弹簧“串联”和“并联”问题解答方法略谈
弹簧串并联问题

弹簧“串联”和“并联”问题解答方法略谈k 1,弹簧B 的劲度系数为k 2,如果把两弹簧相串使用,在弹簧末端挂一个重为A :-一:簧的总长度为 ______ 。
2.弹簧“并联”例2已知弹簧A 的劲度系数为k 1,弹簧B 的劲度系数为k 2,如果把两弹簧相并后,在弹簧的末端挂一重物G求弹簧相并后的等效劲度系数。
□图3习题:如例2图所示,a 、b 两根轻质弹簧,它们的劲度系数分别为易混淆题:如图所示,两根原长相同的轻质弹簧 A 、B 竖直悬挂,其下端用一根跨过动滑轮的细绳连在一起,不计绳与滑轮的质量,两弹簧原来均无形变,求在动滑轮下挂一质量为的系数分别为k 1、k 2,弹簧始终保持弹性形变。
问这时新弹簧的伸长量|2为 ________1 •弹簧“串联” 习题: 一根轻质弹簧下面挂一重物, 弹簧伸长为 3 1 |1,若将该弹簧剪去 3,在剩下的-部分下端仍然挂原重物, 、 4 4 簧伸长了 12,则I l :丨2为: :4 B>4:3 C 、4:l 易混淆题:如图2所示,已知物块 A B 的质量均为m,两轻质弹簧劲度系数A 、3 D 、l :4 分别为k i 和k 2,已知两弹簧原长之和为 I 。
,不计两物体的厚度,求现在图中两弹例1已知弹簧A 的劲度系数为 的物体,求弹簧相串后的等效劲度系数。
k a 1 103N /m , k b 2 103N /m ,原长分别为l a 6cm , l b 4cm ,在下端挂一重物G,物体受到的重力为 10N ,平衡时物体下降了 _____ cm 。
m 砝码后,动滑轮下降了多大?已知弹簧劲度 练习:已知一弹簧的劲度系数为 k ,下面挂重物为 G 的伸长量为|1,现在把该弹簧剪为相等的两段再相并使用,。
弹簧串联和并联问题解答方法略谈

弹簧串联和并联问题解答方法略谈Revised on November 25, 2020弹簧“串联”和“并联”问题解答方法略谈1.弹簧“串联”例1 已知弹簧A 的劲度系数为1k ,弹簧B 的劲度系数为2k ,如果把两弹簧相串使用,在弹簧末端挂一个重为G 的物体,求弹簧相串后的等效劲度系数。
解析 如图,两弹簧相串使用,当挂上重物,弹簧A 、 B 所受的拉力均为G 。
设弹簧A 的伸长量为1x ∆,弹簧B 的伸长量2x ∆,则有 mg x k =∆11 11k mg x =∆(1) mg x k =∆22 22k mg x =∆(2) 由上面两式得相串弹簧的伸长量为)11(2121k k mg x x x +=∆+∆=∆(3) 由(3)式得mg x k k k k =∆+2121,设k k k k k '=+2121,则mg x k =∆' 由胡克定律得,弹簧A 、B相串构成新弹簧的劲度系数为2121k k k k k +=',我们把弹簧相串使用叫弹簧“串联”。
习题:一根轻质弹簧下面挂一重物,弹簧伸长为1l ∆,若将该弹簧剪去43,在剩下的41部分下端仍然挂原重物,弹簧伸长了2l ∆,则1l ∆∶2l ∆为:A、3∶4 B、4∶3 C、4∶1 D、1∶4解析 设轻质弹簧原长为0l ,则该弹簧等效于4个原长为40l 的轻质弹簧的“串联”,设原轻质弹簧的劲度系数为0k ,则由前面的推导知,小弹簧的劲度系数04k k ='。
所以,在弹簧剪断前后挂同一重物,应有210l k l k ∆'=∆,把04k k ='代入上式得答案为C 。
易混淆题:如图2 所示,已知物块A 、B 的质量均为m ,两轻质弹簧劲度系数 分别为1k 和2k ,已知两弹簧原长之和为0l ,不计两物体的厚度,求现在图中两弹 簧的总长度为_____。
