有关影响土壤酶活性因素的分析报告

合集下载

长期施肥对土壤微生物量及土壤酶活性的影响分析

长期施肥对土壤微生物量及土壤酶活性的影响分析

长期施肥对土壤微生物量及土壤酶活性的影响分析
摘要:长期施肥是农田管理的一项重要措施,可以提高农田的产量和土壤肥力。

长期施肥对土壤微生物量和土壤酶活性的影响尚不明确。

本文通过对多个实验研究进行综合分析,探讨了长期施肥对土壤微生物量和土壤酶活性的影响及其可能的机制。

1. 引言
土壤是一个充满活力的生态系统,其中微生物是其中的重要组成部分。

微生物在土壤中参与多种生态过程,包括有机物分解、养分转化和固氮等。

土壤酶是微生物活动的重要指标,反映了土壤中生物学和生物化学过程的活跃程度。

施肥是提高农田产量和改善土壤性质的重要措施,长期施肥对土壤微生物量和土壤酶活性的影响尚不清楚。

长期施肥可以影响土壤微生物的数量和组成。

一般来说,长期施肥可以增加土壤微生物的数量。

研究表明,施肥可以提供更多的营养物质,从而促进微生物的生长和繁殖。

施肥还可以改善土壤物理性质,提高土壤通气性和水分含量,从而提供更好的生长环境。

一些研究也发现,长期施肥可能导致土壤微生物的群落结构改变。

长期施肥可能增加一些特定微生物的数量,而减少其他微生物的数量。

这可能与施肥改变土壤的氮磷比例有关,进而影响了特定微生物的生长条件。

5. 结论
长期施肥对土壤微生物量和土壤酶活性有着复杂的影响。

施肥可以增加土壤微生物的数量和活性,促进土壤中的生物学过程。

施肥也可能会改变土壤微生物的群落结构和土壤酶的活性,并且这种影响可能与施肥改变营养物质含量和比例有关。

在施肥过程中需要注意施肥量和施肥种类,合理控制施肥的方式和时机,以最大限度地提高施肥效果,同时保护土壤生态系统的健康。

长期施肥对土壤微生物量及土壤酶活性的影响分析

长期施肥对土壤微生物量及土壤酶活性的影响分析

长期施肥对土壤微生物量及土壤酶活性的影响分析随着农业现代化的发展,农业生产中施肥是不可或缺的环节。

合理施肥可以提高土壤肥力,增加作物产量,从而保障粮食生产。

但是长期施肥对土壤微生物量及土壤酶活性会产生一定的影响,这也是当前农业生产中急需解决的问题之一。

本文将对长期施肥对土壤微生物量及土壤酶活性的影响进行分析,以期为农业生产提供一定的科学依据。

1. 施肥对土壤微生物量的促进作用长期施肥可以促进土壤微生物量的增加,尤其是在氮、磷、钾等养分充足的条件下,微生物的代谢活动会得到更好的发展,从而促进土壤微生物的繁殖和生长。

有机肥的施用还可以增加土壤微生物数量,有机肥中的有机物质能够提供微生物生长所需的碳源和能量源,促进土壤微生物的多样性和数量的增加。

长期施肥也会对土壤微生物量造成一定的抑制作用。

一方面,化肥中的高浓度养分会对土壤微生物产生一定的毒害作用,抑制其生长繁殖;长期施用化肥,土壤中的有机质会逐渐减少,微生物的生存条件将会变得更加苛刻,微生物群落的结构可能发生变化,使土壤微生物量减少。

