桥梁上部结构计算

桥梁上部结构计算
桥梁上部结构计算

第2章 桥梁上部结构计算

2.1 设计资料及构造布置

2.1.1 设计资料

1.桥梁跨径桥宽

标准跨径:30m (墩中心距离) 主梁全长:29.96m 计算跨径:28.9m

桥面净空:净—11m+2?0.5m=12m 2.设计荷载

公路-Ⅰ级,,每侧人行柱、防撞栏重力作用分别为1

1.52kN m -?和14.99kN m -?。

3.材料及工艺

混凝土:主梁采用C50,栏杆及桥面铺装采用C30。

预应力钢筋采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG

D62—2004)的s φ12.7钢绞线,每束7根,全梁配6束,pk f =1860Mpa 。 普通钢筋直径大于和等于12mm 的采用HRB335钢筋;直径小于12mm 的均用R235钢筋。

按后张法施工工艺制作主梁,采用内径70mm 、外径77mm 的预埋波纹管和夹片锚具。

4.设计依据

(1)交通部颁《公路工程技术标准》(JTG B01—2003),简称《标准》; (2)交通部颁《公路桥涵设计通用规范》(JTG D60-2004),简称《桥规》

(3)交通部颁《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004),简称《公预规》。

5.基本计算数据(见表2-1)

表2-1 基本计算数据

名称

项目

符号

单位

数据

混 凝 土

立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉设计强度

,cu k c ck tk cd td

f E f f f f

MPa MPa MPa MPa MPa MPa

4

503.451032.4

2.6522.41.83

?

短暂状态

容许压应力 容许拉应力

'

'0.70.7ck

tk

f f

MPa MPa

20.721.757

持久状态

标准荷载组合 容许压应力

容许主压应力 短期效应组合 容许拉应力 容许主拉应力

0.50.6ck ck

f f

0.850.6st pc

tk

f σσ-

MPa MPa MPa MPa

16.219.44

01.59

15.2

s

φ钢 绞 线

标准强度

弹性模量 抗拉设计强度 最大控制应力con σ 0.75pk p pd pk

f E f f

MPa MPa MPa MPa

51860

1.951012601395

?

持久状态应力 标准荷载组合

0.6pk f

MPa

1209

料 重 度 钢筋混凝土 沥青混凝土 钢绞线

123γγγ 3

33

///kN m kN m kN m --- 25.023.078.5

钢筋与混凝土的弹性模量

Ep α

无量纲

5.65

2.1.2 横截面布置

1.主梁间距与主梁片数

主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,故在许可条件下应适当加宽T 梁翼板。由于本设计桥面净空为17.5m,主梁翼板宽度为2500mm ,由于宽度较大,为保证桥梁

的整体受力性能,桥面板采用现浇混凝土刚性接头,因此主梁的工作截面有两种:预施应力、运输、吊装阶段的小截面(bi=1600mm)和运营阶段的大截面(bi=2500mm)。净—14m+2 1.75m的桥宽选用七片主梁,如图2.1所示。

图2.1 结构尺寸图(尺寸单位:mm)

2.主梁跨中截面主要尺寸拟定

1) 主梁高度

预应力混凝土简支梁桥的主梁高度与其跨径之比通常在1/15~1/25,标准设计中高跨比约在1/18~1/19。当建筑高度不受限制时,增大梁高往往是较经济的方案,而混凝土用量增加不多。综上所述,本设计取用1600mm的主梁高度是比较合适的。

2) 主梁截面细部尺寸

T梁翼板的厚度主要取决与桥面板承受车轮局部荷载的要求,还应考虑能否满足主梁受弯时上翼板受压的强度要求。本设计预制T梁的翼板厚度取用150mm,翼板根部加厚到250mm以抵抗翼缘根部较大的弯矩。

在预应力混凝土梁中腹板内主拉应力较小,腹板的厚度一般由布置孔管的构造决定,同时从腹板本身稳定条件出发,腹板厚度不宜小于其高度的1/15。本设计腹板厚度取200mm。

马蹄尺寸基本由布置预应力钢筋束的需要确定,设计表明,马蹄面积占截面总面积的10%~20%为合适。本设计将钢束按二层布置,一层最多排三束,同时还根据《公预规》9.4.9条对钢束净距的要求,初拟马蹄宽度为550mm,高度250mm,马蹄与腹板交接处作三角过渡,高度150mm,以减小局部应力。

按照以上拟订的外形尺寸,就可绘出预制梁跨中截面图(见图2.2)。

图2.2 跨中截面尺寸图(单位mm )

3) 计算截面几何特性

将主梁跨中截面划分成五个规则图形的小单元,截面几何特性列表计算见表2-2。

表2-2 跨中截面几何特性计算表

分 块 名 称

分块面积

i A

/cm

分块面积

形心至上缘距离

i y

/cm

分块面积

对上缘静

距 i i i

S A y =/cm 3

分块面积的自身惯矩

i I

/cm 4

i d =

s y -i y

/cm

分块面积对截面形心的惯矩

2

X i i I Ad =

/cm 4

I =

i I +x I

/cm 4

(1)

(2)

(3)=(1)?(2

)

(4) (5)

(6)=(1)?(5)2

(7)=(4)?(6)

大毛截面

翼板 3840 8 30720 81920 59.46 13576287.74 13658207.74 腹板 3280 98 321440 7351573.33 -30.54

3059228.448

10410801.78 三角托 540 19 10260 2430 48.46

1268120.664

1270550.66 下三角 300 173.3 51999.9 6666.667 -105.87 3362727.639 3369394.31 马蹄

1000 190 190000 33333.333 -122.54 15016051.6 15049384.9 ∑

8960 604419.9

43758339.43 小毛截面 翼板 2720 8 21760 58026.667

67.95

12558790.8 12616817.47 腹板

3280

98

321440

7351573.33 -22.05

1594744.2

8946317.533

三角托 540 19 10260 2430 56.95 1751383.35 1753813.35 下三角 300 173.3 51999.9 6666.667 -97.383 2845034.607 2851701.274 马蹄

1000 190 190000 33333.333 -114.05 13007402.5 13040735.83 ∑

7840

595459.9

39209385.46

注:大毛截面形心至上缘距离: cm

46.678960

9

.604419y ==

=

∑∑i

i s A

S

小毛截面形心至上缘距离: cm 95.757840

9

.595459y ==

=

∑∑i

i s

A

S

4) 检验截面效率指标 ρ(ρ希望在0.5以上)

上核心距:

85.36)

46.67200(89603

43758339.4=-?=

?=

∑∑x

s y

A I k

下核心距:39.72k x

=?=

∑∑s

y

A I

截面效率指标:5.056.0200

39

.7285.36k k >=+=+=

h x s ρ 表明以上初拟的主梁跨中截面是合理的。

2.1.3 横截面延跨长的变化

如图1.1所示,本设计主梁采用等高形式,横截面的T 梁翼板厚度沿跨长不变。梁端部区段由于锚头集中力的作用而引起较大局部应力,也为布置锚具的需要,在距梁端1980mm 范围内将腹板加厚到与马蹄同宽。马蹄部分为配合钢束弯起而从四分点附近(第一道横隔梁处)开始向支点逐渐抬高,在马蹄抬高的同时腹板宽度亦开始变化。

2.1.2 横隔梁的设置

模型试验结果表明,在荷载作用处的主梁弯矩横向分布,当该处有横隔梁时比较均匀,否则直线在荷载作用下的主梁弯矩很大。为减小对主梁设计起主要作用的跨中弯矩,在跨中设计一道中横隔梁;当跨度较大时,应设置较多横隔梁。本设计在桥梁中点和四分点,支点处设置五道横隔梁,其间距为6.0m 。端横隔梁的高度与主梁高度相同,厚度为上部260mm ,下部240mm ;中横隔梁高度为1450mm ,厚度为上部180mm ,下部160mm ,详见图2.1所示。

2.2主梁的作用效应计算

根据上述梁跨结构纵横截面的布置,并通过可变作用下的梁桥荷载横向分布计算,可分别求得各主梁控制截面(一般去跨中、四分点和支点截面)的永久作用和最大可变作用效应,然后再进行主梁作用效应组合。本设计以边主梁作用效应计算为例。

2.2.1 永久作用效应计算

1.永久作用集度

(1) 预制梁自重

①跨中截面段主梁自重(四分点截面至跨中截面,长6.0m )

kN

78.20085.926784.01=??=)(G ②马蹄抬高与腹板变宽段梁的自重(长4.5m )

kN 90.932/266.3)222375.1.0784.0()2(=??+≈G

③支点段梁的自重(长1.98m )

kN 99.475112622237513=??=..G )(

④边主梁的横隔梁 中横隔梁体积:

3m 2257.0)5.02.015.05.009.06.075.064.1(19.0=??-??-??

