斜拉桥设计计算参数分析
斜拉桥塔端张拉拉索倾角修正及拉索主要参数实用计算方法

斜拉桥塔端张拉拉索倾角修正及拉索主要参数实用计算方法斜拉桥是一种采用斜拉索进行支撑的桥梁结构。
在斜拉桥的设计中,张拉拉索的倾角修正及拉索主要参数的实用计算方法是非常重要的一部分。
斜拉桥塔端张拉拉索的倾角修正是为了使拉索在施工阶段和使用阶段都能够保持稳定的力学性能。
倾角修正是指在设计中将斜拉桥塔端拉索的实际倾角与理论倾角进行修正,以确保拉索受力均匀,减少不均匀载荷的影响。
首先,需要确定斜拉桥塔端拉索的理论倾角。
理论倾角是根据桥梁的几何形状和受力计算得到的理论值。
一般来说,理论倾角可以通过力平衡和几何条件进行计算。
然后,需要考虑实际情况对理论倾角进行修正。
在实际施工中,可能会受到各种因素的影响,如温度变化、荷载变化、施工误差等。
这些因素都会对拉索的倾角产生影响,因此需要对理论倾角进行修正。
修正的方法主要有两种:静态修正和动态修正。
静态修正是通过校核拉索张力来修正倾角,而动态修正是通过模拟结构的动态响应来实现倾角修正。
具体的修正方法可以根据具体情况来确定,一般需要考虑各种因素的综合影响。
在确定了倾角修正后,需要计算斜拉桥主要拉索的参数。
拉索的主要参数包括拉索长度、拉索张力以及预应力值等。
首先,拉索长度可以通过斜拉桥的几何尺寸和拉索的布置来计算。
一般来说,拉索长度是通过测量拉索所占空间的实际长度来确定的。
其次,拉索的张力可以通过力学计算来确定。
拉索的张力需要考虑桥梁的静力平衡和受力要求,以及拉索的材料性能等因素。
最后,预应力值是指斜拉桥在设计中对拉索施加的预应力。
预应力可以通过斜拉桥结构的要求和拉索的材料性能来确定。
在实际计算时,可以借助计算软件进行模拟计算。
通过输入相关参数,计算软件可以提供准确的结果,帮助工程师进行设计和优化。
总而言之,斜拉桥塔端张拉拉索的倾角修正及拉索主要参数的实用计算方法是设计斜拉桥的重要内容。
通过合理的修正和计算,可以确保斜拉桥的稳定性能和安全性能,为实际工程的建设提供指导。
斜拉桥塔顶吊架方案设计及验算

斜拉桥塔顶吊架方案设计及验算发布时间:2022-11-28T11:54:21.618Z 来源:《工程建设标准化》2022年第7月第14期作者:方建创[导读] 本工程塔顶吊架设计为钢桁架结构方建创广东骏熙建设有限公司广东佛山 528000摘要:本工程塔顶吊架设计为钢桁架结构,为保证连接的可靠性及安装的可操作性,立柱及主斜撑与平杆、纵梁之间采用开坡口完全融透焊缝,各节点板与其附着构件之间的连接均采用开坡口完全融透焊缝,焊缝质量必须达到二级焊缝标准;腹杆、斜撑等构件与节点板之间采用角焊缝围焊;主斜撑、平杆及纵梁断开位置采用高强螺栓连接;横梁与纵梁之间采用连接板(节点板)与高强螺栓连接向结合的连接方式。
吊架立柱底部设预埋“锚板+锚筋”及φ32精轧螺纹钢锚固,每根立柱底部设4根精轧螺纹钢,同时立柱底部开坡口与预埋锚板之间完全融透焊接牢固。
塔顶吊架在上部施工中,分两个阶段发挥其作用。
第一阶段承担着主索鞍及其附属构件的吊装工作,第二阶段配合索股架设工作。
通过工程实践,塔顶吊架的强度、刚度和稳定性均满足施工需要及规范要求,结构安全可靠,各连接件强度均满足规范要求。
关键词:斜拉桥塔顶吊架方案设计验算1.塔顶吊架方案简介塔顶吊架高度为9m,两个主桁片之间的中心距为6.7m。
吊架材料中,HW400×408mm型钢及节点板、连接板采用Q345b钢材,其余采用Q235钢材。
其中立柱、立杆、主斜撑、横梁以及纵梁均采用HW400×408mm型钢,立柱之间及立柱与主斜撑之间的平杆采用[]28a槽钢(对拼),主斜撑中跨侧的平杆采用HW400×408mm型钢,腹杆采用][28a槽钢(背拼),斜撑采用[]28a槽钢(对拼)及][28a槽钢(背拼)。
为加强立柱及主斜撑的横桥向刚度,在其横桥向外侧面加设加劲桁片,同时加劲桁片还可为吊架顶面的工作平台提供支撑,加劲桁片采用][28a槽钢(背拼)。
塔顶吊架分两阶段进行安装。
斜拉桥设计概念及结构分析