二、长期施肥对土壤酶活性的影响长期施肥可以促进土壤酶活性的增加。

施用化肥可以提高土壤中的养分含量,同时也会刺激土壤中的酶活性。

氮、磷、钾元素是影响土壤酶活性的重要因素,养分充足的土壤中,土壤酶的活性将得到很好的发展。

有机肥的施用也可以促进土壤酶活性的增加,有机质中含有大量的酶和酶原,可以为土壤中的酶提供良好的生存环境和丰富的底物。

长期施用有机肥可以增加土壤酶的种类和数量,提高土壤酶活性。

长期施肥也会对土壤酶活性产生一定的抑制作用。

有研究表明,长期施用高浓度的化肥会降低土壤中的酶活性,尤其是氮素肥料。

长期施用单一种类的肥料会导致土壤中酶的种类和数量的减少,进而影响土壤酶的活性。

化肥的过量使用还会导致土壤酶的变性或失活,抑制土壤酶的活性。

长期施肥对土壤微生物量及土壤酶活性都会产生一定的影响。

一方面,施肥可以促进土壤微生物量的增加和土壤酶活性的提高,提高土壤肥力,增加农作物产量;长期施肥也会导致土壤微生物量的减少和土壤酶活性的抑制,降低土壤肥力,影响土壤生态系统的稳定性。

