆心角的度数为72°.故答案为(1)50人,(2)见解析,(3)72°.【点睛】本题考查扇形统计图、条形统计图,利用已知图形得出正确信息是解题关键.46.某小区超市一段时间每天订购面包进行销售,每售出1个面包获利润0.5元,未售出的每个亏损0.3元.(1)若该超市每天订购面包80个,今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,请用含x的式子表示y;(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分布直方图(每组含最小值,不含最大值)和扇形统计图,如图所示.请根据两图提供的信息计算在m天内日销售利润少于32元的天数.【答案】(1) y=0.8x-24(0<x≤80);(2)在m天内日销售利润少于32元的天数是9天.【解析】【分析】(1)根据总利润=销售时的盈利减去没有销售时的亏损即可求解;(2)首先根据日销售量是50﹣60的一组天数是3,然后除以对应的百分比即可求得m的值,然后根据销售利润小于32元即可求得销售量的范围,进而求解.【详解】(1)y=0.5x-0.3(80-x),即y=0.8x-24(0<x≤80).(2)m=3÷(1-50%-20%-20%)=30.销售利润少于32元,则0.8x-24<32,解得:x<70.日销售利润少于32元所占的百分比是1-50%-20%=30%,则在m天内日销售利润少于32元的天数是30%m=30%×30=9(天).【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.47.在数学、外语、语文及其他学科中,某校七年级开展了“同学们最喜欢哪门学科”的调查(该校七年级共有200人,每人只能选一项).(1)调查的问题是什么?调查的对象是谁?(2)在被调查的200名学生中,有40人最喜欢语文,60人最喜欢数学,80人最喜欢外语,其余的人选择其他.请把七年级的学生最喜欢某学科的人数及其占学生总数的百分比填入下表:【答案】(1)调查的问题是在数学、外语、语文及其他学科中,你最喜欢哪门学科.调查的对象是某校七年级的全体同学.(2) 人数及其占学生总数的百分比填入下表见解析.【解析】 【分析】分别根据调查的对象、调查的内容、喜欢某个学科的学生所占调查人数的百分比进行解答即可.【详解】(1)调查的问题是:调查的问题是在数学、外语、语文及其他学科中,你最喜欢哪门学科?调查的对象是:某校七年级的全体同学;(2)喜欢学语文的人数占学生总人数的比例为:40200⨯100%=20%; 喜欢学外语的人数占学生总人数的比例为:80200⨯100%=40%; 喜欢学数学的人数占学生总人数的比例为:60200⨯100%=30%; 喜欢其它学科的人数占学生总人数的比例为:200406080200---⨯100%=10%.如下表:【点睛】本题比较简单,考查的是调查所包含的内容,调查的对象、调查的内容、调查的结果.48.某中学九年级学生在社会实践中,调查了500位市民某天早上出行上班所用的交通工具,结果如下扇形统计图表示.(1)请你将扇形统计图改成折线统计图;(2)请根据此项调查,对于城市交通方面给相关部门提出一条建议.【答案】(1)详见解析;(2)宣传步行有利健康(答案不唯一).【解析】【分析】(1)利用百分比,求出相应各类交通工具的使用人数,再画图;(2)从公交车的角度描述即可.【详解】(1)如下图:步行:500×6%=30人,自行车:500×20%=100人,电动车:500×12%=60人,公交车:500×56%=280人,私家车:500×6%=30人,(2)诸如公交优先,或宣传步行有利健康等.【点睛】本题需仔细分析题意,观察图形,利用简单的计算即可解决问题.49.如图是A、B两所学校艺术节期间收到的各类艺术作品的统计图:(1) 从图中能否看出哪所学校收到的水粉画作品的数量多?为什么?(2)已知A学校收到的剪纸作品比B学校的多20件,收到的书法作品比B 学校的少100件,请问这两所学校收到艺术作品的总数分别是多少件?【答案】(1)不能;因为两所学校各自收到的艺术作品的总数未知,所以无法比较.(2)A、B两所学校收到的艺术作品总数分别是500件和600件.【解析】【分析】(1)从两个扇形统计图中只可看出各部分所占的百分比,看不出具体的数值,由此即可解决问题;(2)可分别设A、B两校受到的艺术作品分别为x、y件,因为A学校收到的剪纸作品比B学校的多20件,收到的书法作品比B学校的少100件,结合各部分所占的百分比即可列出方程组,从而求出答案.【详解】(1)从图中不能看出哪所学校收到的水粉面作品的数量多,因为两所学校各自收到的艺术作品的总数未知,所以无法比较;(2)设A学校收到的艺术作品共有x件,B学校收到的艺术作品共有y件根据题意,得10%5%20{40%10050%x yx y-+==,解之,得500{600xy==,所以A、B两所学校收到的艺术作品总数分别是500件和600件.【点睛】本题需仔细分析统计图,寻找各种信息,利用方程组即可解决问题.50.为提高节水意识,小申随机统计了自己家7 天的用水量,并分析了第3 天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(1)求第3天小申家洗衣服的水占这一天总用水量的百分比;(2)请你根据统计图中的信息,给小申家提出一条合理的节水建议,并估算采用你的建议后小申家一个月(按30 天计算)的节水量..【答案】(1)12.5%(2)可以用洗衣服的水冲厕所(答案不唯一).采用该建议,一个月估计可以节约用水3000 升.【解析】【分析】(1)用洗衣服的水量除以第3天的用水总量即可得;(2)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【详解】(1)100×100%=12.5%;800(2)答案不唯一.例如:可以用洗衣服的水冲厕所.采用该建议,每天大约可以节约用水100 升,一个月估计可以节约用水100×30=3000 升.【点睛】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息.。
人教版七年级数学下册第十章《数据的应用:直方图、统计图》知识梳理、考点精讲精练、课堂小测、课后作业第