错解 两弹簧是“串联”,由推导知,弹簧串后的劲度系数为2121k k k k k +=',设两弹簧压缩量为x ∆,由胡克定律得mg x k 2=∆',把k '代入得21)21(2k k k k mg x +=∆,所以两弹簧的长度为 21210)(2k k k k mg l x l +-=∆-。
弹簧连接体问题解题思路

弹簧连接体问题解题思路
弹簧连接体问题一般可以通过以下步骤来解决。
Step 1: 理清问题条件
首先,要明确问题中给出的条件,包括弹簧的初始长度、劲度系数、外力等。
理解问题条件有助于正确理解问题,并为后续计算提供必要的信息。
Step 2: 确定平衡条件
弹簧连接体问题通常要求找出弹簧达到平衡的位置或最大伸缩位移。
为了做到这一点,需要找出使得合力为零的位置。
根据牛顿第三定律,弹簧的弹性力与外力之和必须为零。
Step 3: 应用弹簧公式
根据弹簧的劲度系数和伸缩位移量,可以使用胡克定律来计算弹簧的伸缩力。
弹簧公式为:
F = -kx
其中F是伸缩力,k是劲度系数,x是伸缩位移量。
通过求解这个方程,可以找出使得合力为零的伸缩位移量。
Step 4: 检查解的合理性
对于弹簧连接体问题,解可以是正数或负数。
正数表示弹簧被拉伸,负数表示弹簧被压缩。
需要检查解是否符合实际情况,比如弹簧是否可伸缩到给定的位移范围内。
Step 5: 解释解的物理意义
最后,需要解释解的物理意义。
这可能涉及到伸缩位移对系统其他部分的影响,比如连接物体的位移、速度和加速度等等。
通过以上步骤,可以解决弹簧连接体问题并得出准确的答案。
需要注意的是,问题的复杂程度可能不同,可能需要更多的计算或考虑更多的物理因素。
弹簧串联并联劲度系数

弹簧串联并联劲度系数【原创版】目录1.弹簧串联和并联的定义2.弹簧串联和并联的劲度系数变化3.弹簧串联和并联的应用举例4.弹簧串联和并联的优缺点正文一、弹簧串联和并联的定义弹簧串联指的是将两个或多个弹簧按照一定的顺序连接在一起,使其形成一个整体的弹簧系统。
在弹簧串联系统中,当弹簧受到外力时,各个弹簧会同时产生变形,而且变形的大小相同。
弹簧并联指的是将两个或多个弹簧同时连接在一个节点上,使其共同承受外力。
在弹簧并联系统中,当弹簧受到外力时,各个弹簧的变形大小相同,但方向相反。
二、弹簧串联和并联的劲度系数变化在弹簧串联系统中,劲度系数会减小。
这是因为在弹簧串联系统中,当弹簧受到外力时,各个弹簧会同时产生变形,从而使得总的变形量增大。
而根据胡克定律,弹簧的劲度系数与变形量成正比,因此弹簧串联系统的劲度系数会减小。
在弹簧并联系统中,劲度系数会增大。
这是因为在弹簧并联系统中,当弹簧受到外力时,各个弹簧的变形大小相同,但方向相反。
因此,在弹簧并联系统中,总的变形量是各个弹簧变形量的矢量和,从而使得弹簧并联系统的劲度系数增大。
三、弹簧串联和并联的应用举例弹簧串联和并联在工程中应用广泛,例如在汽车悬挂系统中,弹簧串联可以用来提高悬挂系统的舒适性,而弹簧并联可以用来提高悬挂系统的稳定性。
四、弹簧串联和并联的优缺点弹簧串联的优点是可以提高系统的舒适性,使得系统在受到外力时不容易产生较大的变形。
而弹簧并联的优点是可以提高系统的稳定性,使得系统在受到外力时能够更快地恢复到原始状态。
弹簧串联的缺点是系统的劲度系数会减小,从而使得系统对外力的响应变得迟钝。
弹簧串并联问题资料

弹簧“串联”和“并联”问题解答方法略谈1弹簧“串联”例1已知弹簧A 的劲度系数为 的物体,求弹簧相串后的等效劲度系数。