微生物对土壤酶活性的影响研究

微生物对土壤酶活性的影响研究

微生物对土壤酶活性的影响研究随着人们对土壤的认识不断深入,微生物在土壤生态系统中的作用受到了广泛关注。

土壤中的微生物群落可以通过多种途径对土壤酶活性产生影响,进而影响土壤质量与生态功能。

本文将针对微生物对土壤酶活性的影响进行研究与探讨。

一、微生物介绍微生物是指以单细胞或简单细胞团聚形式存在的生物体,包括细菌、真菌、放线菌等多种类型。

在土壤中,微生物可以通过分解有机物质、固定氮气、释放有益气体等活动,发挥着重要作用。

特别是微生物酶的产生与活性对土壤生态系统具有重要影响。

二、土壤酶活性的重要性土壤酶活性是衡量土壤生态系统功能的重要指标之一。

不同类型的土壤酶具有不同的功能,如脲酶、蔗糖酶、脂肪酶等,它们参与了土壤有机物质的分解和转化过程。

土壤酶活性的水平反映了土壤中微生物的代谢状态与活力,对维持土壤肥力、有机物质循环以及农作物生长发育具有重要影响。

三、微生物对土壤酶活性的影响因素1. 微生物群落结构:不同类型的土壤微生物群落结构差异较大,不同微生物对酶活性有不同的影响。

一些研究显示,细菌能够促进多种酶的产生,而真菌则更适合分解难降解的有机物质。

2. 土壤环境因素:土壤的氧化还原环境、温度、湿度等因素对土壤微生物代谢产生直接影响,从而影响土壤酶活性。

例如,高温环境下,酶活性常常受到抑制;而适宜的湿度则有利于酶活性的发挥。

3. 微生物代谢产物:微生物通过代谢产物与土壤中的有机物质相互作用,进而对土壤酶活性产生影响。

一些研究表明,某些微生物代谢产物能够促进酶活性的释放与提高。

四、微生物对土壤酶活性的正面影响1. 有机物质降解:微生物通过分解有机物质产生一系列酶,如脲酶、纤维素酶等,促进有机物质的降解。

这些酶能够将复杂的有机物分解为更容易被植物吸收和利用的形式。

2. 养分循环:微生物通过代谢过程使养分更易于植物吸收。

例如,微生物通过氮固定、磷解吸等活动,促进了土壤中养分的释放与再循环。

五、微生物对土壤酶活性的负面影响1. 毒性代谢产物:某些微生物产生的代谢产物具有毒性,可能对土壤酶活性产生抑制作用。

土壤活性测定实验报告

土壤活性测定实验报告

一、实验目的1. 了解土壤活性的基本概念和测定方法。

2. 掌握土壤酶活性的测定原理和操作步骤。

3. 通过实验,了解土壤酶活性与土壤肥力的关系。

二、实验原理土壤活性是指土壤中微生物、植物、动物等生物体及其代谢产物的综合活性。

土壤酶活性是土壤活性的重要指标,可以反映土壤中生物体的代谢能力和土壤肥力状况。

本实验通过测定土壤酶活性,了解土壤活性水平。

三、实验材料与仪器1. 实验材料:土壤样品、过氧化氢酶、磷酸酶、脲酶、蛋白酶、转化酶、脱氢酶等试剂。

2. 实验仪器:恒温水浴锅、pH计、分光光度计、滴定管、移液管、烧杯、试管等。

四、实验方法1. 土壤样品的采集与处理采集不同类型土壤样品,过筛后,置于4℃冰箱中保存。

2. 土壤酶活性的测定(1)过氧化氢酶活性测定原理:过氧化氢酶催化过氧化氢分解,产生水和氧气。

通过测定氧气的产生量来计算过氧化氢酶活性。

操作步骤:①配制过氧化氢酶反应液:取一定量的土壤样品,加入一定量的磷酸盐缓冲液,混匀,置于4℃冰箱中保存。

②取一定量的过氧化氢酶反应液,加入一定量的过氧化氢,在恒温水浴锅中反应一段时间。

③用分光光度计测定反应液的吸光度,根据标准曲线计算过氧化氢酶活性。

(2)磷酸酶活性测定原理:磷酸酶催化磷酸苯二钠水解,产生酚和磷酸。

通过测定酚的产生量来计算磷酸酶活性。

操作步骤:①配制磷酸酶反应液:取一定量的土壤样品,加入一定量的磷酸盐缓冲液,混匀,置于4℃冰箱中保存。

②取一定量的磷酸酶反应液,加入一定量的磷酸苯二钠,在恒温水浴锅中反应一段时间。

③用分光光度计测定反应液的吸光度,根据标准曲线计算磷酸酶活性。

(3)脲酶活性测定原理:脲酶催化尿素水解,产生氨和二氧化碳。

通过测定氨的产生量来计算脲酶活性。

操作步骤:①配制脲酶反应液:取一定量的土壤样品,加入一定量的磷酸盐缓冲液,混匀,置于4℃冰箱中保存。

②取一定量的脲酶反应液,加入一定量的尿素,在恒温水浴锅中反应一段时间。

③用滴定法测定氨的产生量,根据标准曲线计算脲酶活性。

土壤磷酸酶的测定实验报告_概述说明

土壤磷酸酶的测定实验报告_概述说明

土壤磷酸酶的测定实验报告概述说明1. 引言1.1 概述土壤磷酸酶是一种广泛存在于土壤中的酶类,它在土壤磷素循环和生态系统中具有重要的功能和作用。

通过测定土壤磷酸酶活性,可以了解土壤中的磷循环情况以及其对植物生长和农业生产的影响。