第26讲数据的应用--直方图、统计图1、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
2、频率:频数与数据总数的比为频率。
用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
3、频率:频数与数据总数的比为频率。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n(A)称为事件A发生的频数。
比值n(A)/n称为事件A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
1、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数;每一组两个端点的差叫做组距。
2、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。
3、画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组。
4、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图。
特点:①清楚显示各组频数分布情况; ②易于显示各组之间频数的差别。
5、制作频数分布直方图的步骤(1)找出所有数据中的最大值和最小值,并算出它们的差。
(2)决定组距和组数。
(3)确定分点。
(4)列出频数分布表。
(5)画频数分布直方图。
1、表示数据的两种基本方法:一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律。
人教版七年级下册数学中考数学考点:专题 统计的应用(含答案)

专题统计的应用青海一中李清聚焦考点☆温习理解1.统计图是表示统计数据的图形,是数据及其之间关系的直观表现常见的统计图有:(1)条形统计图:条形统计图就是用长方形的高来表示数据的图形;(2)折线统计图:用几条线段连成的折线来表示数据的图形;(3)扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比大小,这样的统计图叫扇形统计图;(4)频数分布直方图、频数折线图:能显示各组频数分布的情况,显示各组之间频数的差别.2.频数分布直方图(1)把每个对象出现的次数叫做频数(2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.(3)频数分布表、频数分布直方图都能直观、清楚地反映数据在各个小范围内的分布情况(4)频数分布直方图的绘制步骤是:①计算最大值与最小值的差(即:极差);②决定组距与组数,一般将组数分为5~12组;③确定分点,常使分点比数据多一位小数,且把第一组的起点稍微减小一点;④列频数分布表;⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.名师点睛☆典例分类考点典例一、条形统计图与折线统计图【例1】已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的在校学生人数学校数量大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④【答案】B.试题解析:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,故结论①正确;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,故结论②正确③由统计图可知,2009年的在校学生445192人,学校数量417所,所以2009年的2531067417=在校学生人数学校数量>1000,故结论③正确;④∵2009~2010年学校数量增长率为408417741-≈-2.16%,2010~2011年学校数量增长率为409408408-≈0.245%,2011~2012年学校数量增长率为415409409-≈1.47%,1.47%>0.245%>-2.16%,∴2009~2012年,相邻两年的学校数量增长最快的是2011~2012年;∵2009~2010年在校学生人数增长率为453897445192445192-≈1.96%,2010~2011年在校学人数增长率为465289453897453897-≈2.510%,2011~2012年在校学生人数增长率为472613465289465289-≈1.574%,2.510%>1.96%>1.574%,∴2009~2012年,相邻两年的在校学生人数增长最快的是2010~2011年,故结论④错误.综上所述,正确的结论是:①②③.故选:B.考点:折线统计图;条形统计图.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.【举一三】1..(2015·湖北武汉,8题,3分)下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高 D.气温是30℃的为16:00[【答案】【解析】试题分:根据折线统计图可得:4:00气温最低;6:00的气温为24℃;14:00时气温最高;气温是30℃的为12:00和16:002.(2015·辽宁营口)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是( ).A.100元,100元 B.100元,200元 C.200元,100元 D.200元,200元【答案】B.考点:数据的统计分析与描述.考点典例二、扇形统计图【例2】(2015·黑龙江哈尔滨)(本题8分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.【答案】50名;16名;略;56名.【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.试题解析:(1)、10÷20%=50(名) 答:本次抽样共抽取了50名学生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古 二 琵古其 筝 胡 琶 琴 他 乐器
图1 图2
B
A.