端横隔梁体积:

3m 2000.02275.045.05.0-6.084.119.0=????)(

故半跨内横梁重力为:

kN 00.14262000.05.12257.04=?+?=

)()(G ⑤预制梁永久作用集度

kN/m 84.2396.14/)00.1499.4790.9378.200(g 1=+++=

(2) 二期永久作用 ①现浇T 梁翼板集度

kN/m 912.2267.016.0g (5)=??=

②边梁现浇部分横隔梁

一片中横隔梁(现浇部分)体积:

3m 10906.064.135.019.0=??

一片端横隔梁(现浇部分)体积:

3m 12236.084.135.019.0=??

一片边梁现浇部分横隔梁载荷集度:

kN/m 497.092.29/26)12236.0210906.03(g )6(=??+?=

③铺装

4cm 沥青混凝土:

kN/m 56.102411104.0=???

8cm 防水混凝土:

kN/m 12.2124111078.0=???

若将桥面铺装均摊给七片主梁,则:

kN/m 336.65/12.2156.10g 7=+=

)()( ④栏杆

若两侧人行栏、防撞栏均摊给五片主梁,则:

kN/m 96.22/524308.0g (8)=??=

⑤边梁二期永久作用集度

kN/m 57.1296.2336.6497.0912.2g 2=+++=

2.永久作用效应

如图1.4所示,设x 为计算截面离左支座的距离,并令/x l α=。 主梁弯矩和剪力的计算公式分别为:

)(2

22x l gx x gx x gl M x -=?-?= (2-1)

)2(22x l g

gx gl Q x -=-= (2-2)

图2.3 永久作用效应计算图

永久作用计算见表2-3。

表2-3 1号梁永久作用效应

作用效应

跨中

m x 45.14=

四分点

m x 225.7=

支点

m x 0=

一期

弯矩m kN ?

2488.93 1866.69 0 剪力 /kN 0 172.24 344.49 二期

弯矩 m kN ?

1312.32 984.24 0 剪力 /kN

90.82

181.64

2.2.2 可变作用效应计算(G-M 法)

1.冲击系数和车道折减系数

按《桥规》4.3.2条规定,结构冲击系数与结构的基频有关,因此要先计算结构的基频。

简支梁桥的基频可采用下列公式估算:

Hz 794.352

.37114376

.01045.39.2822102

2

=???==

π

π

c c m EI l f

其中:

Kg/m 52.371181

.910)84.2357.12(m 3

=?+==g G c

根据《公路桥涵设计通用规范》(JTGD60-2004)中第 4.3.2条之5,当Hz f Hz 145.1≤≤时,0157.01767.0-=Inf μ,

可计算出汽车荷载的冲击系数为: 220.1)0157.0794.31767.0(11=-+=+In μ

按按《公路桥涵设计通用规范》(JTGD60-2004)中第4.3.2条之5,当车道大于两车道时,需进行车道折减,三车道22%,四车道折减33%,但折减后不得小用两行车队布载的计算结构。本设计按四车道设计,在计算可变作用效应时需进行车道折减,即ξ=0.67。 2.计算主梁的荷载横向分布系数 ①计算主梁抗扭惯性矩T I

对于T 形梁截面,抗扭惯性矩可近似的按下式计算:

3

1

m

T i i i i I c bt ==∑ (2-3)

式中:i b ,i t ——相应为单个矩形截面的宽度和高度;

i c ——矩形截面抗扭刚度系数;

m ——梁截面划分成单个矩形截面的个数。

对于跨中截面,翼缘板的换算平均厚度:

cm 45.1822012095.016220t 1=??+?=

马蹄部分的换算平均厚度:

cm

302/20203=+=t

图2.4示出了T I 的计算图示,T I 的计算见表2-4。

图2.4 计算图示(单位mm )

表2-4 T I 计算表

分块名称 b i /cm t i /cm i

i b t

i C

3-3i 10?=i i i T t b C I /m 4

翼缘板 240 18.45 0.0769 13

5.0238 腹板 151.55 20 0.1320 0.3053 3.7015 马蹄

50 30 0.6000 02090 2.8315 ∑

11.5468

43x m 105468.11-?=T I

单位宽度抗弯及抗扭惯矩:

/cm m 10823.1240

43758339.043x -?===b I J x

/cm m 10811.4240

105468.11453x

--?=?==b I J tx T ②横梁抗弯及抗扭惯矩

翼板有效宽度λ计算(如图2.5)

图 2.5 计算图示

横梁长度取为两边主梁的轴线间距,即:

m 6.94.244=?==b l

m 505.3)19.02.7(2

1

=-=C

cm 18020200h '=-= m 19.0b '= 365.06.9/505.3/c ==l

根据《土木工程手册》l c 比值表,求的c λ=0.5503,所以:

m 9288.1505.35503.05503.0=?==C λ

求横隔梁截面重心位置:''1'

''11y 2222a b

h h h b h h h ++=λλ m 354.08

.119.01845.09288.128.119.021

21845.09288.122

2=?+????+??=

横梁的抗弯和抗扭惯矩y I 和y T I :

2'

''3''21131y )2

(121)2(22121y y a h b h h b h a h h I -++-+?=λλ

2

321845.0-354.01845.09288.121845.09288.12121)(???+???=

423m 245.0354.0-28.119.08.18.119.0121=??+??+)( 表2-5 矩形截面抗扭刚度系数C 表

3

2223111h b c h b c I Ty +=

1.00256.0

2.71845.011<==b h 根据表2-5,查表可得取31c 1=。 1176.0)1845.08.1(19.0h 22=-=b 根据表1-5,查表可得取308

3.0c 2=。

故:

4233y m 10849.119.06155.13083.01845.02.731-?=??+??=T I

单位抗弯及抗扭惯矩y J 和y T J :

/cm m 10403.3720

245

.044y -?==

=

b I J y

/cm m 10568.2720

10849.1452

--?=?==b I J Ty

Ty

③计算抗弯参数θ和抗扭参数α

316.010

403.31023.182890

6004

4

4

4

=??=

=

--y x J J l

B θ 式中:B ――桥宽的一半,cm B 6002

240

5=?=

l ――计算跨径。

0172.010

403.310823.1210)568.2811.4(425.024

35

x =????+?=?+=---E E J J E J J G y x Ty T )(α

1311.00172.0==α

t/b

1 0.9 0.8 0.7 0.6 0.5 c 0.141 0.155 0.171 0.189 0.209

0.229

t/b 0.4 0.3 0.2 0.1 <0.1 c

0.25

0.27

0.291

0.312

1/3

④计算荷载弯矩横向分布影响线坐标

已知58

.0

=

θ,查G-M图表可得表2-6中数值。

表2-6 G-M法计算表

梁位

荷载位置

B 3B/4 B/2 B/4 0 -B/4 -B/2 -3B/4 -B 校核

K1

0 0.93 0.97 1.00 1.03 1.05 1.03 1.00 0.97 0.93 7.98 B/4 1.05 1.05 1.06 1.06 1.02 0.98 0.95 0.89 0.84 7.96

B/2 1.21 1.17 1.13 1.06 1.00 0.94 0.88 0.81 0.76 7.98

3B/4 1.40 1.29 1.19 1.07 0.97 0.87 0.79 0.73 0.70 7.96

B 1.62 1.40 1.23 1.07 0.93 0.84 0.75 0.69 0.62 8.03

K0

0 0.84 0.92 0.99 1.12 0.14 1.12 0.99 0.92 0.84 7.04

B/4 1.67 1.51 1.35 1.24 1.06 0.88 0.63 0.4 0.19 8.00

B/2 2.52 2.18 1.76 1.38 0.99 0.65 0.23 -0.20 -0.48 8.01

3B/4 3.32 2.74 2.10 1.51 0.93 0.40 -0.18 -0.60 -1.12 8.00

B 4.10 3.40 2.44 1.66 0.84 0.20 -0.54 -1.14 -1.78 8.02

用内插法求实际梁位处K1和K0值,实际梁位与表列梁位的关系如(图2.6)因此,对于①号梁:

图 2.6 横向分布影响线计算图示(单位mm)

因此,对于①号梁:

4/

3

4/

3

4/

3

'8.0

2.0

150

30

)

(

B

B

B

B

B

K

K

K

K

K

K+

=

?

-

+

=

对于②号梁:

4/

2/

4/

2/

4/

'4.0

6.0

150

90

)

(

B

B

B

B

B

K

K

K

K

K

K+

=

?