本实验旨在探究土壤样品中磷酸酶的活性,并通过实验方法的运用来测定和分析其活性水平。

1.2 文章结构本文共分为五个主要部分:引言、正文、结果与分析、讨论与解释以及结论和展望。

引言部分将介绍本实验的背景和目的,并简要描述文章结构,使读者能够清晰理解全文内容。

正文将详细介绍土壤磷酸酶的基本概念以及测定实验方法,并提供实验步骤和条件信息。

结果与分析部分将展示测定结果,并对数据进行详细分析和讨论。

讨论与解释部分将解释实验结果的意义,并对影响磷酸酶活性因素进行深入分析,同时还将对相关研究成果进行比较分析。

最后,结论和展望部分将总结实验结果并给出进一步工作建议。

1.3 目的本文的目的是通过测定土壤磷酸酶活性的实验,探讨土壤中磷酸酶的特性、影响因素以及其在土壤磷循环和生态系统中的作用。

通过本次实验可以为土壤质量评价、植物营养关系研究以及农业生产提供科学依据和参考意见。

此外,文章还旨在扩展读者对于土壤生态系统中微生物酶类功能及其重要性的认识,并为未来相关研究提供参考方向。

2. 正文2.1 土壤磷酸酶介绍土壤磷酸酶是一种重要的土壤酶,它参与了土壤中有机磷的转化和释放过程。

磷是植物生长必需的营养元素之一,但通常以无机形式存在于土壤中,难以被植物吸收利用。

这就需要依靠土壤中的磷酸酶将有机磷转化为无机磷,提供给植物进行吸收和利用。

2.2 测定实验方法测定土壤磷酸酶活性的常见方法包括显色法、比色法和荧光法等。

其中较为常用的是显色法,具体步骤如下:1. 取少量土壤样品,并将其保存在干燥、密封的容器中。

2. 准备适当浓度的柠檬酸钠缓冲液,并调节pH值到适宜范围。

3. 加入柠檬酸钠缓冲液和显色底液到样品中,并进行混合均匀。

土壤酶检测报告

土壤酶检测报告

土壤酶检测报告1. 引言土壤是地球上最重要的自然资源之一,它对农田和生态系统的健康发展至关重要。

土壤酶是土壤微生物代谢的重要标志,其活性和种类对土壤质量和生态系统功能具有重要影响。

本文档旨在通过土壤酶检测报告提供有关土壤酶活性的信息,以便对土壤质量进行评估和改进农业管理实践。

2. 实验方法土壤酶检测使用的方法通常包括测定酶的活性以及酶的种类和含量。

本次检测采用以下方法实施:2.1 酶活性测定采用测定酶活性的方法来评估土壤中不同酶的活性水平。

常用的酶活性指标包括脲酶、过氧化氢酶、过氧化物酶、硝化酶等。

2.2 酶种类和含量测定通过测定土壤中酶的种类和含量,可以更全面地了解土壤微生物群落的组成和功能。

常用的测定方法包括酶谱分析、PCR扩增和基因测序等。

3. 实验结果经过酶活性测定和酶种类和含量测定,我们得到了以下结果:3.1 酶活性酶名活性水平(单位)脲酶100过氧化氢酶50过氧化物酶80硝化酶1203.2 酶种类和含量经过酶种类和含量测定,我们发现土壤中存在多种酶,例如脲酶、过氧化氢酶和过氧化物酶。

其中脲酶的含量最高,过氧化氢酶和过氧化物酶的含量稍低。

4. 结果分析通过对土壤酶活性和酶种类和含量的测定结果进行分析,我们可以得出以下结论:1.脲酶活性较高,说明土壤中存在一定数量的氮素有机化合物,并能迅速转化为植物可用的无机氮。

2.过氧化氢酶和过氧化物酶活性适中,说明土壤中的有机物和废弃物可以被有效分解和降解。

3.硝化酶活性较高,说明土壤中存在一定的硝化作用,有机氮逐渐转化为无机氮。

5. 结论与建议根据检测结果的分析,我们得出以下结论和建议:1.土壤酶活性良好,说明土壤中的微生物群落活跃,有机物分解和养分转化能力强。

建议保持良好的农田管理实践,如定期施肥、轮作和集约耕作等,以促进土壤健康发展。

2.酶种类和含量的测定结果可作为土壤质量评估的重要指标之一,可用于监测农业管理措施的效果和土壤质量的变化情况,为农田管理提供科学依据。

土壤酶活性的主要影响因素分析

土壤酶活性的主要影响因素分析

现代园艺2018年第6期土壤酶活性的主要影响因素分析黄雪琳,杨静,贺宇纯(咸阳职业技术学院,陕西咸阳712000)土壤酶是土壤的组成成分之一,它们数量虽少,但作用颇大,它们参与各种元素的生物循环、有机质的转化、腐殖质及有机无机胶体的形成等,土壤酶是土壤生物学中的一项重要内容,对土壤肥力起重要作用。

本文介绍并分析了土壤酶活性的主要影响因素。

土壤酶;影响因素因此在进行土壤酶的研究时要适当考虑含水量对于酶活性的影响。

研究显示,温度对于酶活性的影响极大,温度过高时会影响土壤结构的稳定性,继而间接影响到酶的活性,严重时会引发酶丧失活性。

经过大量的研究事实表明,土壤的化学性质会对土壤酶活性产生比较大的影响,根据相关测试显示,棕色土土壤的pH值一般为6.3~6.5,最高可以达到7.0,因此酸性磷酸酶活性较高。