总工办
一、斜拉桥概述 2.1 稀索体系的斜拉桥
2 斜拉桥技术演变
Knie桥纤细的桥塔和主梁(钢结构)
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述 2.1 稀索体系的斜拉桥
2 斜拉桥技术演变
技术特色: 1)非对成的单塔斜拉桥 2)A型桥塔 3)扇形缆索体系
德国科隆 Severins桥
希腊Evripos 桥 1993 , 矩形板厚度 45 cm
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述 主梁柔、薄化
2 斜拉桥技术演变
法国的Bourgogne 桥
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
2 斜拉桥技术演变
技术特色: 1)目前最大跨度的PC斜拉桥 2)三角形单箱双室箱梁,景观、结构特
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
斜拉桥和斜腿刚构力学对比
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
斜拉桥和悬索力学对比
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
2 斜拉桥技术演变
2 斜拉桥技术演变
斜拉桥的技术演变大致可以分为四个阶段:
1)稀索体系的斜拉桥
1956年开始,主梁大部分采用钢主梁,斜拉索较少,但拉索的直径较大,钢箱 梁索距大约30-60米,混凝土梁的索距大约15-30米。
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
2 斜拉桥技术演变
德国桥梁工程师Hellmut Homberg 则提出了密索体系的斜拉桥和单索面斜拉桥。
技术特色:第一座密索体系的钢斜拉桥,单索面
斜拉桥桥面吊机方案设计及验算

斜拉桥桥面吊机方案设计及验算摘要:目前,在大跨度钢桥施工中,钢梁节段的组装及预拼装通常是在工厂内完成,然后通过浮吊等运输设备将梁节段运至桥位,通过桥面吊机进行拼装。
所以桥面吊机是大型跨江、跨河钢桥架设的关键设备。
随着钢桥的建造跨度、宽度越来越大,钢梁节段的重量、体积也越来越大,经常需要对大吨位钢梁节段实施起吊。
为了增强起吊能力和抗倾覆性,桥面吊机通常都会增大体积和增加配重。
但是大体积和大配重也增加了对在建钢桥的压力,使在建钢桥不稳定并且可能变形。
因此,设计一款自重小并且抗倾覆性好的桥面吊机是十分必要的。
关键词:斜拉桥桥面吊机方案设计验算一、桥面吊机方案简介同济路西延工程(禅港东路至季华北路)位于佛山市禅城区南庄镇与张槎街道,起点为禅港东路与科润路的平交口处(起点桩号K0+000),向东与地铁四号线共线约250m,依次跨绿岛湖、罗格围大堤、地铁四号线、东平水道、佛山大堤、东平路后与季华北路相交(终点桩号K1+540),总长1.54km,设置主线高架桥1 座,总长 892.0m。
主桥(第三联)为独塔斜拉桥,墩、塔、梁固结,跨径组成为(200+68+46)=314m。
主梁边跨68+46=114m为预应力混凝土箱梁,预应力混凝土箱梁伸过桥塔11m,通过钢混结合段与主跨钢箱梁连接。
斜拉索间距混凝土箱梁侧为6m,钢箱梁侧为12m,边、中跨侧均为双索面。
主塔采用“合手”型变截面塔柱。
钢箱梁中心处高度为3.5m,节段标准长度12m。
钢箱梁顶板厚18mm,底板厚14mm,中腹板厚14mm,边腹板厚30mm;钢箱梁顶、底板采用U肋闭合加劲,顶板U肋厚度8mm、底板U肋厚度6mm。
桥面顶板为正交异性板,不同板厚相接时保证板件上缘齐平;底板不同板厚相接时保证板件上缘齐平,为保证结构的抗疲劳性能,U肋与顶板采用开坡口单面焊接,焊接熔透深度不小于80%U肋板厚,每一U型加劲肋两侧应同时施焊。
钢箱梁横向设隔板,横隔板间距3.0m。
斜拉桥结构力学分析与设计

斜拉桥结构力学分析与设计斜拉桥作为一种重要的桥梁结构形式,具有独特的美学价值和结构力学特点。