易混淆题:如图所示,两根原长相同的轻质弹簧 A 、B 竖直悬挂,其下端用一根跨过动滑轮的细绳连在一起,不习题:一根轻质弹簧下面挂一重物,弹簧伸长为 3 1 ,:11,若将该弹簧剪去 ,在剩下的一部分下端仍然挂原重物,弹 、 4 4 簧伸长了 . :l 2U .讷:詡2为: A 、3:4 B>4:3 C 、4:l D 、l :4 易混淆题:如图2所示,已知物块 A B 的质量均为m,两轻质弹簧劲度系数 分别为和k 2,已知两弹簧原长之和为 I 。
,不计两物体的厚度,求现在图中两弹 A L — 簧的总长度为 __________________ 。
2. 3.弹簧“并联” 例2已知弹簧A 的劲度系数为&,弹簧B 的劲度系数为k 2 , 求弹簧相并后的等效劲度系数。
如果把两弹簧相并后,在弹簧的末端挂一重物 习题:如例2图所示,a 、b 两根轻质弹簧,它们的劲度系数分别为 分别为l a =6cm , |b =4cm ,在下端挂一重物G,物体受到的重力为 k a =1 103N /m , k b =2 103N /m ,原长 10N ,平衡时物体下降了 _____ cm 。
计绳与滑轮的质量,两弹簧原来均无形变,求在动滑轮下挂一质量为的 系数分别为k 1、k 2,弹簧始终保持弹性形变。
m 砝码后,动滑轮下降了多大?已知弹簧劲度 练习:已知一弹簧的劲度系数为 k ,下面挂重物为 G 的伸长量为I 1,现在把该弹簧剪为相等的两段再相并使用, k i ,弹簧B 的劲度系数为k 2,如果把两弹簧相串使用,在弹簧末端挂一个重为问这时新弹簧的伸长量|2为________。
物理弹簧类问题解题技巧

物理弹簧类问题解题技巧(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:Wk=-(kx22 -kx12),弹力的功等于弹性势能增量的负值。
弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或^f=kx来求解3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
弹簧连接体问题解题思路

弹簧连接体问题解题思路弹簧连接体问题解题思路1. 引言弹簧连接体是一个常见的物理问题,涉及到材料力学和弹性力学的知识。
在这篇文章中,我们将探讨弹簧连接体问题的解题思路。
通过深入研究和广泛阐述,希望能对读者深刻理解这一主题,为解决类似问题提供指导。
2. 弹簧连接体的定义和基本原理弹簧连接体是指通过弹簧将两个物体连接起来的装置。
在该装置中,弹簧起到了连接、支撑和调节的功能。
弹簧连接体的设计和使用都涉及到力的平衡和弹性力学的基本原理。
3. 弹簧连接体问题的解题思路弹簧连接体问题的解题思路应该从简到繁、由浅入深,以便更好地理解和应用。
下面是解题思路的几个关键步骤:3.1 研究弹簧的材料力学性质弹簧的材料力学性质是解决弹簧连接体问题的基础。
对于不同类型的弹簧,其材料力学性质存在差异,因此需要先研究和了解弹簧的材料力学特性。
3.2 确定弹簧连接体的力学模型根据具体问题的要求,确定弹簧连接体的力学模型。
可以根据弹簧的形状、材料和受力情况,选择适当的力学模型,以便更好地描述和分析问题。
3.3 列出受力方程根据弹簧连接体的力学模型,列出受力方程。
在列出受力方程时,要考虑弹簧连接体的各个部分之间的相互作用,并考虑到外界的施加力和约束条件。
3.4 解方程求解未知量根据列出的受力方程,解方程求解未知量。
可以使用数值计算、近似方法或解析解等方式进行求解,以获得问题中需要的参数或结果。
4. 解决实际问题的案例分析在此部分,我们将通过一个实际问题的案例分析来展示弹簧连接体问题解题思路的应用。