但是对于褐土、黑土、潮土、盐碱土这四种类型的土壤,pH范围在7.35~8.0之间,在这四种类型土壤中,碱性磷酸酶的活性是最强的。

大棚土壤中有机质跟过氧化氢酶之间具有显著或极显著正相关性,全氮与中性磷酸酶、全磷与脲酶和磷酸酶、无机磷与过氧化氢酶等也存在着显著正相关性,但有机磷、无机磷等却跟多酚氧化酶存在着负相关性[2]。

4土壤养分土壤微生物和植物根系是土壤酶的主要来源,他们的活动能力受到土壤养分的直接影响。

因此,土壤酶活性与土壤养分含量有密切联系。

有机质能够增强土壤的通气性和孔隙度,是土壤微生物和酶的有机载体,其组成和含量会对土壤酶的稳定性造成影响。

土壤中氮、磷、钾等营养元素的存在状况和含量也与土壤酶活性变化有关。

大量研究表明[3],土壤养分和土壤酶活性之间存在密切的关系。

5施肥等农业管理措施施肥可以改善土壤理化特性、水热状况及微生物区系,从而对土壤酶活性产生影响。

有机肥料与化学肥料的施用会对土壤酶活性产生明显的影响。

有机无机肥配施能够不同程度地增强多种土壤酶活性,而单施化肥将会显著降低酶活性。

在实际生产中,可通过增施有机肥或有机无机肥配施来改善土壤理化性质,提高土壤酶活性,提升土地利用效率,同时亦可减少化肥的施用量,实现环境的可持续发展[4]。

土壤学酶活性实验报告

土壤学酶活性实验报告

土壤学酶活性实验报告实验目的:本实验的目的是通过测定土壤样品中的酶活性,了解土壤中酶活性对土壤养分转化和有机质降解的影响,为土壤肥力评价提供参考依据。

实验原理:土壤是一个复杂的微生物生态系统,其中微生物和土壤酶活性对于土壤有机质降解和养分转化起着关键作用。

本实验选择常用的酶活性指标进行测定,包括脲酶、过氧化氢酶和蔗糖酶活性。

脲酶是土壤中一种主要的氨氧化酶,催化氨离子氧化为亚硝酸离子。

本实验采用亚硝酸盐评价方法,根据脲酶催化下苏亚硝酸盐的生成量来测定酶活性。

过氧化氢酶是一种氧化酶,催化过氧化氢(H2O2)分解为水和氧气。

在本实验中,加入过氧化氢和酶作用后,通过测定生成的氧气体积来计算酶活性。

蔗糖酶是一种糖酶,催化蔗糖降解为葡萄糖和果糖。

在实验中,将土壤样品与蔗糖溶液反应,再通过添加硫酸酸化,使用菲林试剂测定生成的还原糖量来测定酶活性。

实验步骤:1. 收集土壤样品,并将其空气干燥后研磨成粉末状。

2. 准备酶活性测定所需的荧光素磷酸盐、过氧化氢、蔗糖等试剂,按照说明书配制所需的溶液。

3. 酶活性测定前,先将土壤样品与适量的氯仿进行均匀摇匀,以杀死微生物活性。

4. 进行脲酶活性的测定,依次将土壤样品溶液、反应液和荧光素磷酸盐溶液加入96孔板中,放入荧光光度计中进行测量。

5. 进行过氧化氢酶活性的测定,将土壤样品溶液、过氧化氢和缓冲液加入96孔板中,加入过氧化氢酶溶液后,用气泡计测定产生的气体体积。

6. 进行蔗糖酶活性的测定,将土壤样品溶液、蔗糖溶液和酸化剂加入96孔板中,加入菲林试剂后,使用分光光度计测定溶液的吸光度。

实验结果:根据实验步骤测定得到的数据,可以计算出脲酶、过氧化氢酶和蔗糖酶的活性值。

根据实验条件和添加的试剂浓度,可以计算出单位土壤样品中酶活性的相对值,以便进行土壤酶活性的比较和评价。

实验结论:通过测定土壤样品的酶活性,可以了解土壤中微生物代谢活性和有机质降解程度。

较高的脲酶活性表明土壤中氮转化能力较强,有机氮物质较容易转化为无机氮形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于影响土壤酶活性因素的研究摘要:本文对国内外土壤酶活性影响因素的研究进行了综述,总结了土壤微生物、团聚体、农药、重金属和有机物料等对土壤酶活性的影响,并对土壤纳米粒子与土壤酶活性关系的研究发展前景进行了展望。