本文将对斜拉桥的力学分析与设计进行探讨,从桥梁结构的基本原理、斜拉桥的力学特点以及设计要点等方面展开论述。
一、桥梁结构的基本原理桥梁作为连接两个地理位置的重要交通设施,需要具备一定的结构强度和稳定性。
桥梁结构的基本原理包括静力平衡、弯矩分配和刚度平衡等。
其中,静力平衡是指桥梁各构件所受的力能够保持平衡状态,使得桥梁整体不会发生倾覆或塌陷的现象。
弯矩分配是指桥梁在承受荷载时,各个构件能够合理分担荷载,使得桥梁整体力学性能达到最优。
刚度平衡是指桥梁在受力作用下能够保持结构的稳定性,不会发生过大的变形或振动。
二、斜拉桥的力学特点斜拉桥是一种通过斜拉索将桥面承载力传递到桥墩上的桥梁结构形式。
相比于悬索桥和梁桥,斜拉桥具有以下几个独特的力学特点。
首先,斜拉桥的主梁受力方式为受拉,而非受压。
这是因为斜拉索的作用使得主梁处于受拉状态,从而能够更好地抵抗外部荷载的作用。
其次,斜拉桥的斜拉索与主梁之间形成了一种特殊的力学关系。
斜拉索通过桥塔或桥墩传递受力到地基,使得桥梁整体具备较好的稳定性和承载能力。
此外,斜拉桥的斜拉索数量和布置方式对桥梁的力学性能有着重要影响。
合理的斜拉索布置能够使得桥梁承载力得到充分发挥,同时减小桥梁的自重和振动。
三、斜拉桥的设计要点在进行斜拉桥的设计时,需要考虑以下几个要点。
首先,斜拉桥的主梁和斜拉索的材料选择要合理。
主梁需要具备足够的强度和刚度,以承受外部荷载的作用。
斜拉索需要具备较高的抗拉强度和耐久性,以保证桥梁的稳定性和安全性。
其次,斜拉桥的斜拉索布置要合理。
斜拉索的布置方式应根据桥梁跨度和荷载情况进行优化设计,以减小桥梁的自重和振动。
此外,斜拉桥的桥塔或桥墩的设计也是关键。
桥塔或桥墩需要具备足够的强度和稳定性,以承受斜拉索传递的受力,并将受力传递到地基。
最后,斜拉桥的施工和维护要注意安全性和可持续性。
独塔斜拉桥的设计理论研究

独塔斜拉桥的设计理论研究一、本文概述随着桥梁工程技术的不断发展和进步,独塔斜拉桥作为一种具有独特美学和实用价值的桥梁结构形式,已经在世界各地得到了广泛的应用。
独塔斜拉桥的设计理论研究对于提升桥梁设计水平、优化桥梁结构性能以及保障桥梁安全运行具有重要意义。
本文旨在深入探讨独塔斜拉桥的设计理论,包括其结构特点、受力性能、设计优化等方面,以期为相关领域的研究和实践提供有益的参考和借鉴。
本文首先将对独塔斜拉桥的基本结构特点进行概述,包括其主塔、斜拉索、桥面系等主要组成部分的设计要点和构造特点。
在此基础上,本文将重点分析独塔斜拉桥的受力性能,包括其在不同荷载作用下的应力分布、变形特征以及稳定性等方面的表现。
通过深入的理论分析和实验研究,本文将揭示独塔斜拉桥在设计过程中需要关注的关键问题和优化方向。
本文还将探讨独塔斜拉桥的设计优化方法,包括结构选型、材料选择、施工工艺等方面的优化策略。
通过对比分析不同设计方案和施工工艺的优缺点,本文将提出一系列具有创新性和实用性的设计优化建议,以期提高独塔斜拉桥的设计质量和经济效益。
本文将总结独塔斜拉桥设计理论研究的主要成果和贡献,并展望未来的研究方向和应用前景。
通过本文的研究,希望能够为独塔斜拉桥的设计理论研究和实际应用提供有益的参考和借鉴,推动桥梁工程技术的不断发展和进步。
二、独塔斜拉桥的设计原理独塔斜拉桥是一种特殊类型的桥梁,其设计原理主要基于结构力学、材料力学和桥梁美学的综合考虑。
在设计过程中,需要确保桥梁在承受各种荷载作用下的安全性和稳定性,同时也要追求良好的经济效益和美观性。
独塔斜拉桥的设计需要满足结构力学的要求。
斜拉桥的主要承重结构由塔、梁和斜拉索组成,其中塔是桥梁的支撑点,梁是跨越障碍物的主体,斜拉索则起到连接塔和梁的作用。
在设计时,需要合理确定塔的高度、梁的长度和斜拉索的布置方式,以保证桥梁的整体稳定性和承载能力。
还需要对桥梁在各种荷载作用下的受力状态进行详细分析,确保桥梁在各种工况下都能安全稳定地工作。
斜拉拱桥受力性能及设计参数分析

25模型不考虑拱肋之 间的横撑 的作 .