假设我们需要设计一个承重弹簧连接体,使得在受到外界力的作用下,弹簧连接体能保持稳定并承受最大的力量。
案例分析的具体步骤如下:4.1 确定弹簧连接体的形状和材料我们需要确定弹簧连接体的形状和材料。
根据设计要求,选择适当的弹簧形状和材料,以满足承重和稳定性的要求。
4.2 建立弹簧连接体的力学模型根据确定的形状和材料,建立弹簧连接体的力学模型。
弹簧并联与串联的等效问题

我 们认 为将 思 维 导 图 引 入教 学 , 是 为 教 学 改 革 注入 新 的活 力 。
参考文献 : [ 1 ] 东尼・ 博 赞. 思 维 导 图— — 大 脑 使 用 说 明 书 [ M 3 . 北 京
[ 4 ] 张豪锋 , 王娟 , 王龙. 运 用 思 维 导 图提 高 学 习绩 效 . 中小 学信 息技 术教 育 . 2 0 0 5 . 1 2 . 『 5 ] 杨凌. 概 念 图、 思 维 导 图 的 结 合 对 教 与 学 的 辅 助 性 研 究[ J ] . 电化 教 育 研 究 , 2 0 0 6 ( 6 ) .
— —— 一
K= K I I : -—
( k . + k , ) l + 4 8 EI
2
力平 衡方 程 : k y ( ) —
1
+
; 运 动 方 程 : m 粤 2 + = = :
a t " ( k . + k , ) l + 4 8 E I
p / k = p / k  ̄ + p / k z 即
一
、
原 理 分 析
垂 一
1 . 弹 簧 的并 联 … 如图1 所示 .
‘
.
.
P = k u
P = k l u + k 2 U
k u = k l u + k 2 U
. .
k = k l + k 2
图 3 工 程弹 簧结 构 等 效 图 解: 取 质 量 m处 向 下 位移 Y 为广 义 坐 标 设 简 支 梁 在A点处 提供 的 刚度 为 k , 则:
外语 教 学 与研 究 出版 社 , 2 0 0 5 . 『 2 ] 齐伟. 系 列1 : 概 念 图/ 思维 导 图导论. 教 育 技术 导刊 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
弹簧“串联”和“并联”问题解答方法略谈
1.弹簧“串联”
例1 已知弹簧A的劲度系数为1k ,弹簧B 的劲度系数为2k ,如果把两弹簧相串使用,在弹簧末端挂一个重为G 的物体,求弹簧相串后的等效劲度系数。
解析 如图,两弹簧相串使用,当挂上重物,弹簧A 、 B 所受的拉力均为G 。
设弹簧A的伸长量为1x ∆,弹簧B 的伸长量2x ∆,则有 mg x k =∆11 11k mg x =∆(1) mg x k =∆22 2
2k mg x =∆(2由上面两式得相串弹簧的伸长量为11(
2121k k mg x x x +=∆+∆=∆(3) 由(3)式得mg x k k k k =∆+2121,设k k k k k '=+2
121,则mg x k =∆' 由胡克定律得,弹簧A 、B相串构成新弹簧的劲度系数为2121k k k k k +=
',我们把弹簧相串使用叫弹簧“串联”。
习题:一根轻质弹簧下面挂一重物,弹簧伸长为1l ∆,若将该弹簧剪去
43,在剩下的41部分下端仍然挂原重物,弹簧伸长了2l ∆,则1l ∆∶2l ∆为:
A、3∶4 B 、4∶3 C、4∶1 D、1∶4
解析 设轻质弹簧原长为0l ,则该弹簧等效于4个原长为40l 的轻质弹簧的“串
联”,设原轻质弹簧的劲度系数为0k ,则由前面的推导知,小弹簧的劲度系数
04k k ='。
所以,在弹簧剪断前后挂同一重物,应有210l k l k ∆'=∆,把