关键词:土壤酶活性;微生物;团聚体;重金属;有机物料Study progress on factors affecting soil enzyme activity Abstracts:In this article,the study on factors affecting soil enzyme activity in recent years was reviewed. Several aspects such as microbial,aggregation,heavy metals,organic manure and so on were included.At the same time,the effects of the soil inorganic nanometer particle (SINP) on soil enzyme activity inthe future research was forecasted.Key words:soil enzyme activity;microbial;aggregation;heavy metals;organic manure酶是土壤组分中最活跃的有机成分之一,土壤酶和土壤微生物一起共同推动土壤的代谢过程[1]。

土壤酶来源于土壤中动物、植物和微生物细胞的分泌物及其残体的分解物,其中微生物细胞是其主要来源[1,2]。

土壤中广泛存在的酶类是氧化还原酶类和水解酶类,其对土壤肥力起重要作用。

土壤中各有机、无机营养物质的转化速度,主要取决于转化酶、蛋白酶磷酸酶、脲酶及其他水解酶类和多酚氧化酶、硫酸盐还原酶等氧化还原酶类的酶促作用[2]。

土壤酶绝大多数为吸附态,极少数为游离态,主要以物理和化学的结合形式吸附在土壤有机质和矿质颗粒上,或与腐殖物质络合共存[3]。

土壤酶活性反映了土壤中各种生物化学过程的强度和方向[4],其活性是土壤肥力评价的重要指标之一,同时也是土壤自净能力[1]评价的一个重要指标。

土壤酶的活性与土壤理化特性、肥力状况和农业措施有着显著的相关性[5]。

因此,研究土壤酶活性的影响因素,提高土壤酶活性,对改善土壤生态环境,提高土壤肥力有重要意义。

本文对土壤酶活性影响因子的研究进展进行了综述,以期为土壤酶活性的深入研究和土壤培肥理论及其应用提供研究思路和方向。

1 土壤微生物在土壤酶学研究中,一直关注的是土壤贮积酶,即存在于无微生物增殖土壤中的酶[1],其理论依据是:土壤生物释出的酶极易钝化和酶解,而贮积酶活性则能保持较长时间。

但是,越来越多的研究[6,7]表明,在测得的土壤酶活性值中,活体微生物对土壤酶的影响相当大。

有报道[8]指出,脲酶、磷酸酶和纤维素酶的活性与微生物量有较密切的关系,3种酶的活性随着生物量的增加而不断增强,二者变化基本保持同步。

脱氢酶活性与土壤微生物的关系不明显,其变化规律与生物量相比呈现不规则性。

而蔗糖酶活性与土壤微生物数量、土壤呼吸强度有直接依赖性[1]。

Naseby[9]通过向根际接种遗传改性微生物,使根际土壤的碱性磷酸酶、磷酸二酯酶及芳基硫酸酯酶的活性增强,同时使β-糖苷酶、β-半乳糖苷酶及N-乙酰基氨基葡糖酶的活性减弱,该结果说明,遗传改性微生物生成的酶,对土壤的碳、磷转化具有重要作用。

还有研究[10]表明,玉米生长的中前期,土壤微生物量碳、氮与土壤过氧化氢、蔗糖酶、脲酶、蛋白酶活性及速效养分的相关性均达到显著或极显著水平。

鉴于酶与微生物之间显著的相关性,Mawdsley等[11]和Naseby等[12]曾通过测定胞表酶的活性来研究遗传改性微生物对土壤代谢的影响。

对VA菌根真菌改善植物磷营养的机理研究[13- 15]表明,VA真菌分泌的磷酸酶能矿化土壤有机磷,同时,由VA真菌分泌的谷酰胺合成酶和谷酰胺脱氢酶酶促的对氨态氮和硝态氮的同化,也改善了植物的磷营养[16]。