-

+

=

2187.5

2187.52187.52187.5

8750

25002500

一号二号三号四号五号六号七号

对于 号梁:

0'K K =

列表计算各梁的横向分布影响线坐标η值(表2-7) 绘制横向分布影响线图(图2.7),求横向分布系数。

按照《桥规》4.3.1条和4.3.5条规定:汽车荷载距人行道边缘距离不小于 0.5m,人群荷载取3KN/m 。

表2-7 各梁的横向分布影响线坐标η值

梁号

计算式

何载位置

B

3B/4

B/2

B/4

-B/4

-B/2

-3B/4

-B

一号

13B/41'18K .02.0+=B K K

1.444 1.312 1.198 1.070 0.962 0.864 0.782 0.722 0.684 /4030B '00.82K .0B K +=

3.476 2.872 2.168 1.540 0.912 0.360 -0.252 -0.708 -1.252 '

0'1K K -

-2.032 -1.560 -0.970 -0.470 0.050 0.504 1.034 1.430 1.936

续表2-7

梁号

计算式

何载位置

B

3B/4 B/2 B/4 0 -B/4 -B/2 -3B/4 -B

α

*)('0'1K K -

-0.266 -0.205 -0.127 -0.062 0.007 0.066 0.136 0.187 0.254 αα*)('0'1'0K K K K -+=

3.210 2.667 2.041 1.478 0.919 0.426 -0.116 -0.521 -0.998 /511αηK =

0.642 0.533 0.408 0.296 0.184 0.085 -0.023 -0.104 -0.200

二号

1B/42/11'4K .060.+=B K K

1.146 1.122 1.102 1.060 1.008 0.956 0.908 0.842 0.792 /400B/2'00.4K 6K .0B K +=

2.180 1.932 1.600 1.336 1.026 0.742 0.406 0.040 -0.212 '

0'1K K -

-1.034 -0.810 -0.498 -0.276 -0.018 0.214 0.502 0.802 1.004

α

*)('0'1K K -

-0.136 -0.106 -0.065 -0.036 -0.002 0.028 0.066 0.105 0.132 αα*)('0'1'0K K K K -+=

2.044 1.826 1.535 1.300 1.024 0.770 0.472 0.145 -0.080 /521αηK =

0.409 0.365 0.307 0.260 0.205 0.154 0.094 0.029 -0.016

三号

101'K K =

0.930 0.970 1.000 1.030 1.050 1.030 1.000 0.970 0.930 00'0K K =

0.840 0.920 0.990 1.120 1.140 1.120 0.990 0.920 0.840 '

0'1K K -

0.090 0.050 0.010 -0.090 -0.090 -0.090 0.010 0.050 0.090

α

*)('0'1K K -

0.012 0.007 0.001 -0.012 -0.012 -0.012 0.001 0.007 0.012

αα*)('0'1'0K K K K -+=

0.852 0.927 0.991 1.108 1.128 1.108 0.991 0.927 0.852 /531αηK = 0.170 0.185 0.198 0.222 0.226 0.222 0.198 0.185 0.170

各梁横向分布系数: 公路-Ⅰ级:

图2.7 (单位 cm)

在影响线上按横向最不利位置布置荷载后,就可按相对应的影响线坐标值求得主梁的横向分布计算: 对于1号梁:

车辆荷载:)191.0326.0426.0569.0(21

2

1+++?==

∑ηcq m 756.0=

对于2号梁:

车辆荷载:)209.0273.0315.0380.0(2

1

21+++?==

∑ηcq m 0.0310.3570.3130.26

0.1980.134

0.0710.020.0730.028

0.1120.064

0.0270.093

0.1790.289

0.4320.5810.2010.2070.202

0.1970.172

0.1330.0870.043

0.0040.074

0.1050.143

0.1810.195

0.1770.1430.105

0.074

一号

二号

三号

四号

五号

六号

七号

180013001800

公路-Ⅰ级

q 人

0.428

0.525

0.31

0.24

0.156

0.1050.05

0.015

0.031

0.0940.34

0.311

0.2680.232

0.181

0.1430.0910.057

0.015

0.056

0.203

0.207

0.2030.2

0.19

0.1750.1430.118

0.082

0.0190.086

0.106

0.1370.16

0.185

0.1930.1830.167

0.139

0.086一号梁

二号梁

三号梁

四号梁

5885.0=

车辆荷载:)203.0226.0223.0197.0(2

1

21+++?==∑ηcq m

424.0=

⑤支点截面的荷载横向分布系数c m

如图2.7所示,按杠杆原理法绘制荷载横向分布影响线并进行布载, 1号梁可变作用的横向分布系数可计算如下: 对于1号梁:

车辆荷载:708.0)333.0083.1(21

2

1=+?==

∑q oq m η 对于2、3号梁:

车辆荷载:854.0)1458.0250.0(2

1

21=++?==

∑q

oq m η

图2.8 支点横向分布系数计算图式(尺寸单位:mm )

⑥横向分布系数汇总(见表2-8)

表2-8各梁可变作用横向分布系数汇总 梁号 一号 二号 三号 可变作用类别

公路-Ⅰ级 公路-Ⅰ级 公路-Ⅰ级 c m

0.756

0.5885

0.424

2501150

350

250

1150

350

14000

1.17

0.60

0.40

0.88

0.36

0.28

0.48

0.28

0.48

1

1

1

1

5001800

1800

1300

1800

1800

13001800

180013001800

一号梁

二号梁三号梁

四号梁

一号梁

二号梁

三号梁

四号梁

五号梁

六号梁

七号梁

q

0m

0.708 0.854 0.854

3.车道荷载取值

根据《桥规》4.3.1条,公路-Ⅰ级的均布荷载标准值m KN q k /5.10=;

kN 6.275180)59.28(5

50180

360=+-?--=

K P 【按《公路桥涵设计通用规范》

(JTGD60-2004)内插求得】

计算剪力时: kN 72.3306.2752.1=?=K P 4.计算可变作用效应

在可变作用效应计算中,本设计对于横向分布系数的取值作如下考虑:支点处横向分布系数取0m ,从支点 至第一根横梁段,横向分布系数从0m 直线过渡到c m ,其余梁段均取c m 。 (1)求跨中截面的最大弯矩和最大剪力

计算跨中截面最大弯矩和最大剪力采用直接加载求可变作用效应,图2.9示出跨中截面的作用效应计算图式,计算公式为:

图2.9 跨中截面作用效应计算图示

∑?+???+=)()1(y P q m S k j k i ωξμ (2-4)

(1)计算车道荷载的跨中弯矩:

22240.1049.288/18/1m l =?==ω

m l y 225.74/9.284/===

0.5

0.083

1

6

1

0.3

0.567

0.567

0.3

1.170

1.1700.525

0.525

q k (q 人)

P k

剪力影响线弯矩影响线M 汽

M 人

故得:

m

kN y P q m M k j k i q l ?=?+????=?+???+=∑88.1907)225.76.27540.1045.10(756.067.0220.1)

()1(,2/ωξμ (2)计算跨中截面车道活载最大剪力

鉴于跨中剪力2

l Q 影响线的较大坐标位于跨中部分故也采用全跨统一的荷载横向

分布系数cq m 来计算。

Q l/2的影响线面积:

m 6125.35.09.2821

21=???=ω

故得:

kN Q q

l 62.125)50.072.3306125.35.10(756.067.0220.1,2=?+????=

3.3.6计算支点截面车道荷载最大剪力

作荷载横向分布系数沿桥跨方向的变化图形和支点剪力影响线,如图所示 横向分布系数变化区段长度:

m a 25.72.79.282

1

=-?=

对应于支点剪力影响线的荷载布置,如图3.3.6所示。

图3.3.6

影响线面积为

m 45.1419.282

1

=??=ω。因此,得:

q

q q

k k c q Q kN Q Q y P q m Q ,0,0,0,013.298)172.33045.145.10(756.067.0220.1)2.1()1(?+=?+?+????=?+??+???+=ωξμ 附加三角形荷载重心处的影响线坐标为:

c m m y <=?-?=0,916.09

.28)

25.731

9.28(1且 因此,得:

kN

Q q 34.14]

172.330)756.0708.0(916.05.10)756.0708.0(2

25

.7[67.0220.1,0-=??-+??-??=? 故公路-Ι级荷载的支点剪力为:

kN Q q 79.283)34.14(13.298,0=-+=

1)计算车道荷载的l/4截面弯矩:

m l y 419.59.2816/316/3=?==

2301.78419.52/9.282/m y l =?=?=ω 故得:

m

kN y P q m M k j k i q l ?=?+????=?+???+=∑96.1430)419.56.275301.785.10(756.067.0220.1)

()1(,4/ωξμ (3)计算跨中截面车道活载最大剪力

鉴于跨中剪力2

l Q 影响线的较大坐标位于跨中部分故也采用全跨统一的荷载横向

分布系数cq m 来计算。

Q l/2的影响线面积:

75.043==y ,m l 128.89.2883

438343=??=?=ω

故得:

kN Q q

l 02.206)75.072.330128.85.10(756.067.0220.1,4=?+????=

1)计算车道荷载的变化点截面弯矩:

m y 868.39.289.28/)6.49.28(9.28/6.4=?-?=

2893.55868.39.282/12/1m ly =??==ω 故得:

m

kN y P q m M k j k i q ?=?+????=?+???+=∑42.1021)868.36.275893.555.10(756.067.0220.1)

()1(,ωξμ变 (4)计算跨中截面车道活载最大剪力

鉴于跨中剪力2

l Q 影响线的较大坐标位于跨中部分故也采用全跨统一的荷载横向

分布系数cq m 来计算。

Q l/2的影响线面积:

841.09.286.49.28=-=y m 218.10841.09.286.49.2821=?-?=ω

故得:

kN Q q 17.238)841.072.330218.105.10(756.067.0220.1,=?+????=变

2.2.3 主梁作用效应组合

本设计按《桥规》4.1.6~4.1.8条规定,根据可能同时出现的作用效应选择了三种最不利效应组合:短期效应组合、标准效应组合和承载能力极限状态基本组合,见表2-9。

桥梁结构设计方法的研究

桥梁结构设计方法的研究 摘要:目前桥梁结构耐久性研究中存在的问题。在比较了各国几种主要耐久性设计理论和方法的基础上,提出了一种新的耐久性设计思路和方法,即利用耐久度来衡量结构保持耐久性的能力,通过计算耐久性指标来评判某一时刻结构耐久性能否满足设计要求。该方法强调了多种因素共同作用、结构体系和构件荷载类别以及桥梁寿命周期经济性对耐久性设计的影响,具有概念明确、形式简单、便于应用等特点。 关键词:桥梁结构、设计、可靠性、创新 引言: 桥梁设计是一个复杂的,系统的工程。需要丰富的理论知识,并且尽量避免主观经验因素对设计的影响。在桥梁设计过程中仍然有许多重大的理论问题需要解决。目前,国内的桥梁结构设计普遍有这样的倾向:设计中考虑强度多而考虑耐久性少:重视强度极限状态而不重视使用极限状态,而结构在整个生命周期中最重要的却恰恰是使用时的性能表现;重视结构的建造而不重视结构的维护。这些倾向在一定程度上导致了当前工程事故频发、结构使用性能差、使用寿命短的不良后果;也与国际结构工程界日益重视耐久性、安全性、适用性的趋势相违背;也不符合结构动态和综合经济性的要求。 我国的桥梁设计理论和结构构造体系仍不够完善,在桥梁设计领域,特别是关于桥梁施工和使用期安全性的问题还有许多可以改进的地方。结构设计的首要任务是选择经济合理的结构方案,其次是结构分析与构件和连接的设计,并取用规范规定的安全系数或可靠性指标以保证结构的安全性。 一、结构的耐久性设计问题: 桥梁在建造和使用过程中,一定会受到环境、有害化学物质的侵蚀,并要承受车辆、风、地震、疲劳、超载、人为因素等外来作用,同时桥梁所采用材料的自身性能也会不断退化,从而导致结构各部分不同程度的损伤和劣化。 在大跨度桥梁领域,国内从上世纪80年代以来,建造了大量的斜拉桥。需要指出的是,很多这类问题与没有进行合理的耐久安全性设计有关,这也促使人们重新认识桥梁的耐久性问题。而这些研究大多是从材料和统计分析的角度进行的,对如何从结构和设计的角度来改善桥梁耐久安全性却很少有人研究。而且,长期以来,人们一直偏重于结构计算方法的研究,却忽视了对总体构造和细节处理方面的关注。因此,需要努力将耐久安全性的研究从定性分析向定量分析发展。 二、桥梁的超载问题:

桥梁上部结构计算

第2章 桥梁上部结构计算 2.1 设计资料及构造布置 2.1.1 设计资料 1.桥梁跨径桥宽 标准跨径:30m (墩中心距离) 主梁全长:29.96m 计算跨径:28.9m 桥面净空:净—11m+2?0.5m=12m 2.设计荷载 公路-Ⅰ级,,每侧人行柱、防撞栏重力作用分别为1 1.52kN m -?和14.99kN m -?。 3.材料及工艺 混凝土:主梁采用C50,栏杆及桥面铺装采用C30。 预应力钢筋采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)的s φ12.7钢绞线,每束7根,全梁配6束,pk f =1860Mpa 。 普通钢筋直径大于和等于12mm 的采用HRB335钢筋;直径小于12mm 的均用R235钢筋。 按后张法施工工艺制作主梁,采用内径70mm 、外径77mm 的预埋波纹管和夹片锚具。 4.设计依据 (1)交通部颁《公路工程技术标准》(JTG B01—2003),简称《标准》; (2)交通部颁《公路桥涵设计通用规范》(JTG D60-2004),简称《桥规》 (3)交通部颁《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004),简称《公预规》。 5.基本计算数据(见表2-1) 表2-1 基本计算数据 名称 项目 符号 单位 数据

混 凝 土 立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉设计强度 ,cu k c ck tk cd td f E f f f f MPa MPa MPa MPa MPa MPa 4 503.451032.4 2.6522.41.83 ? 短暂状态 容许压应力 容许拉应力 ' '0.70.7ck tk f f MPa MPa 20.721.757 持久状态 标准荷载组合 容许压应力 容许主压应力 短期效应组合 容许拉应力 容许主拉应力 0.50.6ck ck f f 0.850.6st pc tk f σσ- MPa MPa MPa MPa 16.219.44 01.59 15.2 s φ钢 绞 线 标准强度 弹性模量 抗拉设计强度 最大控制应力con σ 0.75pk p pd pk f E f f MPa MPa MPa MPa 51860 1.951012601395 ? 持久状态应力 标准荷载组合 0.6pk f MPa 1209 料 重 度 钢筋混凝土 沥青混凝土 钢绞线 123γγγ 3 33 ///kN m kN m kN m --- 25.023.078.5 钢筋与混凝土的弹性模量 比 Ep α 无量纲 5.65 2.1.2 横截面布置 1.主梁间距与主梁片数 主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,故在许可条件下应适当加宽T 梁翼板。由于本设计桥面净空为17.5m,主梁翼板宽度为2500mm ,由于宽度较大,为保证桥梁

8m钢筋混凝土空心板简支梁桥上部结构计算书完整版

8m钢筋混凝土空心板简支梁桥 上部结构计算书 7.1设计基本资料 1.跨度和桥面宽度 标准跨径:8m(墩中心距) 计算跨径:7.6m 桥面宽度:净7m(行车道)+2×1.5m(人行道) 2技术标准 设计荷载:公路-Ⅱ级,人行道和栏杆自重线密度按照单侧8kN/m计算,人群荷载取3kN/m2 环境标准:Ⅰ类环境 设计安全等级:二级 3主要材料 混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m 沥青混凝土,下层为0.06m厚C30混凝土。沥青混凝土重度按23kN/m3计算,混凝土重度按25kN/m3计算。 钢筋:采用R235钢筋、HRB335钢筋 2.构造形式及截面尺寸 本桥为c40钢筋混凝土简支板,由8块宽度为1.24m的空心板连接而成。 桥上横坡为双向2%,坡度由下部构造控制

空心板截面参数:单块板高为0.4m ,宽1.24m ,板间留有1.14cm 的缝隙用于 灌注砂浆 C40混凝土空心板抗压强度标准值Mpa f ck 8.26=,抗压强度设计值 Mpa f cd 4.18=,抗拉强度标准值Mpa f tk 4.2=,抗拉强度设计值Mpa f td 65.1=, c40混凝土的弹性模量为Mpa E C 41025.3?= 图1 桥梁横断面构造及尺寸图式(单位:cm ) 7.3空心板截面几何特性计算 1.毛截面面积计算 如图二所示 2)-4321?+++=S S S S S A (矩形 2 15.125521cm S =??= 2 cm 496040124=?=矩形S 225.1475)5.245(cm S =?+= 2 35.2425.2421cm S =??=

桥梁设计-上部结构形式选择

再选择上部结构形式时,根据我做过的桥来看,我觉得: 1.根据跨径来初步拟订形式,空心板一般用于小跨径20米以下 2.根据净空要求来拟订上部结构形式,小箱梁和T梁的结构高度比较高,容易减小净空 3.一般大跨径都选T梁,从造价上应该比箱梁节省, 4.有些地方习惯用T梁,有些地方习惯用箱梁,所以还要考虑地方因素. JTGD62-2004规定,钢筋混凝土简支板标准跨径不宜大于13m,钢筋混凝土简支T梁标准跨径不宜大于16m,钢筋混凝土简支箱梁标准跨径不宜大于25m,钢筋混凝土连续箱梁标准跨径不宜大于30m. 预应力混凝土简支板标准跨径不宜大于25m,预应力混凝土简支T梁标准跨径不宜大于50m. 1.小箱梁与同等跨径的T梁比,小箱梁梁高矮,抗扭好,吊装重,T 梁的梁高较高,横隔板多,施工比较麻烦,抗扭不行。斜交宜采用小箱梁 2.造价小箱梁稍贵。主要是看横断面布置了,有时用T梁会比小箱梁多一片 3.空心板现在宜用后张,先张的公路一级比较难通过。公路二级用空心板还是比较省的,一平米2000多吧