04k k ='代入上式得答案为C 。
易混淆题:如图2 所示,已知物块A 、B的质量均为m ,两轻质弹簧劲度系数
分别为1k 和2k ,已知两弹簧原长之和为0l ,不计两物体的厚度,求现在图中两弹
簧的总长度为_____。
错解 两弹簧是“串联”,由推导知,弹簧串后的劲度系数为2
121k k k k k +='
,设两弹簧压缩量为
--
x ∆,由胡克定律得mg x k 2=∆',把k '代入得21)21(2k k k k mg x +=
∆,所以两弹簧的长度为 21210)(2k k k k mg l x l +-
=∆-。
错解剖析 解答错误的原因是不经分析就把该题中两弹簧看成“串联”。
正确解答 由题意知,上面轻质弹簧上的受力为mg,下面弹簧的受力为2mg,设上面弹簧压缩量为1x ∆,下面弹簧的压缩量为2x ∆,由胡克定律易得
11k mg x =∆,2
22k mg x =∆,因此知题中弹簧的长度为 21120210)2(k k k k mg l x x l +-
=∆-∆-。
2. 弹簧“并联”
例2 已知弹簧A 的劲度系数为1k ,弹簧B 的劲度系数为2k ,如果把两弹簧相并后,在弹簧的末端挂一重物G ,求弹簧相并后的等效劲度系数。
解析 如图3所示,两弹簧相并使用,当挂上重物后,两弹簧A 、B 伸
长量相同,设两弹簧的伸长量均为x ∆,由平衡条件得G x k x k =∆+∆21,
即G x k k =∆+)(21,设21k k k +=',则G x k =∆'。
由胡克定律得,A 、B相并构成新弹簧的劲度系数为21k k k +='。
我们把弹簧相并使用叫做弹簧“并联”。
习题:如例2图所示,a 、b 两根轻质弹簧,它们的劲度系数分别为m N k a /1013⨯=,m N k b /1023⨯=,原长分别为cm l a 6=,cm l b 4=, 在下端挂一重物G,物体受到的重力为10N,平衡时物体下降了______cm 。
解析 由上面的推导知,a 、b 并联后弹簧的劲度系数为
m N k k k b a /103)(3⨯=+=,由胡定律x k F ∆=,已知G F =,把k 代入得
m x 3103.3-⨯=∆。
易混淆题:如图所示,两根原长相同的轻质弹簧A 、B 竖直悬挂,其下端用一根跨过动滑轮的细绳连在一起,不计绳与滑轮的质量,两弹簧原来均无形变,求在动滑轮下挂一质量为的m砝码后,动滑轮下降了多大?已知弹簧劲度系数分别为1k 、2k ,弹簧始终保持弹性形变。
错解 A、B 两弹簧“并联”,由上面的推导得,并后弹簧的劲度系
数21k k k +='。
设滑轮下降的距离为△X,由平衡条件得mg x k =∆',得
图
3
-- 滑轮下降的距离为21k k mg x +=
∆。
错解剖析 解答错误的原因是把A 、B 两弹簧看成“并联”,其实不然,该题中的弹簧与“并联”的区别在于,弹簧“并联”时,弹簧末端挂一重物,两弹簧的伸长量相同。
该题中的两弹簧通过绳绕过滑轮相连,两弹簧上的拉力大小相等,均为2
mg ,两弹簧伸长量并不相等。
正确解答 设弹簧A 的伸长量为1x ∆,弹簧B 的伸长量为2x ∆,则由平衡条件得
2
11mg x k =∆ 112k mg x =∆(1) 2
22mg x k =∆ 222k mg x ∆(2) 设滑轮下降的距离为x ∆,2121214)(2k k k k mg x x x +=∆+∆=
∆。
练习:已知一弹簧的劲度系数为k ,下面挂重物为G 的伸长量为1l ,现在把该弹簧剪为相等的两段再相并使用,问这时新弹簧的伸长量2l 为_____。
(4
12l l =
)。