B. C.
4月份三星手机销售额为 65万元
4月份三星手机销售额比3月份有所上升 4月份三星手机销售额比3月份有所下降
100 80 60 40 20 0
各月手机销售总额统计图 销售总额/万元
86
三星手机销售额占该手机店当月 手机销售总额的百分比统计图 百分比
频率
54.5
74.5
94.5
114.5
134.5 次
三种统计图的综合运用
(1)条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少 画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。
(2)折线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少
补全条形图如图:
古 二 琵古其 筝 胡 琶 琴 他 乐器
图1 图2
人数
70 60 50 40 30 20 10 0 其他10% 古筝25% 古琴 琵琶20% 二胡
古 二 琵古其 筝 胡 琶 琴 他 乐器
图1 图2
人数
70 60 50 40 30 20 10 0 其他10% 古筝25% 古琴 琵琶20% 二胡
专题复习
绘制频数直方图
频率的概念:
多次实验中,某一时间发生的频数与实验总次数的比值叫该 事件在这组实验中发生的频率。
注意:
①频率通常用小数表示; ②多次实验中,所有事件发生的频率之和为1.
人数
20 18 16 14 12 10 8 6 4 2 0
49.5 59.5 69.5 79.5 89.5 100.5
人数
70 60 50 40 30 20 10 0 其他10% 古筝25% 古琴 琵琶20% 二胡
古 二 琵古其 筝 胡 琶 琴 他 乐器
图1 图2
人数
70 60 50 40 30 20 10 0 其他10% 古筝25% 古琴 琵琶20% 二胡
解:(2)古筝人数为:200×25%=50;
琵琶人数为:200×20%=40.
多少,而且能够清楚地表示出数量增减变化的情况。
(3)扇形统计图作用:通过扇形统计图可以很清楚地表示 各部分数量同总数之间的关系。
成绩(分 )
人数
20 18 16 14 12 10 8 6 4 2 0
8
解:(1) a=50×0.16=8, b=4÷50=0.08 .
0.08
49.5 59.5 69.5 79.5 89.5 100.5
成绩(分 )
人数
20 18 16 14 12 10 8 6 4 2 0
8
成绩(分 )
(2)请将频数直方图补充完整;
23% 18% 17% 15%
25% 80 65 20% 15% 10% 5% 0
60
D.
3月份与4月份的三星手机销售额无法比
较,只能比较该店销售总额
1月 2月 3月 4月
月份
1月 2月 3月 4月
月份
图1
图2
(1)条形统计图作用:从条形统计图中很容易看出各种数
量的多少。
(2)折线统计图作用:折线统计图不但可以表示出数量的
49.5 59.5 69.5 79.5 89.5 100.5
解:(2) 如图所示.
人数
20 18 16 14 12 10 8 6 4 2 0
0.08
49.5 59.5 69.5 79.5 89.5 100.5
成绩(分 )
(1)参加本次测试的学生有______人; (2)若一分钟跳75 次以上(含75 次)视为达标,则 此次抽查的达标率是多少?
描出各点,然后把各点用线段顺次连接起来。 (3)扇形统计图:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各 部分数量占总数的百分比。
人数
70 60 50 40 30 20 10 0 其他10% 古筝25% 古琴 琵琶20% 二胡
古 二 琵古其 筝 胡 琶 琴 他 乐器
图1 图2
(1)在这次抽样调查中,共调查 _______名学生;