板梁和小箱梁多用在城市桥梁上,小箱梁横向分布系数较大,采用湿接缝铰接。 T梁多用于公路桥梁。 在公路工程建设中,现在上部构造一般采用的形式也就T梁、箱梁、空心板。 结构形式的选择首先应满足造价最低的要求、其次就是桥梁通 行净空(通航净空)的要求 1、T梁适用与单孔跨径在30~40m之间,T型梁的优势在于: 便于成批大量生产、梁体安装方便、数量达到足够多时造价较 低、结构在运营节段的稳定性及耐久性相对于箱梁高;T梁的 缺点在于单片T梁的横向刚度很小,很容易产生横向位移,给 安装带来一定的麻烦。 2、空心板梁适用于跨径在8~20m之间,空心板梁优势与T型 梁差不多,但是一般空心板主要运用与中小型桥梁,所以说数 量上绝对不是很多,但是如果在城市道路建设中在某个片区设 置空心板预制场进行集中预制的话还是有经济优势的,空心板 的横向稳定性要比T梁强的多,但是空心板的施工工艺中,如 果心模如果用的是气囊,很容易引起顶板厚度严重不足的现象。 3、箱梁适用范围较广,由于其抗扭刚度大所以经常用于小半径 弯桥。现在公路用桥箱梁一般都是悬浇施工的变截面箱梁,所 以比较起来施工进度慢,机械设备投入很大。

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案 作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙专业名称土木工程

一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥和桁架桥的设计方案。斜拉桥可以看作是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其他样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理 (1)、截杆 裁杆是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工

端部加工是连接的是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。(3)拼接 拼接是本模型制作的最大难点。由于是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰 在模型完成之后,为了增强其美观性,用砂纸小心翼翼的将杆件表明的毛刺打磨光滑,注意不要破坏结构,以免影响其稳定。 3、设计假定 (1)、材质连续,均匀; (2)、梁与索之间结点为铰结;梁与塔柱(撑杆)之间的连接为刚结;

某桥桥墩结构计算

设计计算书 设计人:日期:复核人:日期:审核人:日期: 2017年2月

F匝道桥桥墩计算 一、概述 本桥上部结构采用2×(4×25)+4×(3×25)PC连续箱梁+1×43.5简支钢箱梁+4×17钢筋砼连续箱梁+1×33简支钢箱梁+(18+20.5)+3×21+3×46+4×25米PC连续箱梁,下部桥墩采用花瓶墩、板式墩配桩基础。现选取其中有代表性的21#墩(花瓶墩(1.7x2.2米),上部为43.5米钢箱梁接4x17米钢筋砼现浇梁)、23#墩(板式墩(4x1.8米),上部为4x17米钢筋砼现浇梁)、25#墩(花瓶墩(1.5x2.0米),上部为33米钢箱梁接4x17米钢筋砼现浇梁),相应构造见下图: 21#墩构造(单位:cm)

23#墩构造(单位:cm) 25#墩构造(单位:cm) 材料:墩身:C40砼 承台:C30砼 桩基:C25砼 其中21#墩墩高:32.3m,23#墩墩高:33.4m,25#墩墩高:32.9m。 二、使用阶段荷载效应 1)结构恒载 2)活载:包含活载引起的竖向反力及引活载引起的纵横向弯矩

3)风荷载:按规范JTG D60-2004第4.3.7条计算:单独风荷载作用时选用27.4m/s(1/100),风荷载与其它荷载共同作用时选用25.8 m/s(1/50) 4)船撞击力:根据《荆东互通水中桥墩群防撞设施设计说明》确定,并考虑1.1的安全系数: 主要荷载工况: ①恒载+活载+风荷载 ②恒载+活载+船撞力 ③恒载+风荷载+船撞力 ④恒载+风荷载(百年一遇) 三、结构内力计算 1)单项结构内力计算

2)组合内力计算 3)结构验算取用内力 根据上述计算,结构横桥向强度由恒载+风荷载+船撞力(偶然组合)控制,顺桥向强度由恒载+活载+船撞力(偶然组合)控制,结构正常使用阶段由恒载+活载+风荷载组合控制。 四、截面配筋验算

桥梁如何划分上中下附属结构

桥梁如何划分上中下附属结构 桥梁上部包括有那些?桥梁中部包括有那些?下部有那些组成桥梁的三个主要组成部分是: 上部结构,下部结构和附属结构。 上部结构由桥跨结构、支座系统组成。 桥跨结构或称桥孔结构,是桥梁中跨越桥孔的、支座以上的承重结构部分。 按受力图示不同,分为梁式、拱式、刚架和悬索等基本体系,并由这些基本体系构成各种组合体系。 它包含主要承重结构、纵横向联结系、拱上建筑、桥面构造和桥面铺装、排水防水系统,变形缝以及安全防护设施等部分。 支座系统设置在桥梁上、下结构之间的传力和连接装置。 其作用是把上部结构的各种荷载传递到墩台上,并适应活载、温度变化、混凝土收缩和徐变等因素所产生的位移,使桥梁的实际受力情况符合结构计算图示。 一般分为固定支座和活动支座。 下部结构,由桥墩、桥台、墩台基础几部分组成。 桥墩、桥台1是在河中或岸上支承两侧桥跨上部结构的建筑物。 桥台设在两端,桥墩则在两桥台之间,见下图。 而桥台除此之外,还要与路堤衔接,并防止其滑塌。 为保护桥台和路堤填土,桥台两侧常做一些防护和导流工程。 墩台基础保证桥梁墩台安全并将荷载传至地基的结构部分。

桥梁组成示意图附属构件,主要包括伸缩缝、灯光照明、桥面铺装、排水防水系统、栏杆(或防撞栏杆)等几部分。 ____________________伸缩缝在桥跨上部结构之间,或桥跨上部结构与桥台端墙之间,设有缝隙保证结构在各种因素作用下的变位。 为使桥面上行驶顺直,无任何颠动,此间要设置伸缩缝构造。 特别是大桥或城市桥的伸缩缝,不但要结构牢固,外观光洁,而且需要经常扫除深入伸缩缝中的垃圾泥土,以保证它的功能作用。 2灯光照明现代城市中标志式的大跨桥梁都装置了多变幻的灯光照明,增添了城市中光彩夺目的晚景。 桥面铺装或称行车道铺装,铺装的平整、耐磨性、不翘壳、不渗水是保证行车舒适的关键。 特别在钢箱梁上铺设沥青路面的技术要求甚严。 排水防水系统应迅速排除桥面上积水,并使渗水可能降低至最小限度。 此外,城市桥梁排水系统应保证桥下无滴水和结构上的漏水现象。 栏杆(或防撞栏杆)它既是保证安全的构造措施,又是有利于观赏的最佳装饰件 1、桥梁一般讲由上部结构、下部结构和附属构造物组成,上部指主要承重结构和桥面系;下部结构包括桥台、桥墩和基础;附属构造物则指桥头搭板、锥形护坡、护岸、导流工程等。 2、桥梁的分类: 按使用性分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥等。 3按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。 涵洞L<8 L0<5按行车道位置分为上承式桥、中承式桥、下承式桥。

桥梁上部结构设计

桥梁上部结构设计 0前言 随着经济不断发展,桥梁建设得到了飞速发展,它已从最开始的方便人们过河、跨海之用,已广泛应用于各种场合,它的用途不断多样化,它的形式也在最基本的三种受力体系上逐渐多样化,不仅从功能上、规模上,还从美观上、经济效益上,逐渐与时代发展相协调。所以桥梁建筑已不仅是交通线上的重要载体,也是一道美丽的风景被人津津乐道。 面对着新工艺、新挑战,原有的桥梁建设正面对历史的考验,当代建设者肩负着光荣而又艰巨的任务,为明天创造历史。 本设计说明书所编写的是至公路桥的上部设计方案。通过详细的勘察确定上部可变荷载,拟定桥梁尺寸,以确定相应的力,配置以合适的预应力钢筋,使其提高桥梁的承载力,使达到桥梁的耐久性要求。在桥梁的使用期,完成桥梁的使命。 通过本次设计,我基本上掌握了桥梁上部设计的基本容,从选截面尺寸,到配置钢筋,每一个细节都是经过多次考虑,通过反复验算,使桥梁结构满足要求,且以经济合理的材料用量完成。所以上部设计是要求桥梁设计者,从一开始就要考虑到最后,这样就不会盲目的试算。但通过试算,使我深刻了解到了适当的真正含义。本次设计旨在使我巩固、加深本科期间所学理论知识,使自己能够具备在以后工作中利用知识解决问题的的能力。