1斜 拉 拱 的产 生 和 发 展 现 状 . 斜 拉 拱 是 在 桥 梁 工 程 界 最 近 几 年 才
还能在 施工 中作为扣 索塔架和 缆索 吊装 塔架 的支撑体 系 ,减 少 了结构 施工 的难
度。斜拉索协助主拱受力 , 可起 到 调 整 拱 肋轴线、 改善 结 构 刚度 以及 减 少 主 拱 推 力
1 92
用 C 0混 凝 : 拱 肋 计 算 跨 径 为 20 计 5 0 m, 算 矢 高为 5 m, 肋 宽度 为 2 m。 0 拱 . O 为 了 取 得 较 好 的 比较 结 果 , 结 构 的 在 分析 计 算 中作 如 下 假 定 : 21 载效 应 满 足 线 性 迭 加 原 理 。 .活 4 1 1 1 0) 1
高度f 这里主要指拱肋高度) 就有可能取 得 较好 的效益 。 本节比较不 同高度的斜拉拱
在成 桥 状 态 下 它 们 的 受 力性 能 。 由 计 算 得 出 ,对 于斜 拉 拱 桥 来 说 , 肋
之 见的空口号。 如若工程现场出现秩序混
乱, 立刻整治 , 改就该 , 罚就 罚, 要 该 该 该 停 就停 , 施 工 现 场 环 境 清 洁 、 让 设备 正 常 、
布 置 建议 。 3 拱 肋 刚 度 设 置 分析 .
本文 研究 的斜 拉拱 结构 的空 间形式
为 两 条 相 互 平 行 间 距 为 1m 的 中 承 式 2
斜拉拱桥既展示 了拱桥 、 斜拉桥 的特
点 , 使 得 两 种 桥 型 的 优 点 得 到 了相 互 补 又 充。 主塔 的存 在 , 是斜 拉 索 依 附 的 主 体 , 既 位 , 持 良好 的 工 作 责任 心 , 集 体 的力 保 靠 量 来 维护 现 场 的 工作 秩 序 , 不 是 凭 一 己 而
混凝土斜拉桥设计标准

混凝土斜拉桥设计标准一、前言混凝土斜拉桥是一种具有特殊结构形式的桥梁,它的主要特点是斜拉索与桥面板之间的相互作用,可使桥梁具有较好的承载能力和稳定性。
为了确保混凝土斜拉桥的质量和安全性,必须制定详细的设计标准。
二、桥梁分类混凝土斜拉桥主要有两种形式:单塔斜拉桥和双塔斜拉桥。
根据桥梁的跨度、荷载等条件,选择合适的形式是设计的首要任务。
三、设计荷载混凝土斜拉桥设计荷载主要有以下几种:1. 永久荷载:包括桥梁自重、桥面铺装、防护栏杆等永久性荷载。
2. 变动荷载:包括车辆荷载、风荷载、地震荷载等变动性荷载。
3. 临时荷载:指建设期间施工机械、材料等荷载。
四、设计参数混凝土斜拉桥的设计参数主要包括以下方面:1. 桥梁基本尺寸:包括跨径、塔高、斜拉索长度等。
2. 桥面结构设计:包括桥面板、横隔板、支座等。
3. 斜拉索设计:包括索径、索距、索角等。
4. 塔身设计:包括塔身形式、截面尺寸、抗震性能等。
5. 斜拉索锚固设计:包括锚固位置、锚固方式等。
五、设计过程混凝土斜拉桥的设计过程主要包括以下几个步骤:1. 初步设计:确定桥梁类型、跨径、塔高等基本参数。
2. 结构分析:进行结构计算,确定桥梁各部分的尺寸和设计荷载。
3. 桥面板设计:确定桥面板的结构形式、尺寸和材料等。
4. 斜拉索设计:确定斜拉索的长度、径向和角度等。
5. 塔身设计:确定塔身的形式、截面尺寸和抗震性能等。
6. 斜拉索锚固设计:确定斜拉索的锚固位置和方式等。
7. 完善设计:根据实际情况进行调整和完善设计。
六、质量控制混凝土斜拉桥的质量控制主要包括以下几个方面:1. 材料控制:要求使用符合国家标准的优质材料。