因此,对不同土壤微生物与不同土壤酶关系的研究,将是土壤酶未来研究的热点。

其重要意义在于,土壤微生物的生物多样性决定了其功能的多样性,而土壤微生物作为媒介,由其生成和释出的酶催化的诸多生物化学过程,是土壤功能多样性的前提和基础。

2 土壤水气热条件土壤水分、空气和热量状况对土壤酶活性的影响是明显的,一方面,其与土壤微生物的活性和类型有显著的相关性,因此,必然对土壤酶的活性产生巨大影响。

另一方面,不同水分条件、空气组成和水分状况,也会直接影响土壤酶活性的存在状态与活性强弱。

一般情况下[1],土壤湿度较大时,酶活性较高,但土壤过湿时,酶活性减弱。

Birch[3]研究了具有连续雨季和旱季地区的土壤酶活性,他指出当旱季结束雨季开始时,土壤酶活性显著增强[3]。

土壤含水量减少时,酶活性也减弱。

土壤温度直接影响释放酶类的微生物种群及数量,因此,土壤温度是影响酶活性的因素之一[1]。

有研究[17,18]表明,当温度由10℃上升到60或70℃时,土壤酶活性显著增加;但随着温度的进一步升高,脲酶迅速钝化;在150℃下加热24 h或115℃下加热15 h,土壤酶会完全失活。

因为土壤CO2和O2与土壤微生物的活动状态有关,所以土壤空气对土壤酶活性有直接影响。

Overrein(1963)[1]指出,氧与脲酶活性有关;除半纤维素酶外,蔗糖酶、淀粉酶、纤维素酶、脲酶、磷酸酶和硫酸酶同土壤氧的摄取量均呈正相关。

由此可见,土壤水气热对土壤酶活性的影响是非常显著的,如同对微生物的研究要注意水气热条件的合理设置一样,对某些土壤酶的研究,也必须考虑到其所适应的最佳水气热条件的控制和选择。

尤其对污染土壤酶的修复研究及有机肥料的生化处理与制造的研究,更要强调水气热条件的分析设定。

3 土壤酸碱性土壤酸碱性直接影响着土壤酶参与生化反应的速度。

有些酶促反应对pH值变化很敏感,甚至只能在较窄的pH范围内进行[1]。

和文祥等[18]、Franken-berger等[19]研究发现,土壤脲酶的两个最适pH值为pH=6.5~7.0或pH=8.8~9.0,土壤磷酸酶的最适pH值为4.0~5.0,6.0~7.0,8.0~10.0,分别称为酸性、中性、碱性磷酸酶。

当pH在5.0以下时,过氧化氢酶和脱氢酶的活性几乎完全丧失,而转化酶和脲酶受酸度的影响较小,但与土壤腐殖质含量呈正相关[20]。

另有研究[21]表明,pH对脲酶的巯基、氨基、羧基等组成部分所处状态及蛋白质构型(三级结构)的影响,也会导致酶活性的改变。

徐冬梅等[22]研究表明,低酸度先对脲酶、中性磷酸酶产生一定的激活效应,进而转化为抑制,而[H+]离子浓度为0~55 mmol/kg时,外源酸对转化酶与酸性磷酸酶的活性表现为明显的激活效应。

4 土壤有机质、氮、磷及微量元素土壤中有机质含量只有百分之零点几至百分之几,虽然数量比率不高,但其对土壤理化性质影响很大。

土壤酶可以吸附在有机物质上,一系列的土壤酶,如脲酶、二酚氧化酶、蛋白酶以及水解酶等,都曾以“酶-腐殖物质复合物”的形式从土壤中提取出来,这些提取物中的酶仍可保留有活性,在某些情况下,还有较强的抗分解能力和热稳定性[23]。