1 概述 1.1 设计资料 桥孔布置为535m ?预应力混凝土简支桥梁,跨径为35m,桥梁总长为175m。 设计车速为80/ km h,整体式双向四车道。 路线等级:一级公路;荷载等级:公路-Ⅰ级荷载,人群荷载:2 kN m。 3.0/ 桥面宽: ?++?+?= 行车道双黄线人行道防撞墙。 m m m m m 4 3.75()0.5()2 1.0()20.5()18.5 1.2 工程地质资料 该地区土质主要分5层:1、素黏土 2、砾石 3、亚黏土 4、粉砂 5、泥岩。 地下水类型为第四季孔隙水,水位埋深4m左右,含水层主要岩性为砾石,厚3m左右。地震烈度为四度。 1.3 水文及气候资料 桥梁位于市境,河流均为独流水域,流量随季节变化较大,平均水深0.5m左右,地表水体为沙河支流,属于季节性河流(勘察时无水),设计洪水频率百年一遇。 气候属北温带大陆性气候,冬寒夏热,昼夜温差大,年平均最低气温-23℃,历史最高气温为37.4℃,年平均气温为7℃。年平均降水量为450mm-550mm,无霜期为145-160天。

桥梁设计要点

桥梁设计要点 一、结构计算要点 1、根据《公路桥涵设计通用规范》(JTG D60-2004)第1.0.6条要求,公路桥涵结构的设计基准期为100年,市政桥涵据此采用设计基准期100年,各类主要构件及其使用材料应保证其设计基准期要求。 2、汽车荷载根据道路、公路等级分别采用公路-I级、公路-II级,特殊荷载根据业主要求确定。桥梁设计安全等级根据《公路桥涵设计通用规范》(JTG D60-2004)第1.0.9条,分为一级、二级、三级,重要性系数根据设计安全等级确定。设计中注意按照单孔跨径确定,对多孔不等跨径桥梁,以其中最大跨作为判断标准,同时在设计中结构重要性系数应大于等于1.0。 3、抗震设计标准:青岛市桥梁抗震设防烈度为6度,地震动峰值加速度为0.05g。其他地区及有特殊要求桥梁根据《建筑抗震设计规范》(GB 50011-2001)附录A规定的烈度和地震加速度,结合桥梁抗震规范和实施细则进行抗震设计。 4、环境类别根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第1.0.7条确定,并按照要求提出相应的耐久性的基本要求。 5、混凝土保护层厚度根据环境类别确定,详见《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第9.1条,当受拉区主筋保护层厚度大于50mm时,

应在保护层内设置直径不小于6mm,间距不大于100mm的钢筋网(主要用于承台下层)。 6、护栏防撞等级根据《公路交通安全设施规范》(JTG D81-2006)和《公路交通安全设施设计细则》(JTG/T D81-2006)确定,中央隔离墩预制长度4米。设计规范需要在桥梁设计说明依据中列出。 7、桥涵应进行承载能力极限状态和正常使用极限状态设计,其中正常使用极限状态不应遗漏挠度计算和预拱度设置。 8、预应力混凝土受弯构件应根据规范进行正截面和斜截面抗裂验算,并满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第6.3条的规定。 9、普通钢筋混凝土构件和B类预应力混凝土构件,在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,其宽度限制根据环境类别确定,详见《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第6.4.2条。 10、 T形截面梁的翼缘有效宽度和箱形截面梁在腹板两侧上下翼缘的有效宽度应根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第4.2.2条和4.2.3条进行断面折减。各类受力筋应布置在有效宽度范围内。 11、由于日照正温差和降温反温差引起的梁截面应力,可按附录B计算。竖向日照温差梯度曲线可按《公路桥涵设计通用规范》(JTG D60-2004)第4.3.10条计取,桥面混凝土铺装层不计入温度梯度,沥青混凝土铺装层厚度大于10cm的按照14度计算。

桥梁上部结构

1. 什么是桥梁的净跨径、计算跨径、标准跨径、总跨径、桥梁总长、建筑高度、 桥高? 净跨径:梁式桥的净跨径是指设计洪水位上相邻两个桥墩之间的净距。拱式桥的净跨径是指每孔拱跨两个拱脚截面最低点之间的水平距离。 计算跨径:对于拱式桥是指相邻两个拱脚截面形心点之间的水平距离,对于梁式桥是指桥跨结构相邻两个支座中心之间的水平距离。 标准跨径: 对于梁式桥,是指两相邻桥墩中心线之间的距离,或墩中心线至桥台台背前缘之间的距离。对于拱桥, 是每孔两个拱脚截面最低点之间的水平距离 多孔桥梁中各孔净跨径的总和称为总跨径,它反映了桥下泄洪的能力。 桥梁总长:桥梁两端两个桥台侧墙或八字墙后端点之间的距离 建筑高度:桥上行车路面(包括桥面铺装)或轨顶标高至桥跨结构最下缘之间的距离桥高:指桥面与低水位之差,或桥面与桥下线路路面之间的距离 2. 桥梁按主要承重结构基本体系、跨径大小、行车道位置如何分类? 承重结构:梁式桥,拱桥,悬索桥,钢架桥,组合系桥 跨径大小:特大桥(多孔跨径L大于等于1000米,单孔跨径大于等于150米) 大桥(多孔跨径L大于等于100米小于1000米,单孔跨径大于等于40米小于150米)中桥(多孔跨径L大于30米小于100米,单孔跨径大于等于20米小于100米) 小桥(多孔跨径L大于等于8米小于30米,单孔跨径大于等于5米小于20米) 涵洞(单孔跨径小于5米) 行车道位置:上承式桥,下承式桥,中承式桥 3. 梁式桥、拱式桥、悬索桥的主要承重结构是什么?主要受力特点是什么? 梁式桥:主要承重结构为梁(板),受力特点:在竖向荷载的作用下,支座处只有竖向反力,梁(板)内主要产生弯拉应力。 拱桥:主要承重结构为主拱圈;受力特点在竖向荷载的作用下,支座处除了竖向反力,还有水平推力;拱圈内主要产生弯压应力。 悬索桥(吊桥):主要承重结构是缆索;受力特点:在竖向荷载作用下,缆索只承受拉力受力后,变形大,振动大。 5. 桥梁纵断面设计主要包括哪几个方面的内容? 1确定桥梁总跨径 2桥梁分孔 3桥面标高 4桥下净空 5桥上及桥头纵坡布置等。 6. 桥梁分孔时其经济跨径和通航跨径如何选择?连续梁一般如何分孔? 桥梁的总跨径一般根据水文计算确定,必须保证桥下有足够的排洪面积。分孔布置时,对于通航河流,当通航净宽大于经济跨径时,一般将通航孔的跨径按通航净宽来确定,其余的桥孔跨径则选用经济跨径。 连续梁通常按照2到5孔为一联进行分联布置。为使连续梁边跨与中跨的梁高和配筋协调一致,各孔跨径的划分,通常按照边跨与中跨的跨中最大弯矩趋于相等的原则来确定承担传递支方力。 7. 桥面标高一般根据什么条件来确定?拱桥设计中的标高主要有哪几个? 根据路线纵断面设计中规定或者根据设计洪水位及桥下通航需要的净空高度确定。 拱桥的标高主要有:桥面标高、拱顶底面标高、起拱线标高和基础底面标高。 8. 桥梁桥下最小净空高度值如何规定? 对于非通航河流,梁底一般高出设计洪水位不小于0.5米,对于无铰拱桥,拱脚允许被计算洪水位淹没,但是一般不超过拱圈矢高的三分之二,拱顶底面至洪水位的净高不小于1米。 9. 桥梁桥面纵坡、桥头引道纵坡取值有何规定?