2. 施工控制:要求严格按照设计图纸和技术要求进行施工。
3. 检测控制:要求进行全过程的质量检测和监控。
4. 竣工验收:要求进行全面的竣工验收和评估。
七、安全措施混凝土斜拉桥的安全措施主要包括以下几个方面:1. 设计合理:要求严格按照国家标准进行设计,确保桥梁结构的合理性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斜拉桥设计计算参数分析
1 概述
斜拉桥属高次超静定结构,所采用的施工方法和安装程序与成桥后的主梁线形、结构内力有着密切的联系。
并且在施工阶段随着斜拉桥结构体系和荷载状态的断变化,主梁线形和结构内力亦随之不断发生变化。
因此,需对斜拉桥的每一施工阶段进行详尽的分析、验算,从而求得斜拉索张拉吨位和主梁挠度、主塔位移等施工控制参数,并依此对施工的顺序做出明确的规定,并在施工中加以有效的管理和控制。
2 设计参数分析
2.1 主梁的中、边跨跨径比
主梁的中、边跨跨径比反映了结构体系的变形特性和锚索的抗疲劳性能:
从图1、图2可见,三跨钢斜拉桥的中边跨跨径比较多地位于2.0~3.5之间,集中在2.5处;三跨混凝土斜拉桥的相应数值则为1.5~3.0,较集中于2.2处。
就一般而言,中、边跨跨径的比值大于2.0,将能控制锚索的应力幅度在一定的范围内,并提高结构体系的总体刚度。
在许多斜拉桥中,虽然中、边跨跨径的比值较小,但边跨中往往采用设置辅助墩或将主梁与引桥连接形成组合体系以提高结构刚度,适应结构的变形要求。
2.2 主梁自重分析
选取某斜拉桥桥5号、9号梁段(见图3),各自增重5 %(其它参数取理论值) ,分别计算得到在浇筑完5号、9号梁段后各控制点挠度及主梁控制截面弯矩变化情况,见图3 、图4 。
图3:主梁自重增大5 %的梁段挠度影响图4:主梁自重增大5 %的梁段弯矩影响
从图3 、图4可见,梁段自重对控制点挠度的影响较大,且悬臂越大,影响越明显。
梁段自重对控制点弯矩的影响更加不容忽视, 9 号梁段自重增大5 %,导致6 号梁段的弯矩值增加至1 200 kN •m ,达到合理成桥状态下该截面弯矩值的7 %。
2.3 主梁弹性模量分析
选取该桥5号、9号梁段弹性模量增大10 %(其它参数取理论值) ,分别计算得到在浇筑完9号梁段后主梁控制截面弯矩变化及各控制点挠度影响情况,见图5 、图6 。
图5:主梁弹性模量增大10%的梁段弯矩影响图6:主梁弹性模量增大10%的梁段挠度影响
从图5 、图6 可见,主梁混凝土弹性模量增大10 %时,控制点挠度变化的最大值仅为1 mm ,弯矩变化的最大值也只有220 kN •m。
与主梁部分梁段自重增大5 %的情况相比,该影响是很小的。
2.4 温度变化分析
在斜拉桥施工过程的两类温度影响中,年温差的周期性季节影响,一般假定在结构内各处以均值变化;局部温差影响,主要是指日照等因素因作用程度差异而导致各部分的温度变化不均匀。
2.4.1 年温差分析
年温差也称为季节温差,它对该斜拉桥挠度和弯矩的影响(有关数据分析按照结构各部位均匀升温24 ℃考虑,见图7) ,从图7 可以看出,温度升高会使主梁上拱,使其上缘受拉、下缘受压,但由此而产生的挠度和弯矩都不大。
图7:全桥均匀升温24 ℃时主梁挠度、弯矩变化
2.4.2 局部温差分析
在日照作用下,斜拉桥温度场的变化比较复杂,各部分结构对温度的敏感程度存在重大差异。