一般而言,土壤全氮、全磷含量与有机质含量是成比例的,所以土壤N,P含量与土壤酶活性有关[1]。

土壤有机质、全氮、全磷通过直接和间接效应成为影响脲酶和酸性磷酸酶、转化酶活性的主要因素[24]。

酶的活性与有机质分布剖面有关,而且随剖面加深而降低[25]。

土壤转化酶、蛋白酶、磷酸酶和脲酶活性与土壤有机质(有机碳)呈极显著相关(P <0.01)或显著相关(P <0.05),与全氮显著相关;过氧化氢酶、转化酶、蛋白酶、磷酸酶、脲酶与速效氮、速效磷较显著相关、显著相关或极显著相关;脲酶与全磷呈极显著相关[26]。

杨远平[27]对毕节地区土壤磷酸酶活性的研究也表明,土壤磷酸酶活性与全氮、有机质、速效磷、水解氮等关系密切。

樊军等[28]研究表明,土壤脲酶、碱性磷酸酶、蛋白酶活性随土壤有机碳含量的增加而增加,蔗糖酶、过氧化氢酶活性与有机碳之间的关系因施肥种类及种植方式的不同而不同。

汪远品等[29]较为系统全面地测了贵州省主要耕作土壤的脲酶活性,其回归分析表明,土壤脲酶活性主要受土壤有机质及氮、磷、钾等因素的影响,其中土壤基础铵量对耕作土壤脲酶活性影响最大。

微量元素是植物、微生物和酶的激活剂和抑制剂,土壤的微量元素含量可能是决定土壤酶活性的一个重要生态学因素[30]。

微量元素对土壤酶活性的影响,取决于土壤的性质及不同酶类对微量元素的专有特性,对某些酶起激活作用的微量元素,对另一种酶则可能起抑制作用[31,32]。

而且,同一微量元素的含量不同时,既可以起激活酶的作用,也可以起到抑制酶的作用[30]。

李跃林等[32]研究表明,锌和锰对土壤蛋白酶活性影响的正效应最大,即促进作用较大。

锌在一定程度上对脲酶和过氧化氢酶有负效应,即有一定的抑制作用,而锰对其有正效应,即促进作用。

5 土壤团聚体和粘粒土壤团聚体是反映土壤理化性质和养分状况的一个指标,是由微小矿物颗粒复合而成的稳定结构,一般可分为大团聚体(>250μm)和微团聚体(50~250μm),直径为0.5~3 mm的团聚体是决定土壤肥力水平的重要因素之一[33]。

不同粒径团聚体的酶活性不一样,小团聚体的酶活性要比大团聚体中的高[3]。

团聚体的稳定性也与酶活性有关,如脲酶活性与土壤团聚体的稳定性及土壤容重呈显著负相关,转化酶活性与土壤团聚体的稳定性呈显著的正相关[34]。

周礼恺等[1]提出,黑土、棕壤脲酶活性主要集聚在微团聚体上,相当于土壤粒级的粘粒部分。

随粒径增大,脲酶活性有下降趋势。

糖酶主要吸附在粉砂粒上[3]。

粘粒和粉砂对酶吸附量的多少,与这些土粒的矿物组成有关。

粘粒由于具有颗粒细、表面积大及某些矿物结构的特定特征,而使其成为土壤中最活跃的矿物组分。

粘粒是土壤具有许多物理、化学性质的根源[35],其可与土壤腐殖质共同组成复合胶体。

土壤酶只有一小部分存在于土壤溶液中,其大部分被土壤粘粒、腐殖质等物质吸附,其可通过阳离子交换反应的方式与粘粒矿物结合[23]。

粘粒对酶的吸附量受酸度、温度等环境条件影响,土壤pH值越低(低于酶蛋白的等电点),粘粒吸附的酶越多[23]。

由于脲酶为一弱酸性酶,所以脲酶在弱酸性介质中的吸附量大于弱碱性介质;在20~60℃时,各土壤粘粒的脲酶吸附量随温度升高而降低[36]。

土壤中性磷酸酶和蛋白酶活性与脲酶的分布规律一致,主要吸附在土壤胶粒和粘粒部分;土壤硫酸酶活性与粘粒总表面积有关;磷酸酶活性绝大部分为粘粒吸附[1]。

相关文档
最新文档