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

桥梁上部结构

第一篇桥梁上部结构 第一章总论 第一节概论 一.桥梁在交通事业中的地位 二.国内外桥梁建筑的成就 1、国内桥梁建筑的成就 宋朝在浙江郡县洞桥乡修建的洞桥为2 孔石墩木梁结构,桥长26.76米,宽8.1米 赵州桥(空腹式石拱桥)为公元605年修建,净跨 37.02米,宽9米,拱矢高度为7.23米,现仍在 使用 目前在长江上建成的桥梁已有20余座。第一座是武汉长江大桥。 第一座由我国自己设计自己建造的长江大桥是南京长江大桥。 最大跨径的桥梁是江阴长江大桥(悬索桥),跨径为1385米。 最大跨径的斜拉桥是南京长江二桥,主跨628米。 2、国外桥梁建筑的成就 1873年在法国首创建成第一座钢筋混凝土桥(拱式人行桥)。 1928年由法国著名工程师弗莱西奈发明了预应力混凝土技术,后 在法国和德国开始修建预应力混凝土桥。 1937年修建的美国旧金山金门大桥(吊桥)跨径1280米,保持 了27年的桥梁最大跨径的世界纪录。 1974年在英国修建的亨伯桥(吊桥)跨径达到1410米,为世界 第二大跨径桥梁。

1998年建成的日本明石海峡大桥(吊桥)跨径达到1990米,为世 界第一大跨径桥梁。 3、桥梁发展趋势 轻质、高强、大跨 三、桥梁的组成 1.桥梁的组成 桥梁由上部结构和下部结构组成。 上部结构(桥跨结构):在线路中断时跨越障碍的主要承载结构。 下部结构(桥墩和桥台):支承桥跨结构并将恒载和车辆等活载传至地基的建筑物。 设置在桥梁两端的称为桥台。 设置在桥梁中间的支承结构物称为桥墩。 把所有荷载传至地基的底部奠基部分,称为基础。 支座:在桥跨结构与桥墩或桥台的支承处所设置的传力装置。 附属建筑物:锥坡 2.桥梁的主要尺寸和术语: 净跨径:梁桥指设计洪水位上相邻两个桥墩(或桥台)之间的净距离。 拱式桥指每孔拱跨两个拱脚最低点之间的水平距离。

什么样的桥梁结构承重最大

什么样的桥梁结构承重最大 (春光小组:周鹏徐德闯) 一、项目概述 1. 开展年级:五年级、六年级 2.学科:科学、数学、信息技术 3. 简介: 本学习项目主要对象是五年级至六年级学生,桥梁是他们日常生活中常见事物,但桥梁的承重量有多大,什么样的地理环境适合建造什么结构类型的桥梁等等问题却很少同学去关心。本次项目探究 活动,将从少年儿童身边熟悉的桥梁入手,让他们自己提出有关对桥梁感兴趣的问题,设计探究方法,通过调查、实验、观察、搜集资料、整理信息等方法,培养他们对科学探究的兴趣及数学、信息技术 应用的能力。 二、学习团队 1. 教师: 周鹏:综合实践 徐德闯:科学 2.学生: 旅顺口区迎春小学: 庄河光明山中心小学: 三、学习目标与任务 1. 教学目标分析 认知目标:了解不同结构的桥梁承重力是不同的 能力目标:能通过改变桥梁的结构来改变桥梁的承重力 情感与价值观:培养学生科学探究的方法与能力,知道科学就在我们身边。 信息素养:提高学生利用现在网络技术、高科技手段搜集、整理文字、图片信息的能力。 2. 学习任务

5位同学为一小组,合作完成以下任务: ●任务1:从日常生活中同学们司空见惯的桥梁入手,让学生提一些比较感兴趣、乐于研究的问题, 确立研究主题。 ●任务2:从电视、杂志、互联网等寻找一些有关桥梁的图片、数据信息。 ●任务3:通过信息的整理与分析,从中发现问题及思考解决问题的方案,设计对比实验。 ●任务4:把任务1、2、3的研究成果进行整理,做出一份可以相互交流的项目报告。 四、学习过程 项目学习活动过程(概念图): 任务一寻找世界各地的桥梁设计

?报章、杂志:你们可以从报章或杂志寻找你们所熟悉的桥梁结构,把图片及设计方案(或有关新闻)剪下,并记录你是从哪一份报章(报章名称)和哪一天(日期)取得的。 ?互联网:你亦可以从互联网上寻找桥梁结构设计并把它打印出来,记录你是从哪个网址中取得的。 ?其他途径:其实,若你能细心观察,亦可以从其他途径发现桥梁结构的设计应用,例如电视节目等。把有关的桥梁结构设计记录下来,并记录你是从哪里获得有关资料。 想一想以下的问题: ?桥梁的整体形状是什么样子? ?桥梁的主体结构是怎样设计的? ?最突出的、最令人印象深刻的桥梁结构设计对你的启发? 任务二设计桥梁结构设计图 学生搜集力学原理,结构以什么样的形式制作最稳定? 注意:进行访问时,紧记要表现应有的礼貌! 根据搜集讨论得来的思路绘制桥梁设计图(可以是多个设计方案) 从绘制成的桥梁结构设计图中,你们发现什么? 有什么总结? 把你们的发现记录下来。并思考问题: ?桥梁的整体形状及桥体的结构特征? ?你会如何解释你们的发现? ?你们的发现对你有什么启示? 任务三制作项目实践探究整理

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙 专业名称土木工程 一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥和桁架桥的设计方案。斜拉桥可以看作是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其他样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理

(1)、截杆 裁杆是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工 端部加工是连接的是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。 (3)拼接 拼接是本模型制作的最大难点。由于是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰

桥梁结构设计问题

桥梁结构设计问题探讨 摘要:近年来,随着科学技术的发展,桥梁结构设计也得到了相应的发展,但是我国的桥梁设计理论和结构构造体系仍不够完善。本文通过桥梁结构设计中应注意事项,对桥梁结构设计的理论及设计问题进行探讨。 关键词:桥梁结构;设计问题;分析 abstract: in recent years, with the development of science and technology, the bridge structure design also got the corresponding development, but china’’s bridge design theory and structure system is still not perfect. this article through the bridge structure design should note, bridge structure design theory and design issues were discussed. keywords: bridge structure; design problems; analysis 中图分类号:u443文献标识码:a 文章编号: 一、桥梁结构设计现状 目前的桥梁设计中,对于耐久性更多的只是作为一种概念受到关注,既没有明确提出使用年限的要求,也没有进行专门的耐久性设计。这些倾向在一定程度上导致了当前工程事故频发、结构使用性能差、使用寿命短的不良后果,也与国际结构工程界日益重视耐久性、安全性、适用性的趋势相违背,也不符合结构动态和综合经济性的要求。

基于桥梁结构动力特性评估的有限元仿真研究

基于桥梁结构动力特性评估的有限元仿真研究摘要:以坐落在俄罗斯符拉迪沃斯托克市人行天桥为例,利用笔算和有限元建模的方法对人行天桥进行动力特性计算,对比结果发现以笔算的形式已经无法满足对结构较复杂的中型桥梁的设计 要求,所以在设计较为复杂的中型桥梁时采用有限元仿真的方法是重要的和非常有效手段之一,其建模与分析方法对设计人员具有一定的参考价值。 关键词:有限元模型;动力参数;自振周期;共振 abstract: based on footbridge constructed in vladivostok of russia, the dynamic characteristics of footbridge are studied in this paper. the dynamic characteristics are studied by method of written calculation and finite –element model. compared the results written calculation in from has been unable to meet the design of requirement for the structures of more complex. so construction finite –element model is effective and important method. the result of this paper has certain theoretical meaning and application value in engineering practice. key words:finite-element model;dynamic characteristics;period of vibrate;period of vibrate;resonance