斜拉索由钢绞线制成,横截面较小,虽温度变化相对均匀,但温度敏感程度较高;主梁和主塔的温度场分布复杂,由于横截面较大和构成梁塔的混凝土的导热系数较小,梁塔内温度变化随大气温度变化表现出明显的滞后性,受光表面和构件内部呈现出较大的温度梯度[3 ]。
假设主梁上下缘温差为±5 ℃,索梁温差为±10 ℃,主塔前后缘温差为±10 ℃,3种非均匀温度变化共同作用下,对该斜拉桥的影响见图8。
图8:非均匀温度变化产生的主梁挠度、弯矩包络图
从图8 可知,温度变化的影响,非均匀温度要远大于均匀温度。
塔梁固结处的位移没有变化,但是该处的弯矩变化最大值达到了-13143 kN •m ,主梁各节段挠度变化的最大值也达到了17.4 mm。
由此可见,局部温差较年温差的影响更为显著。
虽然局部温差的变化十分复杂,实际很难加以准确计算,但不同温差对主梁挠度和弯矩的影响是各有侧的。
因此,合理地确定梁段安装时间,可以很好地避开昼夜温差的影响;如果条件允许,那些对结构受力有显著影响的重要施工工序应尽量安排在结构处于均匀温度状态下进行。
同时,施工过程中的测量工作也应在这种稳定状态下进行。
2.5混凝土收缩徐变分析
目前大多数的预应力混凝土桥梁,在其施工过程中,由于混凝土龄期短、收缩徐变对桥梁各方面都有一定影响。
但鉴于目前桥梁结构型式多、架设方法也各有不同,因此对收缩徐变的影响不能一概而论。
特别是对于预应力混凝土斜拉桥,其外部的斜拉索并不会发生收缩徐变现象,主梁在架设过程中的收缩徐变的影响必须经过计算才能做出判断。
收缩徐变效应对跨中挠度、弯矩的影响见图9 。
从图9 可见,斜拉桥的混凝土收缩徐变效应对跨中挠度和弯矩的影响均较大,不容忽视。
而且这一影响在桥梁竣工以后相当长的一段时间内有加剧的趋势。
5 年以后因收缩徐变效应引起的跨中弯矩的变化值为15 750 kN •m。
图9:收缩徐变效应对跨中挠度、弯矩
2.6荷载冲击系数的影响
图10结出了几个国家的冲击系数曲线。
由此可见各国对冲击系数的规定仍然相差很大。
特别是我国,冲击系数偏小。
另外世界各国都有很多旧桥需要维修和评估其承载能力。
需要一个比较精确又方便的冲击系数计算办法。
因此,车辆冲击系数的研究目前仍在很多国家进行,如美国、加拿大、日本、澳大利亚等。
图10 :各国冲击系数比较
3 长大跨斜拉桥总体设计参数的选用
以下表11列出了主跨跨径超过600m的已建和拟建斜拉桥的总体设计参数。
从表11可以看出,主粱结构多为钢结构或结合梁混合结构,主梁的中边跨
跨径比为2.0~3.3,边跨长相对都取得较长,并设有辅助墩;主梁的跨高比普遍较大,由最小的l79到最大的330,主梁结构显得更加柔细;主梁的跨宽比或许受结构抗风性能的影响,仍以分别小于30、大于10的居多;主塔跨高比在4.6左右,并以倒Y形或A形塔居多。
4 结语
通过上述结构参数分析说明, 主梁的中、边跨跨径比、梁体自重、非均匀温度变化、混凝土的收缩徐变效应,都是斜拉桥的重要设计参数;而梁体的弹性模量、均匀温度变化,则属于一般设计参数。
(1) 临时荷载的堆放相当于增加某梁段的自重。
故对于混凝土浇筑泵等较大的临时荷载,一定要注意其堆放时间和位置;拆除当前梁段的支架前,一定要首先撤除重型临时荷载。
(2)斜拉桥施工过程中,条件允许时,每梁段混凝土浇筑时间宜选在温度相对较低、气温较稳定的夜晚,尽量避开非均匀温度变化的影响。
(3) 主梁的跨高比、跨宽比都有增大的趋势,如何构筑一个合理的结构形式,以提高斜拉桥的总体性能是急待解决的问题。