桥梁动力分析

模拟环境对塔玛悬索桥动力特性的影响 摘要 为了达到结构健康监测的目的,结构在环境因素的影响下,去理解、模拟和补充环境变化对结构动力特性的影响是极其重要的。本文中,已经研究了从英国塔玛悬索桥中测得的加速度值,这些加速度值是用数据激励随机子空间系统识别方法处理的,并且用温度和风载对结构自振频率的影响进行了环境变量的模拟。本文应用了两种方法:1)基于有效识别环境效应所致的线性变化规律的主因子分析法(PCA) ;2)元模型法,这是一种通过多项式函数的组合变化来确定系统输入输出关系的纯数学方法。研究发现在所有环境因素中温度是影响桥梁自振频率最关键的因素。 引言 环境因素对土木结构自振频率的影响是导致结构健康监测技术只能应用于实验室而不能在实际工程结构中得到应用的主要原因。在实验室发展起来的损伤检测技术往往无法在具有实验室相同条件的现场发挥作用;作为衡量破坏敏感性的特征参数也通常对工作环境引起的结构动力反应变化很敏感,而这种情况在实验室是不会出现的。这一方面的研究在过去的几年中得到了很大的关注,处理这个问题的方法在Sohn的关于工作环境对结构健康监测的影响一文中有很好的阐述。 本文研究了环境因素对塔玛悬索桥自振频率的影响,尤其是温度和风速的影响。以前主要集中在温度变化对桥梁模态频率相关性的研究上,事实上,温度被认为是环境因素中对模态特性影响最主要的因素。进一步的研究已经转移到了风载对大跨度桥梁的影响。尤其是发现了日本的白鸟(Hakucho)悬索桥的自振频率随着风速的增加而降低,在此过程中没有考虑温度的影响。在文献[6]中对大跨悬索桥的重型车辆荷载的影响进行了研究,发现车辆荷载对大跨度桥梁的自振频率影响很小或者没有。 在本项研究中诸如交通荷载和湿度等环境因素被忽略,认为本论文所讨论的桥梁不会受到交通荷载的影响,由于桥址的原因,也认为湿度不作为考虑的因素。这篇文章的目的主要是确定促使所观察到的引起桥面日常自由振动的主要因素。 塔玛悬索桥 塔玛大桥(如图1)是一座跨度为643m的大跨度悬索桥,它跨越塔玛河,将康沃尔郡(Wornwall)的索尔塔什(Saltash)市与德文郡(Devon)的普利茅斯(Plymouth)连接在一起。自1961年建成后它成为两个地区的一个至关重要的交通纽带。这座桥具有对称几何形状的常规设计,主跨为335m,两个边跨为114m。钢筋混凝土主塔高达73m,采用沉井基础并直达岩面。主缆直径为350mm,每根主缆由31根钢丝捻成,并设置间距为9.1m的垂直钢索。加劲桁架为5.5米厚,由焊接的空腹箱梁组成。在2001年,按照欧盟指示对这座桥进行了加强和扩宽。尤其是采用了18根直径为100mm的预应力钢索对原来的悬索体系进行了补强,原来复合型的主桥面板被一个三车道的正交各向异性钢板代替,在桁架的每侧加上了单车道悬臂梁。 现在对塔玛悬索桥布置了几种监测系统。2007年菲尔德大学(the University of Sheffield)的振动工程科开始监测桥面板和缆索的动力响应。这个监测系统包括8个缆索

桥梁结构设计说明书

缘 聚 桥 结构设计说明书 队名:创造模力 队员:张钧堂熊富有 李人志李庆典

一、设计说明书 1、方案构思与结构选型 根据竞赛规则要求,我们从模型设计的要求、模型制作材料的性能、加载形式和制作方便程度等方面出发,采用A0图纸、白卡纸和白乳胶精心设计制作了“缘聚桥”桥梁模型。 为了达到轻简抗挠的效果,通过对稳定性的分析,我们采用了三角梁与桥墩结合作为整个桥的受力结构,桥面我们使用三角型折纸与正方形折纸并列捆绑的方式,这样能最大程度使加载分散在每一个构件上,并且我们还在桥面上粘了一层白卡纸,使受力韧度增大,桥面不易变形。 2.模型规格: 1、模型总跨度1000mm,桥面宽130mm,桥面高差≤20mm,桥高度100mm。 2、桥梁模型设计为单跨单车道,跨长度1000mm,车道宽100mm。 3. 受力构件设计 a)受载荷部分为桥面,桥面采用三角型折纸与正方形折纸并列捆绑的方式,这样能最大程度使加载分散在每一个构件,达到最大刚度要求; b)支撑部分为三角型支梁。桥墩和简支梁的组合,作为压弯系统,承担结构的整体受压、受弯; c)桥墩与桥面的垂直结合,卡在桥的三角型折纸内部,,分担梁的部分支撑; d)三角梁之间捆绑一根小梁,组成另一个三角形,进一步增大梁的抗变形能力; e)桥面下方用5根细纸棒做为载荷支撑,纸棒用纸带连接到梁上。 4.设计过程: 此模型设计的重点是抵抗均布载荷和动载过程对桥梁产生的屈曲、断裂、磨损以及弯曲等破坏。所以考虑到A0具有两考的抗拉性能,而且通过简易的构建制作,能够大大提高图纸的强度。组合成一个具有良好结构体系的桥模型。发挥

纸所体现出的钢的特性。而乳白胶粘结力强,满足结构受力特点,使纸间紧密结合。缺点是湿度大,不易干燥,干燥后硬度强,但容易产生脆性破坏。白卡纸具有表面硬度大的特点,用来做桥面,增大桥面的韧度,不易损坏变形 5.结构特色 三角梁是由图纸卷制而成,卷的时候层层加胶,这样更增加了桥梁的刚度,连接部分用纸带加胶捆绑,达到最够连接强度。桥面使用空心三角型折纸,强度大且质量轻,制作精确简易、精确,搭配白卡纸桥面,从而提高了桥的受压能力;三角梁之间连接架极大地增强了桥体抗侧扭的能力。 二、方案图

公路桥梁结构设计系统(GQJS)详细介绍

公路桥梁结构设计系统(GQJS)详细介绍 公路桥梁结构设计系统(汉语拼音缩写为GQJS)于98年8月正式推出Windows版,该版本称为GQJS 4.0。其前身是由交通部组织行业专家联合开发的桥梁综合程序GQZJ (参见陆楸、王春富、冯国明编《公路桥梁设计电算》上、下册(桥梁上部结构)人民交通出版社1983年6月)。GQZJ程序1978年投入试用,1980年通过原交通部公路总局的技术鉴定。该系统在公路系统推广应用20年多年来,历经许多桥梁界计算机专家的修改完善,在工程上得到广泛的使用与验证。在转为Windows版时定名为公路桥梁结构设计系统GQJS。因新的系统已不仅仅是单纯进行结构分析,还包括的动态可视化的数据前处理界面、数据图形检验、结果图形浏览和检索、预拱度设置、施工图绘制等一系列的设计功能。它改变了过去桥梁结构计算只能以文本文件操作方式进行的老模式,并对桥梁综合程序输入数据结构做了改造,特别改变了单元坐标和预应力信息数据表达方式,使数据结构大为简化。软件操作改为在仿Office的软件界面的全新操作方式,输入数据、结构计算、察看计算结果集成于同一界面系统之中。 99年3月推出GQJS 5.0版。GQJS 5.0版增加了解题规模使计算单元数可达1000,增加了输入数据图形检验功能,增加了输出结果在界面中快速浏览功能,即通过界面直接浏览查询计算结果,并形成内力、应力、位移以及影响线的曲线分布图、曲线包络图。GQJS 5.0版首次在国内同类桥梁结构分析软件中用彩色云图方式表示计算结果中的应力、内力及位移。GQJS 5.0版增加了读DXF文件,辅助输入横断面变宽点信息的功能,即用户可以先在AutoCAD中用line、arc、circle命令绘制横断面,并形成DXF文件,系统再将DXF文件中线段坐标信息转换成截面变宽点信息。GQJS 5.0版还增加了根据结构计算结果形成桥梁施工控制用的预拱度表和各施工阶段桥面高程表的功能,这些表可由本系统直接调用EXCEL 形成,也可选择形成文本文件“GQJSL.GXL”。在GQJS 5.0改版过程中根据用户反馈意见对原有数据输入界面做了大量改进完善工作,增加了Windows NT网络运行功能,使软件使用更加方便,性能更加稳定。 2000年2月推出GQJS 6.0版。这次改版主要是增加了绘制设计图功能,其中包括:施工工序图、结构构造图、预应力钢筋平纵布置图、预应力钢筋断面布置图、预应力钢筋几何要素表等(计划中的普通钢筋布置图功能暂缓),其中施工工序图中包括各施工阶段计算内容和结构简图,以及带尺寸标注的结构单元离散图。2000年11月推出GQJS 6.5版,GQJS 6.5版可以直接在Windows 2000系统下运行。在GQJS 6.0版基础上增加了TCP/IP网络服务功能,即在符合TCP/IP协议的局域网络上的任意一个Windows 9x/ NT/2000 系统的终端上安装加密锁并运行网络版服务程序,则网上各终端均可同时运行GQJS。GQJS 6.5版还增加了各类单元信息的平移和镜像拷贝功能,使单元信息输入更方便快捷。结果分析中增加了预应力钢筋调整、位移图中增加了初位移叠加功能。数据输入框中增加了许多数据合理性的智能判别。使初次接触GQJS的用户输入数据时尽可能少地出错。 2001年4月推出GQJS 7.0版。这次改版主要是进一步完善网络服务程序和绘制预应力钢筋设计图功能。在使用阶段信息中增加了结构自重安全系数、汽车影响线加载步长、冲击系数计算选择。在结果分析中增加了位移累加和预应力配束功能。在结构材料信息中增加了两种收缩徐变系数计算方法,使收缩徐变计算与《公桥规》JTJ-023-85 附录四相符。 2001年8月推出GQJS 7.5版。这次改版主要根据用户要求,在GQJS计算模块中增加了公路——A级车道荷载(新桥规)、城市桥梁汽车荷载(A级、B级)、铁路设计活载(中-活载特种活载和中-活载普通活载)、规范法定单位制和传统公制单位制选择,温度荷载直

相关文档
最新文档